1. 17 2月, 2015 7 次提交
    • M
      vfs: remove get_xip_mem · e748dcd0
      Matthew Wilcox 提交于
      All callers of get_xip_mem() are now gone.  Remove checks for it,
      initialisers of it, documentation of it and the only implementation of it.
       Also remove mm/filemap_xip.c as it is now empty.  Also remove
      documentation of the long-gone get_xip_page().
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e748dcd0
    • M
      dax,ext2: replace xip_truncate_page with dax_truncate_page · 4c0ccfef
      Matthew Wilcox 提交于
      It takes a get_block parameter just like nobh_truncate_page() and
      block_truncate_page()
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Reviewed-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4c0ccfef
    • M
      dax,ext2: replace the XIP page fault handler with the DAX page fault handler · f7ca90b1
      Matthew Wilcox 提交于
      Instead of calling aops->get_xip_mem from the fault handler, the
      filesystem passes a get_block_t that is used to find the appropriate
      blocks.
      
      This requires that all architectures implement copy_user_page().  At the
      time of writing, mips and arm do not.  Patches exist and are in progress.
      
      [akpm@linux-foundation.org: remap_file_pages went away]
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f7ca90b1
    • M
      dax,ext2: replace XIP read and write with DAX I/O · d475c634
      Matthew Wilcox 提交于
      Use the generic AIO infrastructure instead of custom read and write
      methods.  In addition to giving us support for AIO, this adds the missing
      locking between read() and truncate().
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d475c634
    • M
      vfs,ext2: introduce IS_DAX(inode) · fbbbad4b
      Matthew Wilcox 提交于
      Use an inode flag to tag inodes which should avoid using the page cache.
      Convert ext2 to use it instead of mapping_is_xip().  Prevent I/Os to files
      tagged with the DAX flag from falling back to buffered I/O.
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Reviewed-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fbbbad4b
    • M
      mm: allow page fault handlers to perform the COW · 2e4cdab0
      Matthew Wilcox 提交于
      Currently COW of an XIP file is done by first bringing in a read-only
      mapping, then retrying the fault and copying the page.  It is much more
      efficient to tell the fault handler that a COW is being attempted (by
      passing in the pre-allocated page in the vm_fault structure), and allow
      the handler to perform the COW operation itself.
      
      The handler cannot insert the page itself if there is already a read-only
      mapping at that address, so allow the handler to return VM_FAULT_LOCKED
      and set the fault_page to be NULL.  This indicates to the MM code that the
      i_mmap_lock is held instead of the page lock.
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2e4cdab0
    • M
      mm: fix XIP fault vs truncate race · 283307c7
      Matthew Wilcox 提交于
      DAX is a replacement for the variation of XIP currently supported by the
      ext2 filesystem.  We have three different things in the tree called 'XIP',
      and the new focus is on access to data rather than executables, so a name
      change was in order.  DAX stands for Direct Access.  The X is for
      eXciting.
      
      The new focus on data access has resulted in more careful attention to
      races that exist in the current XIP code, but are not hit by the use-case
      that it was designed for.  XIP's architecture worked fine for ext2, but
      DAX is architected to work with modern filsystems such as ext4 and XFS.
      DAX is not intended for use with btrfs; the value that btrfs adds relies
      on manipulating data and writing data to different locations, while DAX's
      value is for write-in-place and keeping the kernel from touching the data.
      
      DAX was developed in order to support NV-DIMMs, but it's become clear that
      its usefuless extends beyond NV-DIMMs and there are several potential
      customers including the tracing machinery.  Other people want to place the
      kernel log in an area of memory, as long as they have a BIOS that does not
      clear DRAM on reboot.
      
      Patch 1 is a bug fix, probably worth including in 3.18.
      
      Patches 2 & 3 are infrastructure for DAX.
      
      Patches 4-8 replace the XIP code with its DAX equivalents, transforming
      ext2 to use the DAX code as we go.  Note that patch 10 is the
      Documentation patch.
      
      Patches 9-15 clean up after the XIP code, removing the infrastructure
      that is no longer needed and renaming various XIP things to DAX.
      Most of these patches were added after Jan found things he didn't
      like in an earlier version of the ext4 patch ... that had been copied
      from ext2.  So ext2 i being transformed to do things the same way that
      ext4 will later.  The ability to mount ext2 filesystems with the 'xip'
      option is retained, although the 'dax' option is now preferred.
      
      Patch 16 adds some DAX infrastructure to support ext4.
      
      Patch 17 adds DAX support to ext4.  It is broadly similar to ext2's DAX
      support, but it is more efficient than ext4's due to its support for
      unwritten extents.
      
      Patch 18 is another cleanup patch renaming XIP to DAX.
      
