- 25 5月, 2011 1 次提交
-
-
由 Daniel Kiper 提交于
pfn_to_section_nr()/section_nr_to_pfn() is valid only in CONFIG_SPARSEMEM context. Move it to proper place. Signed-off-by: NDaniel Kiper <dkiper@net-space.pl> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 2月, 2011 1 次提交
-
-
由 Pete Zaitcev 提交于
Signed-off-by: NPete Zaitcev <zaitcev@redhat.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 14 1月, 2011 3 次提交
-
-
由 Andrea Arcangeli 提交于
Add hugepage stat information to /proc/vmstat and /proc/meminfo. Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Acked-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Simon Kirby reported the following problem We're seeing cases on a number of servers where cache never fully grows to use all available memory. Sometimes we see servers with 4 GB of memory that never seem to have less than 1.5 GB free, even with a constantly-active VM. In some cases, these servers also swap out while this happens, even though they are constantly reading the working set into memory. We have been seeing this happening for a long time; I don't think it's anything recent, and it still happens on 2.6.36. After some debugging work by Simon, Dave Hansen and others, the prevaling theory became that kswapd is reclaiming order-3 pages requested by SLUB too aggressive about it. There are two apparent problems here. On the target machine, there is a small Normal zone in comparison to DMA32. As kswapd tries to balance all zones, it would continually try reclaiming for Normal even though DMA32 was balanced enough for callers. The second problem is that sleeping_prematurely() does not use the same logic as balance_pgdat() when deciding whether to sleep or not. This keeps kswapd artifically awake. A number of tests were run and the figures from previous postings will look very different for a few reasons. One, the old figures were forcing my network card to use GFP_ATOMIC in attempt to replicate Simon's problem. Second, I previous specified slub_min_order=3 again in an attempt to reproduce Simon's problem. In this posting, I'm depending on Simon to say whether his problem is fixed or not and these figures are to show the impact to the ordinary cases. Finally, the "vmscan" figures are taken from /proc/vmstat instead of the tracepoints. There is less information but recording is less disruptive. The first test of relevance was postmark with a process running in the background reading a large amount of anonymous memory in blocks. The objective was to vaguely simulate what was happening on Simon's machine and it's memory intensive enough to have kswapd awake. POSTMARK traceonly kanyzone Transactions per second: 156.00 ( 0.00%) 153.00 (-1.96%) Data megabytes read per second: 21.51 ( 0.00%) 21.52 ( 0.05%) Data megabytes written per second: 29.28 ( 0.00%) 29.11 (-0.58%) Files created alone per second: 250.00 ( 0.00%) 416.00 (39.90%) Files create/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%) Files deleted alone per second: 520.00 ( 0.00%) 420.00 (-23.81%) Files delete/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 16.58 17.4 Total Elapsed Time (seconds) 218.48 222.47 VMstat Reclaim Statistics: vmscan Direct reclaims 0 4 Direct reclaim pages scanned 0 203 Direct reclaim pages reclaimed 0 184 Kswapd pages scanned 326631 322018 Kswapd pages reclaimed 312632 309784 Kswapd low wmark quickly 1 4 Kswapd high wmark quickly 122 475 Kswapd skip congestion_wait 1 0 Pages activated 700040 705317 Pages deactivated 212113 203922 Pages written 9875 6363 Total pages scanned 326631 322221 Total pages reclaimed 312632 309968 %age total pages scanned/reclaimed 95.71% 96.20% %age total pages scanned/written 3.02% 1.97% proc vmstat: Faults Major Faults 300 254 Minor Faults 645183 660284 Page ins 493588 486704 Page outs 4960088 4986704 Swap ins 1230 661 Swap outs 9869 6355 Performance is mildly affected because kswapd is no longer doing as much work and the background memory consumer process is getting in the way. Note that kswapd scanned and reclaimed fewer pages as it's less aggressive and overall fewer pages were scanned and reclaimed. Swap in/out is particularly reduced again reflecting kswapd throwing out fewer pages. The slight performance impact is unfortunate here but it looks like a direct result of kswapd being less aggressive. As the bug report is about too many pages being freed by kswapd, it may have to be accepted for now. The second test is a streaming IO benchmark that was previously used by Johannes to show regressions in page reclaim. MICRO traceonly kanyzone User/Sys Time Running Test (seconds) 29.29 28.87 Total Elapsed Time (seconds) 492.18 488.79 