- 18 3月, 2016 4 次提交
-
-
由 Chen Yucong 提交于
online_pages() simply returns an error value if memory_notify(MEM_GOING_ONLINE, &arg) return a value that is not what we want for successfully onlining target pages. This patch arms to print more failure information like offline_pages() in online_pages. This patch also converts printk(KERN_<LEVEL>) to pr_<level>(), and moves __offline_pages() to not print failure information with KERN_INFO according to David Rientjes's suggestion[1]. [1] https://lkml.org/lkml/2016/2/24/1094Signed-off-by: NChen Yucong <slaoub@gmail.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
The success of CMA allocation largely depends on the success of migration and key factor of it is page reference count. Until now, page reference is manipulated by direct calling atomic functions so we cannot follow up who and where manipulate it. Then, it is hard to find actual reason of CMA allocation failure. CMA allocation should be guaranteed to succeed so finding offending place is really important. In this patch, call sites where page reference is manipulated are converted to introduced wrapper function. This is preparation step to add tracepoint to each page reference manipulation function. With this facility, we can easily find reason of CMA allocation failure. There is no functional change in this patch. In addition, this patch also converts reference read sites. It will help a second step that renames page._count to something else and prevents later attempt to direct access to it (Suggested by Andrew). Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMichal Nazarewicz <mina86@mina86.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
We can reuse the nid we've determined instead of repeated pfn_to_nid() usages. Also zone_to_nid() should be a bit cheaper in general than pfn_to_nid(). Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 3月, 2016 2 次提交
-
-
由 Joonsoo Kim 提交于
There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: NAaron Lu <aaron.lu@intel.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NAaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vitaly Kuznetsov 提交于
Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NDaniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 1月, 2016 1 次提交
-
-
由 Toshi Kani 提交于
Set IORESOURCE_SYSTEM_RAM in struct resource.flags of "System RAM" entries. Signed-off-by: NToshi Kani <toshi.kani@hpe.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Acked-by: David Vrabel <david.vrabel@citrix.com> # xen Cc: Andrew Banman <abanman@sgi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: linux-arch@vger.kernel.org Cc: linux-mm <linux-mm@kvack.org> Cc: xen-devel@lists.xenproject.org Link: http://lkml.kernel.org/r/1453841853-11383-9-git-send-email-bp@alien8.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 1月, 2016 1 次提交
-
-
由 Dan Williams 提交于
In support of providing struct page for large persistent memory capacities, use struct vmem_altmap to change the default policy for allocating memory for the memmap array. The default vmemmap_populate() allocates page table storage area from the page allocator. Given persistent memory capacities relative to DRAM it may not be feasible to store the memmap in 'System Memory'. Instead vmem_altmap represents pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf() requests. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Reported-by: Nkbuild test robot <lkp@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 1月, 2016 1 次提交
-
-
由 Vitaly Kuznetsov 提交于