      My thanks to Mathieu Desnoyers for his reviews of the v11 patchset.  Most
      of the changes below were based on his feedback.
      
      This patch (of 18):
      
      Pagecache faults recheck i_size after taking the page lock to ensure that
      the fault didn't race against a truncate.  We don't have a page to lock in
      the XIP case, so use i_mmap_lock_read() instead.  It is locked in the
      truncate path in unmap_mapping_range() after updating i_size.  So while we
      hold it in the fault path, we are guaranteed that either i_size has
      already been updated in the truncate path, or that the truncate will
      subsequently call zap_page_range_single() and so remove the mapping we
      have just inserted.
      
      There is a window of time in which i_size has been reduced and the thread
      has a mapping to a page which will be removed from the file, but this is
      harmless as the page will not be allocated to a different purpose before
      the thread's access to it is revoked.
      
      [akpm@linux-foundation.org: switch to i_mmap_lock_read(), add comment in unmap_single_vma()]
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reviewed-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      283307c7
  2. 14 2月, 2015 17 次提交
    • A
      kasan: enable instrumentation of global variables · bebf56a1
      Andrey Ryabinin 提交于
      This feature let us to detect accesses out of bounds of global variables.
      This will work as for globals in kernel image, so for globals in modules.
      Currently this won't work for symbols in user-specified sections (e.g.
      __init, __read_mostly, ...)
      
      The idea of this is simple.  Compiler increases each global variable by
      redzone size and add constructors invoking __asan_register_globals()
      function.  Information about global variable (address, size, size with
      redzone ...) passed to __asan_register_globals() so we could poison
      variable's redzone.
      
      This patch also forces module_alloc() to return 8*PAGE_SIZE aligned
      address making shadow memory handling (
      kasan_module_alloc()/kasan_module_free() ) more simple.  Such alignment
      guarantees that each shadow page backing modules address space correspond
      to only one module_alloc() allocation.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bebf56a1
    • A
      mm: vmalloc: pass additional vm_flags to __vmalloc_node_range() · cb9e3c29
      Andrey Ryabinin 提交于
      For instrumenting global variables KASan will shadow memory backing memory
      for modules.  So on module loading we will need to allocate memory for
      shadow and map it at address in shadow that corresponds to the address
      allocated in module_alloc().
      
      __vmalloc_node_range() could be used for this purpose, except it puts a
      guard hole after allocated area.  Guard hole in shadow memory should be a
      problem because at some future point we might need to have a shadow memory
      at address occupied by guard hole.  So we could fail to allocate shadow
      for module_alloc().
      
      Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
      __vmalloc_node_range().  Add new parameter 'vm_flags' to
      __vmalloc_node_range() function.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cb9e3c29
    • A
      mm: vmalloc: add flag preventing guard hole allocation · 71394fe5
      Andrey Ryabinin 提交于
      For instrumenting global variables KASan will shadow memory backing memory
      for modules.  So on module loading we will need to allocate memory for
      shadow and map it at address in shadow that corresponds to the address
      allocated in module_alloc().
      
      __vmalloc_node_range() could be used for this purpose, except it puts a
      guard hole after allocated area.  Guard hole in shadow memory should be a
      problem because at some future point we might need to have a shadow memory
      at address occupied by guard hole.  So we could fail to allocate shadow
      for module_alloc().
      
      Add a new vm_struct flag 'VM_NO_GUARD' indicating that vm area doesn't
      have a guard hole.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      71394fe5
    • A
      kasan: enable stack instrumentation · c420f167
      Andrey Ryabinin 提交于
      Stack instrumentation allows to detect out of bounds memory accesses for
      variables allocated on stack.  Compiler adds redzones around every
      variable on stack and poisons redzones in function's prologue.
      
      Such approach significantly increases stack usage, so all in-kernel stacks
      size were doubled.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c420f167
    • A
      x86_64: kasan: add interceptors for memset/memmove/memcpy functions · 393f203f
      Andrey Ryabinin 提交于
      Recently instrumentation of builtin functions calls was removed from GCC
      5.0.  To check the memory accessed by such functions, userspace asan
      always uses interceptors for them.
      
      So now we should do this as well.  This patch declares
      memset/memmove/memcpy as weak symbols.  In mm/kasan/kasan.c we have our
      own implementation of those functions which checks memory before accessing
      it.
      