VMstat Reclaim Statistics: vmscan Direct reclaims 2128 1460 Direct reclaim pages scanned 2284822 1496067 Direct reclaim pages reclaimed 148919 110937 Kswapd pages scanned 15450014 16202876 Kswapd pages reclaimed 8503697 8537897 Kswapd low wmark quickly 3100 3397 Kswapd high wmark quickly 1860 7243 Kswapd skip congestion_wait 708 801 Pages activated 9635 9573 Pages deactivated 1432 1271 Pages written 223 1130 Total pages scanned 17734836 17698943 Total pages reclaimed 8652616 8648834 %age total pages scanned/reclaimed 48.79% 48.87% %age total pages scanned/written 0.00% 0.01% proc vmstat: Faults Major Faults 165 221 Minor Faults 9655785 9656506 Page ins 3880 7228 Page outs 37692940 37480076 Swap ins 0 69 Swap outs 19 15 Again fewer pages are scanned and reclaimed as expected and this time the test completed faster. Note that kswapd is hitting its watermarks faster (low and high wmark quickly) which I expect is due to kswapd reclaiming fewer pages. I also ran fs-mark, iozone and sysbench but there is nothing interesting to report in the figures. Performance is not significantly changed and the reclaim statistics look reasonable. Tgis patch: When the allocator enters its slow path, kswapd is woken up to balance the node. It continues working until all zones within the node are balanced. For order-0 allocations, this makes perfect sense but for higher orders it can have unintended side-effects. If the zone sizes are imbalanced, kswapd may reclaim heavily within a smaller zone discarding an excessive number of pages. The user-visible behaviour is that kswapd is awake and reclaiming even though plenty of pages are free from a suitable zone. This patch alters the "balance" logic for high-order reclaim allowing kswapd to stop if any suitable zone becomes balanced to reduce the number of pages it reclaims from other zones. kswapd still tries to ensure that order-0 watermarks for all zones are met before sleeping. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NEric B Munson <emunson@mgebm.net> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Commit aa454840 ("calculate a better estimate of NR_FREE_PAGES when memory is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To avoid synchronization overhead, these counters are maintained on a per-cpu basis and drained both periodically and when a threshold is above a threshold. On large CPU systems, the difference between the estimate and real value of NR_FREE_PAGES can be very high. The system can get into a case where pages are allocated far below the min watermark potentially causing livelock issues. The commit solved the problem by taking a better reading of NR_FREE_PAGES when memory was low. Unfortately, as reported by Shaohua Li this accurate reading can consume a large amount of CPU time on systems with many sockets due to cache line bouncing. This patch takes a different approach. For large machines where counter drift might be unsafe and while kswapd is awake, the per-cpu thresholds for the target pgdat are reduced to limit the level of drift to what should be a safe level. This incurs a performance penalty in heavy memory pressure by a factor that depends on the workload and the machine but the machine should function correctly without accidentally exhausting all memory on a node. There is an additional cost when kswapd wakes and sleeps but the event is not expected to be frequent - in Shaohua's test case, there was one recorded sleep and wake event at least. To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is introduced that takes a more accurate reading of NR_FREE_PAGES when called from wakeup_kswapd, when deciding whether it is really safe to go back to sleep in sleeping_prematurely() and when deciding if a zone is really balanced or not in balance_pgdat(). We are still using an expensive function but limiting how often it is called. When the test case is reproduced, the time spent in the watermark functions is reduced. The following report is on the percentage of time spent cumulatively spent in the functions zone_nr_free_pages(), zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(), zone_page_state_snapshot(), zone_page_state(). vanilla 11.6615% disable-threshold 0.2584% David said: : We had to pull aa454840 "mm: page allocator: calculate a better estimate : of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36 : internally because tests showed that it would cause the machine to stall : as the result of heavy kswapd activity. I merged it back with this fix as : it is pending in the -mm tree and it solves the issue we were seeing, so I : definitely think this should be pushed to -stable (and I would seriously : consider it for 2.6.37 inclusion even at this late date). Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reported-by: NShaohua Li <shaohua.li@intel.com> Reviewed-by: NChristoph Lameter <cl@linux.com> Tested-by: NNicolas Bareil <nico@chdir.org> Cc: David Rientjes <rientjes@google.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 10月, 2010 2 次提交