Out of memory condition is not a bug and while we can't add new memory in such case crashing the system seems wrong. Propagating the return value from register_memory_resource() requires interface change. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NIgor Mammedov <imammedo@redhat.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Sheng Yong <shengyong1@huawei.com> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Vrabel <david.vrabel@citrix.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 12月, 2015 1 次提交
-
-
由 Andrew Banman 提交于
test_pages_in_a_zone() does not account for the possibility of missing sections in the given pfn range. pfn_valid_within always returns 1 when CONFIG_HOLES_IN_ZONE is not set, allowing invalid pfns from missing sections to pass the test, leading to a kernel oops. Wrap an additional pfn loop with PAGES_PER_SECTION granularity to check for missing sections before proceeding into the zone-check code. This also prevents a crash from offlining memory devices with missing sections. Despite this, it may be a good idea to keep the related patch '[PATCH 3/3] drivers: memory: prohibit offlining of memory blocks with missing sections' because missing sections in a memory block may lead to other problems not covered by the scope of this fix. Signed-off-by: NAndrew Banman <abanman@sgi.com> Acked-by: NAlex Thorlton <athorlton@sgi.com> Cc: Russ Anderson <rja@sgi.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Greg KH <greg@kroah.com> Cc: Seth Jennings <sjennings@variantweb.net> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 11月, 2015 1 次提交
-
-
由 Yaowei Bai 提交于
Commit a2f3aa02 ("[PATCH] Fix sparsemem on Cell") fixed an oops experienced on the Cell architecture when init-time functions, early_*(), are called at runtime by introducing an 'enum memmap_context' parameter to memmap_init_zone() and init_currently_empty_zone(). This parameter is intended to be used to tell whether the call of these two functions is being made on behalf of a hotplug event, or happening at boot-time. However, init_currently_empty_zone() does not use this parameter at all, so remove it. Signed-off-by: NYaowei Bai <bywxiaobai@163.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 10月, 2015 1 次提交
-
-
由 David Vrabel 提交于
Add add_memory_resource() to add memory using an existing "System RAM" resource. This is useful if the memory region is being located by finding a free resource slot with allocate_resource(). Xen guests will make use of this in their balloon driver to hotplug arbitrary amounts of memory in response to toolstack requests. Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com> Reviewed-by: NDaniel Kiper <daniel.kiper@oracle.com> Reviewed-by: NTang Chen <tangchen@cn.fujitsu.com>
-
- 05 9月, 2015 1 次提交
-
-
由 Tang Chen 提交于
Commit f9126ab9 ("memory-hotplug: fix wrong edge when hot add a new node") hot-added memory range to memblock, after creating pgdat for new node. But there is a problem: add_memory() |--> hotadd_new_pgdat() |--> free_area_init_node() |--> get_pfn_range_for_nid() |--> find start_pfn and end_pfn in memblock |--> ...... |--> memblock_add_node(start, size, nid) -------- Here, just too late. get_pfn_range_for_nid() will find that start_pfn and end_pfn are both 0. As a result, when adding memory, dmesg will give the following wrong message. Initmem setup node 5 [mem 0x0000000000000000-0xffffffffffffffff] On node 5 totalpages: 0 Built 5 zonelists in Node order, mobility grouping on. Total pages: 32588823 Policy zone: Normal init_memory_mapping: [mem 0x60000000000-0x607ffffffff] The solution is simple, just add the memory range to memblock a little earlier, before hotadd_new_pgdat(). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 8月, 2015 1 次提交
-
-
由 Dan Williams 提交于