      Default memset/memmove/memcpy now now always have aliases with '__'
      prefix.  For files that built without kasan instrumentation (e.g.
      mm/slub.c) original mem* replaced (via #define) with prefixed variants,
      cause we don't want to check memory accesses there.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      393f203f
    • A
      kmemleak: disable kasan instrumentation for kmemleak · e79ed2f1
      Andrey Ryabinin 提交于
      kmalloc internally round up allocation size, and kmemleak uses rounded up
      size as object's size.  This makes kasan to complain while kmemleak scans
      memory or calculates of object's checksum.  The simplest solution here is
      to disable kasan.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e79ed2f1
    • A
      mm: slub: add kernel address sanitizer support for slub allocator · 0316bec2
      Andrey Ryabinin 提交于
      With this patch kasan will be able to catch bugs in memory allocated by
      slub.  Initially all objects in newly allocated slab page, marked as
      redzone.  Later, when allocation of slub object happens, requested by
      caller number of bytes marked as accessible, and the rest of the object
      (including slub's metadata) marked as redzone (inaccessible).
      
      We also mark object as accessible if ksize was called for this object.
      There is some places in kernel where ksize function is called to inquire
      size of really allocated area.  Such callers could validly access whole
      allocated memory, so it should be marked as accessible.
      
      Code in slub.c and slab_common.c files could validly access to object's
      metadata, so instrumentation for this files are disabled.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Signed-off-by: NDmitry Chernenkov <dmitryc@google.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0316bec2
    • A
      mm: slub: introduce metadata_access_enable()/metadata_access_disable() · a79316c6
      Andrey Ryabinin 提交于
      It's ok for slub to access memory that marked by kasan as inaccessible
      (object's metadata).  Kasan shouldn't print report in that case because
      these accesses are valid.  Disabling instrumentation of slub.c code is not
      enough to achieve this because slub passes pointer to object's metadata
      into external functions like memchr_inv().
      
      We don't want to disable instrumentation for memchr_inv() because this is
      quite generic function, and we don't want to miss bugs.
      
      metadata_access_enable/metadata_access_disable used to tell KASan where
      accesses to metadata starts/end, so we could temporarily disable KASan
      reports.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a79316c6
    • A
      mm: slub: share object_err function · 75c66def
      Andrey Ryabinin 提交于
      Remove static and add function declarations to linux/slub_def.h so it
      could be used by kernel address sanitizer.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      75c66def
    • A
      mm: page_alloc: add kasan hooks on alloc and free paths · b8c73fc2
      Andrey Ryabinin 提交于
      Add kernel address sanitizer hooks to mark allocated page's addresses as
      accessible in corresponding shadow region.  Mark freed pages as
      inaccessible.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b8c73fc2
    • A
      kasan: disable memory hotplug · 786a8959
      Andrey Ryabinin 提交于
      Currently memory hotplug won't work with KASan.  As we don't have shadow
      for hotplugged memory, kernel will crash on the first access to it.  To
      make this work we will need to allocate shadow for new memory.
      
      At some future point proper memory hotplug support will be implemented.
      Until then, print a warning at startup and disable memory hot-add.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      786a8959
    • A
      kasan: add kernel address sanitizer infrastructure · 0b24becc
      Andrey Ryabinin 提交于
      Kernel Address sanitizer (KASan) is a dynamic memory error detector.  It
      provides fast and comprehensive solution for finding use-after-free and
      out-of-bounds bugs.
      
      KASAN uses compile-time instrumentation for checking every memory access,
      therefore GCC > v4.9.2 required.  v4.9.2 almost works, but has issues with
      putting symbol aliases into the wrong section, which breaks kasan
      instrumentation of globals.
      
      This patch only adds infrastructure for kernel address sanitizer.  It's
      not available for use yet.  The idea and some code was borrowed from [1].
      
      Basic idea:
      
      The main idea of KASAN is to use shadow memory to record whether each byte
      of memory is safe to access or not, and use compiler's instrumentation to
      check the shadow memory on each memory access.
      
      Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
      memory and uses direct mapping with a scale and offset to translate a
      memory address to its corresponding shadow address.
      
      Here is function to translate address to corresponding shadow address:
      
           unsigned long kasan_mem_to_shadow(unsigned long addr)
           {
                      return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
           }
      
      where KASAN_SHADOW_SCALE_SHIFT = 3.
      
      So for every 8 bytes there is one corresponding byte of shadow memory.
      The following encoding used for each shadow byte: 0 means that all 8 bytes
      of the corresponding memory region are valid for access; k (1 <= k <= 7)
      means that the first k bytes are valid for access, and other (8 - k) bytes
      are not; Any negative value indicates that the entire 8-bytes are
      inaccessible.  Different negative values used to distinguish between
      different kinds of inaccessible memory (redzones, freed memory) (see
      mm/kasan/kasan.h).
      
      To be able to detect accesses to bad memory we need a special compiler.
      Such compiler inserts a specific function calls (__asan_load*(addr),
      __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
      
      These functions check whether memory region is valid to access or not by
      checking corresponding shadow memory.  If access is not valid an error
      printed.
      