-
-
由 Mel Gorman 提交于
writeback: do not sleep on the congestion queue if there are no congested BDIs or if significant congestion is not being encountered in the current zone If congestion_wait() is called with no BDI congested, the caller will sleep for the full timeout and this may be an unnecessary sleep. This patch adds a wait_iff_congested() that checks congestion and only sleeps if a BDI is congested else, it calls cond_resched() to ensure the caller is not hogging the CPU longer than its quota but otherwise will not sleep. This is aimed at reducing some of the major desktop stalls reported during IO. For example, while kswapd is operating, it calls congestion_wait() but it could just have been reclaiming clean page cache pages with no congestion. Without this patch, it would sleep for a full timeout but after this patch, it'll just call schedule() if it has been on the CPU too long. Similar logic applies to direct reclaimers that are not making enough progress. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michael Rubin 提交于
To help developers and applications gain visibility into writeback behaviour adding two entries to vm_stat_items and /proc/vmstat. This will allow us to track the "written" and "dirtied" counts. # grep nr_dirtied /proc/vmstat nr_dirtied 3747 # grep nr_written /proc/vmstat nr_written 3618 Signed-off-by: NMichael Rubin <mrubin@google.com> Reviewed-by: NWu Fengguang <fengguang.wu@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 9月, 2010 1 次提交
-
-
由 Christoph Lameter 提交于
mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory is low and kswapd is awake Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is cheaper than scanning a number of lists. To avoid synchronization overhead, counter deltas are maintained on a per-cpu basis and drained both periodically and when the delta is above a threshold. On large CPU systems, the difference between the estimated and real value of NR_FREE_PAGES can be very high. If NR_FREE_PAGES is much higher than number of real free page in buddy, the VM can allocate pages below min watermark, at worst reducing the real number of pages to zero. Even if the OOM killer kills some victim for freeing memory, it may not free memory if the exit path requires a new page resulting in livelock. This patch introduces a zone_page_state_snapshot() function (courtesy of Christoph) that takes a slightly more accurate view of an arbitrary vmstat counter. It is used to read NR_FREE_PAGES while kswapd is awake to avoid the watermark being accidentally broken. The estimate is not perfect and may result in cache line bounces but is expected to be lighter than the IPI calls necessary to continually drain the per-cpu counters while kswapd is awake. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 8月, 2010 2 次提交
-
-
由 KOSAKI Motohiro 提交于
Since 2.6.28 zone->prev_priority is unused. Then it can be removed safely. It reduce stack usage slightly. Now I have to say that I'm sorry. 2 years ago, I thought prev_priority can be integrate again, it's useful. but four (or more) times trying haven't got good performance number. Thus I give up such approach. The rest of this changelog is notes on prev_priority and why it existed in the first place and why it might be not necessary any more. This information is based heavily on discussions between Andrew Morton, Rik van Riel and Kosaki Motohiro who is heavily quotes from. Historically prev_priority was important because it determined when the VM would start unmapping PTE pages. i.e. there are no balances of note within the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there is a potential risk of unnecessarily increasing minor faults as a large amount of read activity of use-once pages could push mapped pages to the end of the LRU and get unmapped. There is no proof this is still a problem but currently it is not considered to be. Active files are not deactivated if the active file list is smaller than the inactive list reducing the liklihood that file-mapped pages are being pushed off the LRU and referenced executable pages are kept on the active list to avoid them getting pushed out by read activity. Even if it is a problem, prev_priority prev_priority wouldn't works nowadays. First of all, current vmscan still a lot of UP centric code. it expose some weakness on some dozens CPUs machine. I think we need more and more improvement. The problem is, current vmscan mix up per-system-pressure, per-zone-pressure and per-task-pressure a bit. example, prev_priority try to boost priority to other concurrent priority. but if the another task have mempolicy restriction, it is unnecessary, but also makes wrong big latency and exceeding reclaim. per-task based priority + prev_priority adjustment make the emulation of per-system pressure. but it have two issue 1) too rough and brutal emulation 2) we need per-zone pressure, not per-system. Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about 2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer. but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the system have higher memory pressure than priority==0 (1/4096*10,000 > 2). prev_priority can't solve such multithreads workload issue. In other word, prev_priority concept assume the sysmtem don't have lots threads." Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexander Nevenchannyy 提交于
get_zone_counts() was dropped from kernel tree, see: http://www.mail-archive.com/mm-commits@vger.kernel.org/msg07313.html but its prototype remains. Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 5月, 2010 1 次提交
-
-
由 Lee Schermerhorn 提交于
Introduce numa_mem_id(), based on generic percpu variable infrastructure to track "nearest node with memory" for archs that support memoryless nodes. Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES defined, else stubs. Architectures will define HAVE_MEMORYLESS_NODES if/when they support them. Archs can override definitions of: numa_mem_id() - returns node number of "local memory" node set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem' cpu_to_mem() - return numa_mem for specified cpu; may be used as lvalue Generic initialization of 'numa_mem' occurs in __build_all_zonelists(). This will initialize the boot cpu at boot time, and all cpus on change of numa_zonelist_order, or when node or memory hot-plug requires zonelist rebuild. Archs that support memoryless nodes will need to initialize 'numa_mem' for secondary cpus as they're brought on-line. [akpm@linux-foundation.org: fix build] Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 5月, 2010 4 次提交
-
-
由 Haicheng Li 提交于
Add global mutex zonelists_mutex to fix the possible race: CPU0 CPU1 CPU2 (1) zone->present_pages += online_pages; (2) build_all_zonelists(); (3) alloc_page(); (4) free_page(); (5) build_all_zonelists(); (6) __build_all_zonelists(); (7) zone->pageset = alloc_percpu(); In step (3,4), zone->pageset still points to boot_pageset, so bad things may happen if 2+ nodes are in this state. Even if only 1 node is accessing the boot_pageset, (3) may still consume too much memory to fail the memory allocations in step (7). Besides, atomic operation ensures alloc_percpu() in step (7) will never fail since there is a new fresh memory block added in step(6). [haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists] Signed-off-by: NHaicheng Li <haicheng.li@linux.intel.com> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Reviewed-by: NAndi Kleen <andi.kleen@intel.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Haicheng Li 提交于
For each new populated zone of hotadded node, need to update its pagesets with dynamically allocated per_cpu_pageset struct for all possible CPUs: 1) Detach zone->pageset from the shared boot_pageset at end of __build_all_zonelists(). 2) Use mutex to protect zone->pageset when it's still shared in onlined_pages() Otherwises, multiple zones of different nodes would share same boot strapping boot_pageset for same CPU, which will finally cause below kernel panic: ------------[ cut here ]------------ kernel BUG at mm/page_alloc.c:1239! invalid opcode: 0000 [#1] SMP ... Call Trace: [<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0 [<ffffffff81162e67>] alloc_pages_current+0x87/0xd0 [<ffffffff81128407>] __page_cache_alloc+0x67/0x70 [<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260 [<ffffffff81132751>] ra_submit+0x21/0x30 [<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0 [<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0 [<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670 [<ffffffff81266cfa>] nfs_file_read+0xca/0x130 [<ffffffff8117b20a>] do_sync_read+0xfa/0x140 [<ffffffff8117bf75>] vfs_read+0xb5/0x1a0 [<ffffffff8117c151>] sys_read+0x51/0x80 [<ffffffff8103c032>] system_call_fastpath+0x16/0x1b RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900 RSP <ffff88000d1e78a8> ---[ end trace 4bda28328b9990db ] [akpm@linux-foundation.org: merge fix] Signed-off-by: NHaicheng Li <haicheng.li@linux.intel.com> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Reviewed-by: NAndi Kleen <andi.kleen@intel.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marcelo Roberto Jimenez 提交于