While pmem is usable as a block device or via DAX mappings to userspace there are several usage scenarios that can not target pmem due to its lack of struct page coverage. In preparation for "hot plugging" pmem into the vmemmap add ZONE_DEVICE as a new zone to tag these pages separately from the ones that are subject to standard page allocations. Importantly "device memory" can be removed at will by userspace unbinding the driver of the device. Having a separate zone prevents allocation and otherwise marks these pages that are distinct from typical uniform memory. Device memory has different lifetime and performance characteristics than RAM. However, since we have run out of ZONES_SHIFT bits this functionality currently depends on sacrificing ZONE_DMA. Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Jerome Glisse <j.glisse@gmail.com> [hch: various simplifications in the arch interface] Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 15 8月, 2015 1 次提交
-
-
由 Xishi Qiu 提交于
When we add a new node, the edge of memory may be wrong. e.g. system has 4 nodes, and node3 is movable, node3 mem:[24G-32G], 1. hotremove the node3, 2. then hotadd node3 with a part of memory, mem:[26G-30G], 3. call hotadd_new_pgdat() free_area_init_node() get_pfn_range_for_nid() 4. it will return wrong start_pfn and end_pfn, because we have not update the memblock. This patch also fixes a BUG_ON during hot-addition, please see http://marc.info/?l=linux-kernel&m=142961156129456&w=2Signed-off-by: NXishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 8月, 2015 1 次提交
-
-
由 Mel Gorman 提交于
Commit 92923ca3 ("mm: meminit: only set page reserved in the memblock region") broke memory hotplug which expects the memmap for newly added sections to be reserved until onlined by online_pages_range(). This patch marks hotplugged pages as reserved when adding new zones. Signed-off-by: NMel Gorman <mgorman@suse.de> Reported-by: NDavid Vrabel <david.vrabel@citrix.com> Tested-by: NDavid Vrabel <david.vrabel@citrix.com> Cc: Nathan Zimmer <nzimmer@sgi.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 6月, 2015 1 次提交
-
-
由 Zhu Guihua 提交于
When hot add two nodes continuously, we found the vmemmap region info is a bit messed. The last region of node 2 is printed when node 3 hot added, like the following: Initmem setup node 2 [mem 0x0000000000000000-0xffffffffffffffff] On node 2 totalpages: 0 Built 2 zonelists in Node order, mobility grouping on. Total pages: 16090539 Policy zone: Normal init_memory_mapping: [mem 0x40000000000-0x407ffffffff] [mem 0x40000000000-0x407ffffffff] page 1G [ffffea1000000000-ffffea10001fffff] PMD -> [ffff8a077d800000-ffff8a077d9fffff] on node 2 [ffffea1000200000-ffffea10003fffff] PMD -> [ffff8a077de00000-ffff8a077dffffff] on node 2 ... [ffffea101f600000-ffffea101f9fffff] PMD -> [ffff8a074ac00000-ffff8a074affffff] on node 2 [ffffea101fa00000-ffffea101fdfffff] PMD -> [ffff8a074a800000-ffff8a074abfffff] on node 2 Initmem setup node 3 [mem 0x0000000000000000-0xffffffffffffffff] On node 3 totalpages: 0 Built 3 zonelists in Node order, mobility grouping on. Total pages: 16090539 Policy zone: Normal init_memory_mapping: [mem 0x60000000000-0x607ffffffff] [mem 0x60000000000-0x607ffffffff] page 1G [ffffea101fe00000-ffffea101fffffff] PMD -> [ffff8a074a400000-ffff8a074a5fffff] on node 2 <=== node 2 ??? [ffffea1800000000-ffffea18001fffff] PMD -> [ffff8a074a600000-ffff8a074a7fffff] on node 3 [ffffea1800200000-ffffea18005fffff] PMD -> [ffff8a074a000000-ffff8a074a3fffff] on node 3 [ffffea1800600000-ffffea18009fffff] PMD -> [ffff8a0749c00000-ffff8a0749ffffff] on node 3 ... The cause is the last region was missed at the and of hot add memory, and p_start, p_end, node_start were not reset, so when hot add memory to a new node, it will consider they are not contiguous blocks and print the previous one. So we print the last vmemmap region at the end of hot add memory to avoid the confusion. Signed-off-by: NZhu Guihua <zhugh.fnst@cn.fujitsu.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 6月, 2015 1 次提交
-
-
由 Gu Zheng 提交于