      Historical background of the address sanitizer from Dmitry Vyukov:
      
      	"We've developed the set of tools, AddressSanitizer (Asan),
      	ThreadSanitizer and MemorySanitizer, for user space. We actively use
      	them for testing inside of Google (continuous testing, fuzzing,
      	running prod services). To date the tools have found more than 10'000
      	scary bugs in Chromium, Google internal codebase and various
      	open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
      	lots of others): [2] [3] [4].
      	The tools are part of both gcc and clang compilers.
      
      	We have not yet done massive testing under the Kernel AddressSanitizer
      	(it's kind of chicken and egg problem, you need it to be upstream to
      	start applying it extensively). To date it has found about 50 bugs.
      	Bugs that we've found in upstream kernel are listed in [5].
      	We've also found ~20 bugs in out internal version of the kernel. Also
      	people from Samsung and Oracle have found some.
      
      	[...]
      
      	As others noted, the main feature of AddressSanitizer is its
      	performance due to inline compiler instrumentation and simple linear
      	shadow memory. User-space Asan has ~2x slowdown on computational
      	programs and ~2x memory consumption increase. Taking into account that
      	kernel usually consumes only small fraction of CPU and memory when
      	running real user-space programs, I would expect that kernel Asan will
      	have ~10-30% slowdown and similar memory consumption increase (when we
      	finish all tuning).
      
      	I agree that Asan can well replace kmemcheck. We have plans to start
      	working on Kernel MemorySanitizer that finds uses of unitialized
      	memory. Asan+Msan will provide feature-parity with kmemcheck. As
      	others noted, Asan will unlikely replace debug slab and pagealloc that
      	can be enabled at runtime. Asan uses compiler instrumentation, so even
      	if it is disabled, it still incurs visible overheads.
      
      	Asan technology is easily portable to other architectures. Compiler
      	instrumentation is fully portable. Runtime has some arch-dependent
      	parts like shadow mapping and atomic operation interception. They are
      	relatively easy to port."
      
      Comparison with other debugging features:
      ========================================
      
      KMEMCHECK:
      
        - KASan can do almost everything that kmemcheck can.  KASan uses
          compile-time instrumentation, which makes it significantly faster than
          kmemcheck.  The only advantage of kmemcheck over KASan is detection of
          uninitialized memory reads.
      
          Some brief performance testing showed that kasan could be
          x500-x600 times faster than kmemcheck:
      
      $ netperf -l 30
      		MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
      		Recv   Send    Send
      		Socket Socket  Message  Elapsed
      		Size   Size    Size     Time     Throughput
      		bytes  bytes   bytes    secs.    10^6bits/sec
      
      no debug:	87380  16384  16384    30.00    41624.72
      
      kasan inline:	87380  16384  16384    30.00    12870.54
      
      kasan outline:	87380  16384  16384    30.00    10586.39
      
      kmemcheck: 	87380  16384  16384    30.03      20.23
      
        - Also kmemcheck couldn't work on several CPUs.  It always sets
          number of CPUs to 1.  KASan doesn't have such limitation.
      
      DEBUG_PAGEALLOC:
      	- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
      	  granularity level, so it able to find more bugs.
      
      SLUB_DEBUG (poisoning, redzones):
      	- SLUB_DEBUG has lower overhead than KASan.
      
      	- SLUB_DEBUG in most cases are not able to detect bad reads,
      	  KASan able to detect both reads and writes.
      
      	- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
      	  bugs only on allocation/freeing of object. KASan catch
      	  bugs right before it will happen, so we always know exact
      	  place of first bad read/write.
      
      [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
      [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
      [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
      [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
      [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
      
      Based on work by Andrey Konovalov.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Acked-by: NMichal Marek <mmarek@suse.cz>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Stephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0b24becc
    • T
      mm: use %*pb[l] to print bitmaps including cpumasks and nodemasks · 9e763e0f
      Tejun Heo 提交于
      printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
      and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
      respectively which can be used to generate the two printf arguments
      necessary to format the specified cpu/nodemask.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9e763e0f
    • T
      slub: use %*pb[l] to print bitmaps including cpumasks and nodemasks · 5024c1d7
      Tejun Heo 提交于
      printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
      and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
      respectively which can be used to generate the two printf arguments
      necessary to format the specified cpu/nodemask.
      
      * This is an equivalent conversion but the whole function should be
        converted to use scnprinf famiily of functions rather than
        performing custom output length predictions in multiple places.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5024c1d7
    • T
      percpu: use %*pb[l] to print bitmaps including cpumasks and nodemasks · 807de073
      Tejun Heo 提交于
      printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
      and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
      respectively which can be used to generate the two printf arguments
      necessary to format the specified cpu/nodemask.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      807de073
    • A
      mm/slab: convert cache name allocations to kstrdup_const · 3dec16ea
      Andrzej Hajda 提交于
      slab frequently performs duplication of strings located in read-only
      memory section.  Replacing kstrdup by kstrdup_const allows to avoid such
      operations.
      