Got this while compiling for ARM/SA1100: mm/sparse.c: In function '__section_nr': mm/sparse.c:135: warning: 'root' is used uninitialized in this function This patch follows Russell King's suggestion for a new calculation for NR_SECTION_ROOTS. Thanks also to Sergei Shtylyov for pointing out the existence of the macro DIV_ROUND_UP. Atsushi Nemoto observed: : This fix doesn't just silence the warning - it fixes a real problem. : : Without this fix, mem_section[] might have 0 size so mem_section[0] : will share other variable area. For example, I got: : : c030c700 b __warned.16478 : c030c700 B mem_section : c030c701 b __warned.16483 : : This might cause very strange behavior. Your patch actually fixes it. Signed-off-by: NMarcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br> Cc: Atsushi Nemoto <anemo@mba.ocn.ne.jp> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Sergei Shtylyov <sshtylyov@mvista.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
The fragmentation index may indicate that a failure is due to external fragmentation but after a compaction run completes, it is still possible for an allocation to fail. There are two obvious reasons as to why o Page migration cannot move all pages so fragmentation remains o A suitable page may exist but watermarks are not met In the event of compaction followed by an allocation failure, this patch defers further compaction in the zone (1 << compact_defer_shift) times. If the next compaction attempt also fails, compact_defer_shift is increased up to a maximum of 6. If compaction succeeds, the defer counters are reset again. The zone that is deferred is the first zone in the zonelist - i.e. the preferred zone. To defer compaction in the other zones, the information would need to be stored in the zonelist or implemented similar to the zonelist_cache. This would impact the fast-paths and is not justified at this time. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 3月, 2010 1 次提交
-
-
由 KOSAKI Motohiro 提交于
commit e815af95 ("change all_unreclaimable zone member to flags") changed all_unreclaimable member to bit flag. But it had an undesireble side effect. free_one_page() is one of most hot path in linux kernel and increasing atomic ops in it can reduce kernel performance a bit. Thus, this patch revert such commit partially. at least all_unreclaimable shouldn't share memory word with other zone flags. [akpm@linux-foundation.org: fix patch interaction] Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 2月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
Add __percpu sparse annotations to core subsystems. These annotations are to make sparse consider percpu variables to be in a different address space and warn if accessed without going through percpu accessors. This patch doesn't affect normal builds. Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: linux-mm@kvack.org Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Dipankar Sarma <dipankar@in.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Eric Biederman <ebiederm@xmission.com>
-
- 13 2月, 2010 1 次提交
-
-
由 Yinghai Lu 提交于
Finally we can use early_res to replace bootmem for x86_64 now. Still can use CONFIG_NO_BOOTMEM to enable it or not. -v2: fix 32bit compiling about MAX_DMA32_PFN -v3: folded bug fix from LKML message below Signed-off-by: NYinghai Lu <yinghai@kernel.org> LKML-Reference: <4B747239.4070907@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 04 2月, 2010 1 次提交
-
-
由 Adam Buchbinder 提交于
Some comments misspell "invocation"; this fixes them. No code changes. Signed-off-by: NAdam Buchbinder <adam.buchbinder@gmail.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 05 1月, 2010 1 次提交
-
-
由 Christoph Lameter 提交于
Use the per cpu allocator functionality to avoid per cpu arrays in struct zone. This drastically reduces the size of struct zone for systems with large amounts of processors and allows placement of critical variables of struct zone in one cacheline even on very large systems. Another effect is that the pagesets of one processor are placed near one another. If multiple pagesets from different zones fit into one cacheline then additional cacheline fetches can be avoided on the hot paths when allocating memory from multiple zones. Bootstrap becomes simpler if we use the same scheme for UP, SMP, NUMA. #ifdefs are reduced and we can drop the zone_pcp macro. Hotplug handling is also simplified since cpu alloc can bring up and shut down cpu areas for a specific cpu as a whole. So there is no need to allocate or free individual pagesets. V7-V8: - Explain chicken egg dilemmna with percpu allocator. V4-V5: - Fix up cases where per_cpu_ptr is called before irq disable - Integrate the bootstrap logic that was separate before. tj: Build failure in pageset_cpuup_callback() due to missing ret variable fixed. Reviewed-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NChristoph Lameter <cl@linux-foundation.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 12 12月, 2009 1 次提交