Izumi found the following oops when hot re-adding a node: BUG: unable to handle kernel paging request at ffffc90008963690 IP: __wake_up_bit+0x20/0x70 Oops: 0000 [#1] SMP CPU: 68 PID: 1237 Comm: rs:main Q:Reg Not tainted 4.1.0-rc5 #80 Hardware name: FUJITSU PRIMEQUEST2800E/SB, BIOS PRIMEQUEST 2000 Series BIOS Version 1.87 04/28/2015 task: ffff880838df8000 ti: ffff880017b94000 task.ti: ffff880017b94000 RIP: 0010:[<ffffffff810dff80>] [<ffffffff810dff80>] __wake_up_bit+0x20/0x70 RSP: 0018:ffff880017b97be8 EFLAGS: 00010246 RAX: ffffc90008963690 RBX: 00000000003c0000 RCX: 000000000000a4c9 RDX: 0000000000000000 RSI: ffffea101bffd500 RDI: ffffc90008963648 RBP: ffff880017b97c08 R08: 0000000002000020 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8a0797c73800 R13: ffffea101bffd500 R14: 0000000000000001 R15: 00000000003c0000 FS: 00007fcc7ffff700(0000) GS:ffff880874800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc90008963690 CR3: 0000000836761000 CR4: 00000000001407e0 Call Trace: unlock_page+0x6d/0x70 generic_write_end+0x53/0xb0 xfs_vm_write_end+0x29/0x80 [xfs] generic_perform_write+0x10a/0x1e0 xfs_file_buffered_aio_write+0x14d/0x3e0 [xfs] xfs_file_write_iter+0x79/0x120 [xfs] __vfs_write+0xd4/0x110 vfs_write+0xac/0x1c0 SyS_write+0x58/0xd0 system_call_fastpath+0x12/0x76 Code: 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 48 83 ec 20 65 48 8b 04 25 28 00 00 00 48 89 45 f8 31 c0 48 8d 47 48 <48> 39 47 48 48 c7 45 e8 00 00 00 00 48 c7 45 f0 00 00 00 00 48 RIP [<ffffffff810dff80>] __wake_up_bit+0x20/0x70 RSP <ffff880017b97be8> CR2: ffffc90008963690 Reproduce method (re-add a node):: Hot-add nodeA --> remove nodeA --> hot-add nodeA (panic) This seems an use-after-free problem, and the root cause is zone->wait_table was not set to *NULL* after free it in try_offline_node. When hot re-add a node, we will reuse the pgdat of it, so does the zone struct, and when add pages to the target zone, it will init the zone first (including the wait_table) if the zone is not initialized. The judgement of zone initialized is based on zone->wait_table: static inline bool zone_is_initialized(struct zone *zone) { return !!zone->wait_table; } so if we do not set the zone->wait_table to *NULL* after free it, the memory hotplug routine will skip the init of new zone when hot re-add the node, and the wait_table still points to the freed memory, then we will access the invalid address when trying to wake up the waiting people after the i/o operation with the page is done, such as mentioned above. Signed-off-by: NGu Zheng <guz.fnst@cn.fujitsu.com> Reported-by: NTaku Izumi <izumi.taku@jp.fujitsu.com> Reviewed by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 4月, 2015 1 次提交
-
-
由 Naoya Horiguchi 提交于
Now we have an easy access to hugepages' activeness, so existing helpers to get the information can be cleaned up. [akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/] Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 4月, 2015 2 次提交
-
-
由 David Rientjes 提交于
There's a deadlock when concurrently hot-adding memory through the probe interface and switching a memory block from offline to online. When hot-adding memory via the probe interface, add_memory() first takes mem_hotplug_begin() and then device_lock() is later taken when registering the newly initialized memory block. This creates a lock dependency of (1) mem_hotplug.lock (2) dev->mutex. When switching a memory block from offline to online, dev->mutex is first grabbed in device_online() when the write(2) transitions an existing memory block from offline to online, and then online_pages() will take mem_hotplug_begin(). This creates a lock inversion between mem_hotplug.lock and dev->mutex. Vitaly reports that this deadlock can happen when kworker handling a probe event races with