      [akpm@linux-foundation.org: make the handling of kmem_cache.name const-correct]
      Signed-off-by: NAndrzej Hajda <a.hajda@samsung.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Kyungmin Park <kyungmin.park@samsung.com>
      Cc: Mike Turquette <mturquette@linaro.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Greg KH <greg@kroah.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3dec16ea
    • A
      mm/util: add kstrdup_const · a4bb1e43
      Andrzej Hajda 提交于
      kstrdup() is often used to duplicate strings where neither source neither
      destination will be ever modified.  In such case we can just reuse the
      source instead of duplicating it.  The problem is that we must be sure
      that the source is non-modifiable and its life-time is long enough.
      
      I suspect the good candidates for such strings are strings located in
      kernel .rodata section, they cannot be modifed because the section is
      read-only and their life-time is equal to kernel life-time.
      
      This small patchset proposes alternative version of kstrdup -
      kstrdup_const, which returns source string if it is located in .rodata
      otherwise it fallbacks to kstrdup.  To verify if the source is in
      .rodata function checks if the address is between sentinels
      __start_rodata, __end_rodata.  I guess it should work with all
      architectures.
      
      The main patch is accompanied by four patches constifying kstrdup for
      cases where situtation described above happens frequently.
      
      I have tested the patchset on mobile platform (exynos4210-trats) and it
      saves 3272 string allocations.  Since minimal allocation is 32 or 64
      bytes depending on Kconfig options the patchset saves respectively about
      100KB or 200KB of memory.
      
      Stats from tested platform show that the main offender is sysfs:
      
      By caller:
        2260 __kernfs_new_node
          631 clk_register+0xc8/0x1b8
          318 clk_register+0x34/0x1b8
            51 kmem_cache_create
            12 alloc_vfsmnt
      
      By string (with count >= 5):
          883 power
          876 subsystem
          135 parameters
          132 device
           61 iommu_group
          ...
      
      This patch (of 5):
      
      Add an alternative version of kstrdup which returns pointer to constant
      char array.  The function checks if input string is in persistent and
      read-only memory section, if yes it returns the input string, otherwise it
      fallbacks to kstrdup.
      
      kstrdup_const is accompanied by kfree_const performing conditional memory
      deallocation of the string.
      Signed-off-by: NAndrzej Hajda <a.hajda@samsung.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Kyungmin Park <kyungmin.park@samsung.com>
      Cc: Mike Turquette <mturquette@linaro.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Greg KH <greg@kroah.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a4bb1e43
  3. 13 2月, 2015 16 次提交
    • G
      mm/zsmalloc: add statistics support · 0f050d99
      Ganesh Mahendran 提交于
      Keeping fragmentation of zsmalloc in a low level is our target.  But now
      we still need to add the debug code in zsmalloc to get the quantitative
      data.
      
      This patch adds a new configuration CONFIG_ZSMALLOC_STAT to enable the
      statistics collection for developers.  Currently only the objects
      statatitics in each class are collected.  User can get the information via
      debugfs.
      
           cat /sys/kernel/debug/zsmalloc/zram0/...
      
      For example:
      
      After I copied "jdk-8u25-linux-x64.tar.gz" to zram with ext4 filesystem:
       class  size obj_allocated   obj_used pages_used
           0    32             0          0          0
           1    48           256         12          3
           2    64            64         14          1
           3    80            51          7          1
           4    96           128          5          3
           5   112            73          5          2
           6   128            32          4          1
           7   144             0          0          0
           8   160             0          0          0
           9   176             0          0          0
          10   192             0          0          0
          11   208             0          0          0
          12   224             0          0          0
          13   240             0          0          0
          14   256            16          1          1
          15   272            15          9          1
          16   288             0          0          0
          17   304             0          0          0
          18   320             0          0          0
          19   336             0          0          0
          20   352             0          0          0
          21   368             0          0          0
          22   384             0          0          0
          23   400             0          0          0
          24   416             0          0          0
          25   432             0          0          0
          26   448             0          0          0
          27   464             0          0          0
          28   480             0          0          0
          29   496            33          1          4
          30   512             0          0          0
          31   528             0          0          0
          32   544             0          0          0
          33   560             0          0          0
          34   576             0          0          0
          35   592             0          0          0
          36   608             0          0          0
          37   624             0          0          0
          38   640             0          0          0
          40   672             0          0          0
          42   704             0          0          0
          43   720            17          1          3
          44   736             0          0          0
          46   768             0          0          0
          49   816             0          0          0
          51   848             0          0          0
          52   864            14          1          3
          54   896             0          0          0
          57   944            13          1          3
          58   960             0          0          0
          62  1024             4          1          1
          66  1088            15          2          4
          67  1104             0          0          0
          71  1168             0          0          0
          74  1216             0          0          0
          76  1248             0          0          0
          83  1360             3          1          1
          91  1488            11          1          4
          94  1536             0          0          0
         100  1632             5          1          2
         107  1744             0          0          0
         111  1808             9          1          4
         126  2048             4          4          2
         144  2336             7          3          4
         151  2448             0          0          0
         168  2720            15         15         10
         190  3072            28         27         21
         202  3264             0          0          0
         254  4096         36209      36209      36209
      