-
-
由 Sam Ravnborg 提交于
Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NMichal Marek <mmarek@suse.cz>
-
- 24 9月, 2009 1 次提交
-
-
由 Alexey Dobriyan 提交于
It's unused. It isn't needed -- read or write flag is already passed and sysctl shouldn't care about the rest. It _was_ used in two places at arch/frv for some reason. Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Cc: James Morris <jmorris@namei.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 9月, 2009 5 次提交
-
-
由 Mel Gorman 提交于
The following two patches remove searching in the page allocator fast-path by maintaining multiple free-lists in the per-cpu structure. At the time the search was introduced, increasing the per-cpu structures would waste a lot of memory as per-cpu structures were statically allocated at compile-time. This is no longer the case. The patches are as follows. They are based on mmotm-2009-08-27. Patch 1 adds multiple lists to struct per_cpu_pages, one per migratetype that can be stored on the PCP lists. Patch 2 notes that the pcpu drain path check empty lists multiple times. The patch reduces the number of checks by maintaining a count of free lists encountered. Lists containing pages will then free multiple pages in batch The patches were tested with kernbench, netperf udp/tcp, hackbench and sysbench. The netperf tests were not bound to any CPU in particular and were run such that the results should be 99% confidence that the reported results are within 1% of the estimated mean. sysbench was run with a postgres background and read-only tests. Similar to netperf, it was run multiple times so that it's 99% confidence results are within 1%. The patches were tested on x86, x86-64 and ppc64 as x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine) kernbench - No significant difference, variance well within noise netperf-udp - 1.34% to 2.28% gain netperf-tcp - 0.45% to 1.22% gain hackbench - Small variances, very close to noise sysbench - Very small gains x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine) kernbench - No significant difference, variance well within noise netperf-udp - 1.83% to 10.42% gains netperf-tcp - No conclusive until buffer >= PAGE_SIZE 4096 +15.83% 8192 + 0.34% (not significant) 16384 + 1% hackbench - Small gains, very close to noise sysbench - 0.79% to 1.6% gain ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation) kernbench - No significant difference, variance well within noise netperf-udp - 2-3% gain for almost all buffer sizes tested netperf-tcp - losses on small buffers, gains on larger buffers possibly indicates some bad caching effect. hackbench - No significant difference sysbench - 2-4% gain This patch: Currently the per-cpu page allocator searches the PCP list for pages of the correct migrate-type to reduce the possibility of pages being inappropriate placed from a fragmentation perspective. This search is potentially expensive in a fast-path and undesirable. Splitting the per-cpu list into multiple lists increases the size of a per-cpu structure and this was potentially a major problem at the time the search was introduced. These problem has been mitigated as now only the necessary number of structures is allocated for the running system. This patch replaces a list search in the per-cpu allocator with one list per migrate type. The potential snag with this approach is when bulk freeing pages. We round-robin free pages based on migrate type which has little bearing on the cache hotness of the page and potentially checks empty lists repeatedly in the event the majority of PCP pages are of one type. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NNick Piggin <npiggin@suse.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wu Fengguang 提交于