       Total               37022      36326      36288
      
      We can calculate the overall fragentation by the last line:
          Total               37022      36326      36288
          (37022 - 36326) / 37022 = 1.87%
      
      Also by analysing objects alocated in every class we know why we got so
      low fragmentation: Most of the allocated objects is in <class 254>.  And
      there is only 1 page in class 254 zspage.  So, No fragmentation will be
      introduced by allocating objs in class 254.
      
      And in future, we can collect other zsmalloc statistics as we need and
      analyse them.
      Signed-off-by: NGanesh Mahendran <opensource.ganesh@gmail.com>
      Suggested-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Nitin Gupta <ngupta@vflare.org>
      Cc: Seth Jennings <sjennings@variantweb.net>
      Cc: Dan Streetman <ddstreet@ieee.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0f050d99
    • G
      mm/zpool: add name argument to create zpool · 3eba0c6a
      Ganesh Mahendran 提交于
      Currently the underlay of zpool: zsmalloc/zbud, do not know who creates
      them.  There is not a method to let zsmalloc/zbud find which caller they
      belong to.
      
      Now we want to add statistics collection in zsmalloc.  We need to name the
      debugfs dir for each pool created.  The way suggested by Minchan Kim is to
      use a name passed by caller(such as zram) to create the zsmalloc pool.
      
          /sys/kernel/debug/zsmalloc/zram0
      
      This patch adds an argument `name' to zs_create_pool() and other related
      functions.
      Signed-off-by: NGanesh Mahendran <opensource.ganesh@gmail.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Seth Jennings <sjennings@variantweb.net>
      Cc: Nitin Gupta <ngupta@vflare.org>
      Cc: Dan Streetman <ddstreet@ieee.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3eba0c6a
    • H
      mm: fix negative nr_isolated counts · ff59909a
      Hugh Dickins 提交于
      The vmstat interfaces are good at hiding negative counts (at least when
      CONFIG_SMP); but if you peer behind the curtain, you find that
      nr_isolated_anon and nr_isolated_file soon go negative, and grow ever
      more negative: so they can absorb larger and larger numbers of isolated
      pages, yet still appear to be zero.
      
      I'm happy to avoid a congestion_wait() when too_many_isolated() myself;
      but I guess it's there for a good reason, in which case we ought to get
      too_many_isolated() working again.
      
      The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case:
      putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot
      to call acct_isolated() to increment them.
      
      It is possible that the bug whcih this patch fixes could cause OOM kills
      when the system still has a lot of reclaimable page cache.
      
      Fixes: edc2ca61 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: <stable@vger.kernel.org>	[3.18+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ff59909a
    • N
      mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page() · 9ab3b598
      Naoya Horiguchi 提交于
      A race condition starts to be visible in recent mmotm, where a PG_hwpoison
      flag is set on a migration source page *before* it's back in buddy page
      poo= l.
      
      This is problematic because no page flag is supposed to be set when
      freeing (see __free_one_page().) So the user-visible effect of this race
      is that it could trigger the BUG_ON() when soft-offlining is called.
      
      The root cause is that we call lru_add_drain_all() to make sure that the
      page is in buddy, but that doesn't work because this function just
      schedule= s a work item and doesn't wait its completion.
      drain_all_pages() does drainin= g directly, so simply dropping
      lru_add_drain_all() solves this problem.
      
      Fixes: f15bdfa8 ("mm/memory-failure.c: fix memory leak in successful soft offlining")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Chen Gong <gong.chen@linux.intel.com>
      Cc: <stable@vger.kernel.org>	[3.11+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9ab3b598
    • Y
      mm/page_alloc: fix comment · 84109e15
      Yaowei Bai 提交于
      Add a necessary 'leave'.
      Signed-off-by: NYaowei Bai <bywxiaobai@163.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      84109e15
    • G
      mm/memory.c: actually remap enough memory · 9cb12d7b
      Grazvydas Ignotas 提交于
      For whatever reason, generic_access_phys() only remaps one page, but
      actually allows to access arbitrary size.  It's quite easy to trigger
      large reads, like printing out large structure with gdb, which leads to a
      crash.  Fix it by remapping correct size.
      