For mem_cgroup, shrink_zone() may call shrink_list() with nr_to_scan=1, in which case shrink_list() _still_ calls isolate_pages() with the much larger SWAP_CLUSTER_MAX. It effectively scales up the inactive list scan rate by up to 32 times. For example, with 16k inactive pages and DEF_PRIORITY=12, (16k >> 12)=4. So when shrink_zone() expects to scan 4 pages in the active/inactive list, the active list will be scanned 4 pages, while the inactive list will be (over) scanned SWAP_CLUSTER_MAX=32 pages in effect. And that could break the balance between the two lists. It can further impact the scan of anon active list, due to the anon active/inactive ratio rebalance logic in balance_pgdat()/shrink_zone(): inactive anon list over scanned => inactive_anon_is_low() == TRUE => shrink_active_list() => active anon list over scanned So the end result may be - anon inactive => over scanned - anon active => over scanned (maybe not as much) - file inactive => over scanned - file active => under scanned (relatively) The accesses to nr_saved_scan are not lock protected and so not 100% accurate, however we can tolerate small errors and the resulted small imbalanced scan rates between zones. Cc: Rik van Riel <riel@redhat.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KOSAKI Motohiro 提交于
If the system is running a heavy load of processes then concurrent reclaim can isolate a large number of pages from the LRU. /proc/vmstat and the output generated for an OOM do not show how many pages were isolated. This has been observed during process fork bomb testing (mstctl11 in LTP). This patch shows the information about isolated pages. Reproduced via: ----------------------- % ./hackbench 140 process 1000 => OOM occur active_anon:146 inactive_anon:0 isolated_anon:49245 active_file:79 inactive_file:18 isolated_file:113 unevictable:0 dirty:0 writeback:0 unstable:0 buffer:39 free:370 slab_reclaimable:309 slab_unreclaimable:5492 mapped:53 shmem:15 pagetables:28140 bounce:0 Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NWu Fengguang <fengguang.wu@intel.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KOSAKI Motohiro 提交于
Recently we encountered OOM problems due to memory use of the GEM cache. Generally a large amuont of Shmem/Tmpfs pages tend to create a memory shortage problem. We often use the following calculation to determine the amount of shmem pages: shmem = NR_ACTIVE_ANON + NR_INACTIVE_ANON - NR_ANON_PAGES however the expression does not consider isolated and mlocked pages. This patch adds explicit accounting for pages used by shmem and tmpfs. Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NRik van Riel <riel@redhat.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Acked-by: NWu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KOSAKI Motohiro 提交于
The amount of memory allocated to kernel stacks can become significant and cause OOM conditions. However, we do not display the amount of memory consumed by stacks. Add code to display the amount of memory used for stacks in /proc/meminfo. Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 6月, 2009 4 次提交
-
-
由 KOSAKI Motohiro 提交于
Currently, nobody wants to turn UNEVICTABLE_LRU off. Thus this configurability is unnecessary. Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andi Kleen <andi@firstfloor.org> Acked-by: NMinchan Kim <minchan.kim@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wu Fengguang 提交于
The vmscan batching logic is twisting. Move it into a standalone function nr_scan_try_batch() and document it. No behavior change. Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
ALLOC_WMARK_MIN, ALLOC_WMARK_LOW and ALLOC_WMARK_HIGH determin whether pages_min, pages_low or pages_high is used as the zone watermark when allocating the pages. Two branches in the allocator hotpath determine which watermark to use. This patch uses the flags as an array index into a watermark array that is indexed with WMARK_* defines accessed via helpers. All call sites that use zone->pages_* are updated to use the helpers for accessing the values and the array offsets for setting. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
On low-memory systems, anti-fragmentation gets disabled as there is nothing it can do and it would just incur overhead shuffling pages between lists constantly. Currently the check is made in the free page fast path for every page. This patch moves it to a slow path. On machines with low memory, there will be small amount of additional overhead as pages get shuffled between lists but it should quickly settle. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 5月, 2009 1 次提交
-
-
由 Mel Gorman 提交于
pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 01 4月, 2009 1 次提交
-
-
由 KOSAKI Motohiro 提交于
Impact: cleanup In almost cases, for_each_zone() is used with populated_zone(). It's because almost function doesn't need memoryless node information. Therefore, for_each_populated_zone() can help to make code simplify. This patch has no functional change. [akpm@linux-foundation.org: small cleanup] Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 3月, 2009 1 次提交