      Fixes: 28b2ee20 ("access_process_vm device memory infrastructure")
      Signed-off-by: NGrazvydas Ignotas <notasas@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9cb12d7b
    • R
      mm/mm_init.c: mark mminit_loglevel __meminitdata · 194e8151
      Rasmus Villemoes 提交于
      mminit_loglevel is only referenced from __init and __meminit functions, so
      we can mark it __meminitdata.
      Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
      Cc: Pintu Kumar <pintu.k@samsung.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      194e8151
    • R
      mm/mm_init.c: park mminit_verify_zonelist as __init · 0e2342c7
      Rasmus Villemoes 提交于
      The only caller of mminit_verify_zonelist is build_all_zonelists_init,
      which is annotated with __init, so it should be safe to also mark the
      former as __init, saving ~400 bytes of .text.
      Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
      Cc: Pintu Kumar <pintu.k@samsung.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0e2342c7
    • R
      mm/page_alloc.c: pull out init code from build_all_zonelists · 061f67bc
      Rasmus Villemoes 提交于
      Pulling the code protected by if (system_state == SYSTEM_BOOTING) into
      its own helper allows us to shrink .text a little. This relies on
      build_all_zonelists already having a __ref annotation. Add a comment
      explaining why so one doesn't have to track it down through git log.
      
      The real saving comes in 3/5, ("mm/mm_init.c: Mark mminit_verify_zonelist
      as __init"), where we save about 400 bytes
      Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
      Cc: Pintu Kumar <pintu.k@samsung.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      061f67bc
    • R
      mm/internal.h: don't split printk call in two · fc5199d1
      Rasmus Villemoes 提交于
      All users of mminit_dprintk pass a compile-time constant as level, so this
      just makes gcc emit a single printk call instead of two.
      Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
      Cc: Pintu Kumar <pintu.k@samsung.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fc5199d1
    • V
      memcg: cleanup static keys decrement · f48b80a5
      Vladimir Davydov 提交于
      Move memcg_socket_limit_enabled decrement to tcp_destroy_cgroup (called
      from memcg_destroy_kmem -> mem_cgroup_sockets_destroy) and zap a bunch of
      wrapper functions.
      
      Although this patch moves static keys decrement from __mem_cgroup_free to
      mem_cgroup_css_free, it does not introduce any functional changes, because
      the keys are incremented on setting the limit (tcp or kmem), which can
      only happen after successful mem_cgroup_css_online.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Cc: Glauber Costa <glommer@parallels.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f48b80a5
    • J
      mm/compaction: stop the isolation when we isolate enough freepage · 932ff6bb
      Joonsoo Kim 提交于
      Currently, freepage isolation in one pageblock doesn't consider how many
      freepages we isolate. When I traced flow of compaction, compaction
      sometimes isolates more than 256 freepages to migrate just 32 pages.
      
      In this patch, freepage isolation is stopped at the point that we
      have more isolated freepage than isolated page for migration. This
      results in slowing down free page scanner and make compaction success
      rate higher.
      
      stress-highalloc test in mmtests with non movable order 7 allocation shows
      increase of compaction success rate.
      
      Compaction success rate (Compaction success * 100 / Compaction stalls, %)
      27.13 : 31.82
      
      pfn where both scanners meets on compaction complete
      (separate test due to enormous tracepoint buffer)
      (zone_start=4096, zone_end=1048576)
      586034 : 654378
      
      In fact, I didn't fully understand why this patch results in such good
      result. There was a guess that not used freepages are released to pcp list
      and on next compaction trial we won't isolate them again so compaction
      success rate would decrease. To prevent this effect, I tested with adding
      pcp drain code on release_freepages(), but, it has no good effect.
      
      Anyway, this patch reduces waste time to isolate unneeded freepages so
      seems reasonable.
      
      Vlastimil said:
      
      : I briefly tried it on top of the pivot-changing series and with order-9
      : allocations it reduced free page scanned counter by almost 10%.  No effect
      : on success rates (maybe because pivot changing already took care of the
      : scanners meeting problem) but the scanning reduction is good on its own.
      :
      : It also explains why e14c720e ("mm, compaction: remember position
      : within pageblock in free pages scanner") had less than expected
      : improvements.  It would only actually stop within pageblock in case of
      : async compaction detecting contention.  I guess that's also why the
      : infinite loop problem fixed by 1d5bfe1f affected so relatively few
      : people.
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Tested-by: NVlastimil Babka <vbabka@suse.cz>
      Reviewed-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      932ff6bb
    • J
      mm/compaction: fix wrong order check in compact_finished() · 372549c2
      Joonsoo Kim 提交于
      What we want to check here is whether there is highorder freepage in buddy
      list of other migratetype in order to steal it without fragmentation.
      But, current code just checks cc->order which means allocation request
      order.  So, this is wrong.
      
      Without this fix, non-movable synchronous compaction below pageblock order
      would not stopped until compaction is complete, because migratetype of
      most pageblocks are movable and high order freepage made by compaction is
      usually on movable type buddy list.
      
      There is some report related to this bug. See below link.
      
        http://www.spinics.net/lists/linux-mm/msg81666.html
      
      Although the issued system still has load spike comes from compaction,
      this makes that system completely stable and responsive according to his
      report.
      
      stress-highalloc test in mmtests with non movable order 7 allocation
      doesn't show any notable difference in allocation success rate, but, it
      shows more compaction success rate.
      
      Compaction success rate (Compaction success * 100 / Compaction stalls, %)
      18.47 : 28.94
      
      Fixes: 1fb3f8ca ("mm: compaction: capture a suitable high-order page immediately when it is made available")
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Reviewed-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: <stable@vger.kernel.org>	[3.7+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      372549c2
    • V
      slub: make dead caches discard free slabs immediately · d6e0b7fa
      Vladimir Davydov 提交于
      To speed up further allocations SLUB may store empty slabs in per cpu/node
      partial lists instead of freeing them immediately.  This prevents per
      memcg caches destruction, because kmem caches created for a memory cgroup
      are only destroyed after the last page charged to the cgroup is freed.
      
      To fix this issue, this patch resurrects approach first proposed in [1].
      It forbids SLUB to cache empty slabs after the memory cgroup that the
      cache belongs to was destroyed.  It is achieved by setting kmem_cache's
      cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
      that it would drop frozen empty slabs immediately if cpu_partial = 0.
      
      The runtime overhead is minimal.  From all the hot functions, we only
      touch relatively cold put_cpu_partial(): we make it call
      unfreeze_partials() after freezing a slab that belongs to an offline
      memory cgroup.  Since slab freezing exists to avoid moving slabs from/to a
      partial list on free/alloc, and there can't be allocations from dead
      caches, it shouldn't cause any overhead.  We do have to disable preemption
      for put_cpu_partial() to achieve that though.
      
      The original patch was accepted well and even merged to the mm tree.
      However, I decided to withdraw it due to changes happening to the memcg
      core at that time.  I had an idea of introducing per-memcg shrinkers for
      kmem caches, but now, as memcg has finally settled down, I do not see it
      as an option, because SLUB shrinker would be too costly to call since SLUB
      does not keep free slabs on a separate list.  Besides, we currently do not
      even call per-memcg shrinkers for offline memcgs.  Overall, it would
      introduce much more complexity to both SLUB and memcg than this small
      patch.
      
      Regarding to SLAB, there's no problem with it, because it shrinks
      per-cpu/node caches periodically.  Thanks to list_lru reparenting, we no
      longer keep entries for offline cgroups in per-memcg arrays (such as
      memcg_cache_params->memcg_caches), so we do not have to bother if a
      per-memcg cache will be shrunk a bit later than it could be.
      
      [1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d6e0b7fa
    • V
      slub: fix kmem_cache_shrink return value · ce3712d7
      Vladimir Davydov 提交于
      It is supposed to return 0 if the cache has no remaining objects and 1
      otherwise, while currently it always returns 0.  Fix it.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ce3712d7
    • V
      slub: never fail to shrink cache · 832f37f5
      Vladimir Davydov 提交于
      SLUB's version of __kmem_cache_shrink() not only removes empty slabs, but
      also tries to rearrange the partial lists to place slabs filled up most to
      the head to cope with fragmentation.  To achieve that, it allocates a
      temporary array of lists used to sort slabs by the number of objects in
      use.  If the allocation fails, the whole procedure is aborted.
      
      This is unacceptable for the kernel memory accounting extension of the
      memory cgroup, where we want to make sure that kmem_cache_shrink()
      successfully discarded empty slabs.  Although the allocation failure is
      utterly unlikely with the current page allocator implementation, which
      retries GFP_KERNEL allocations of order <= 2 infinitely, it is better not
      to rely on that.
      
      This patch therefore makes __kmem_cache_shrink() allocate the array on
      stack instead of calling kmalloc, which may fail.  The array size is
      chosen to be equal to 32, because most SLUB caches store not more than 32
      objects per slab page.  Slab pages with <= 32 free objects are sorted
      using the array by the number of objects in use and promoted to the head
      of the partial list, while slab pages with > 32 free objects are left in
      the end of the list without any ordering imposed on them.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Acked-by: NPekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Huang Ying <ying.huang@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      832f37f5