-
-
由 Rusty Russell 提交于
Impact: cleanup, potential bugfix Not sure what changed to expose this, but clearly that numa_node_id() doesn't belong in mmzone.h (the inline in gfp.h is probably overkill, too). In file included from include/linux/topology.h:34, from arch/x86/mm/numa.c:2: /home/rusty/patches-cpumask/linux-2.6/arch/x86/include/asm/topology.h:64:1: warning: "numa_node_id" redefined In file included from include/linux/topology.h:32, from arch/x86/mm/numa.c:2: include/linux/mmzone.h:770:1: warning: this is the location of the previous definition Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Cc: Mike Travis <travis@sgi.com> LKML-Reference: <200903132343.37661.rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 19 2月, 2009 1 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
Now, early_pfn_in_nid(PFN, NID) may returns false if PFN is a hole. and memmap initialization was not done. This was a trouble for sparc boot. To fix this, the PFN should be initialized and marked as PG_reserved. This patch changes early_pfn_in_nid() return true if PFN is a hole. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reported-by: NDavid Miller <davem@davemlloft.net> Tested-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x, 2.6.27.x, 2.6.28.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 1月, 2009 1 次提交
-
-
由 KOSAKI Motohiro 提交于
Add zone_reclam_stat struct for later enhancement. A later patch uses this. This patch doesn't any behavior change (yet). Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 10月, 2008 4 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
Allocate all page_cgroup at boot and remove page_cgroup poitner from struct page. This patch adds an interface as struct page_cgroup *lookup_page_cgroup(struct page*) All FLATMEM/DISCONTIGMEM/SPARSEMEM and MEMORY_HOTPLUG is supported. Remove page_cgroup pointer reduces the amount of memory by - 4 bytes per PAGE_SIZE. - 8 bytes per PAGE_SIZE if memory controller is disabled. (even if configured.) On usual 8GB x86-32 server, this saves 8MB of NORMAL_ZONE memory. On my x86-64 server with 48GB of memory, this saves 96MB of memory. I think this reduction makes sense. By pre-allocation, kmalloc/kfree in charge/uncharge are removed. This means - we're not necessary to be afraid of kmalloc faiulre. (this can happen because of gfp_mask type.) - we can avoid calling kmalloc/kfree. - we can avoid allocating tons of small objects which can be fragmented. - we can know what amount of memory will be used for this extra-lru handling. I added printk message as "allocated %ld bytes of page_cgroup" "please try cgroup_disable=memory option if you don't want" maybe enough informative for users. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
Add NR_MLOCK zone page state, which provides a (conservative) count of mlocked pages (actually, the number of mlocked pages moved off the LRU). Reworked by lts to fit in with the modified mlock page support in the Reclaim Scalability series. [kosaki.motohiro@jp.fujitsu.com: fix incorrect Mlocked field of /proc/meminfo] [lee.schermerhorn@hp.com: mlocked-pages: add event counting with statistics] Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Lee Schermerhorn 提交于
When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: NBenjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rik van Riel 提交于
We avoid evicting and scanning anonymous pages for the most part, but under some workloads we can end up with most of memory filled with anonymous pages. At that point, we suddenly need to clear the referenced bits on all of memory, which can take ages on very large memory systems. We can reduce the maximum number of pages that need to be scanned by not taking the referenced state into account when deactivating an anonymous page. After all, every anonymous page starts out referenced, so why check? If an anonymous page gets referenced again before it reaches the end of the inactive list, we move it back to the active list. To keep the maximum amount of necessary work reasonable, we scale the active to inactive ratio with the size of memory, using the formula active:inactive ratio = sqrt(memory in GB * 10). Kswapd CPU use now seems to scale by the amount of pageout bandwidth, instead of by the amount of memory present in the system. [kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg] [kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix] Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-