systemd-udevd switching a memory block's state. This patch requires the state transition to take mem_hotplug_begin() before dev->mutex. Hot-adding memory via the probe interface creates a memory block while holding mem_hotplug_begin(), there is no way to take dev->mutex first in this case. online_pages() and offline_pages() are only called when transitioning memory block state. We now require that mem_hotplug_begin() is taken before calling them -- this requires exporting the mem_hotplug_begin() and mem_hotplug_done() to generic code. In all hot-add and hot-remove cases, mem_hotplug_begin() is done prior to device_online(). This is all that is needed to avoid the deadlock. Signed-off-by: NDavid Rientjes <rientjes@google.com> Reported-by: NVitaly Kuznetsov <vkuznets@redhat.com> Tested-by: NVitaly Kuznetsov <vkuznets@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sheng Yong 提交于
Use macro section_nr_to_pfn() to switch between section and pfn, instead of open-coding it. No semantic changes. Signed-off-by: NSheng Yong <shengyong1@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 3月, 2015 1 次提交
-
-
由 Gu Zheng 提交于
Qiu Xishi reported the following BUG when testing hot-add/hot-remove node under stress condition: BUG: unable to handle kernel paging request at 0000000000025f60 IP: next_online_pgdat+0x1/0x50 PGD 0 Oops: 0000 [#1] SMP ACPI: Device does not support D3cold Modules linked in: fuse nls_iso8859_1 nls_cp437 vfat fat loop dm_mod coretemp mperf crc32c_intel ghash_clmulni_intel aesni_intel ablk_helper cryptd lrw gf128mul glue_helper aes_x86_64 pcspkr microcode igb dca i2c_algo_bit ipv6 megaraid_sas iTCO_wdt i2c_i801 i2c_core iTCO_vendor_support tg3 sg hwmon ptp lpc_ich pps_core mfd_core acpi_pad rtc_cmos button ext3 jbd mbcache sd_mod crc_t10dif scsi_dh_alua scsi_dh_rdac scsi_dh_hp_sw scsi_dh_emc scsi_dh ahci libahci libata scsi_mod [last unloaded: rasf] CPU: 23 PID: 238 Comm: kworker/23:1 Tainted: G O 3.10.15-5885-euler0302 #1 Hardware name: HUAWEI TECHNOLOGIES CO.,LTD. Huawei N1/Huawei N1, BIOS V100R001 03/02/2015 Workqueue: events vmstat_update task: ffffa800d32c0000 ti: ffffa800d32ae000 task.ti: ffffa800d32ae000 RIP: 0010: next_online_pgdat+0x1/0x50 RSP: 0018:ffffa800d32afce8 EFLAGS: 00010286 RAX: 0000000000001440 RBX: ffffffff81da53b8 RCX: 0000000000000082 RDX: 0000000000000000 RSI: 0000000000000082 RDI: 0000000000000000 RBP: ffffa800d32afd28 R08: ffffffff81c93bfc R09: ffffffff81cbdc96 R10: 00000000000040ec R11: 00000000000000a0 R12: ffffa800fffb3440 R13: ffffa800d32afd38 R14: 0000000000000017 R15: ffffa800e6616800 FS: 0000000000000000(0000) GS:ffffa800e6600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000025f60 CR3: 0000000001a0b000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: refresh_cpu_vm_stats+0xd0/0x140 vmstat_update+0x11/0x50 process_one_work+0x194/0x3d0 worker_thread+0x12b/0x410 kthread+0xc6/0xd0 ret_from_fork+0x7c/0xb0 The cause is the "memset(pgdat, 0, sizeof(*pgdat))" at the end of try_offline_node, which will reset all the content of pgdat to 0, as the pgdat is accessed lock-free, so that the users still using the pgdat will panic, such as the vmstat_update routine. process A: offline node XX: vmstat_updat() refresh_cpu_vm_stats() for_each_populated_zone() find online node XX cond_resched() offline cpu and memory, then try_offline_node() node_set_offline(nid), and memset(pgdat, 0, sizeof(*pgdat)) zone = next_zone(zone) pg_data_t *pgdat = zone->zone_pgdat; // here pgdat is NULL now next_online_pgdat(pgdat) next_online_node(pgdat->node_id); // NULL pointer access So the solution here is postponing the reset of obsolete pgdat from try_offline_node() to hotadd_new_pgdat(), and just resetting pgdat->nr_zones and pgdat->classzone_idx to be 0 rather than the memset 0 to avoid breaking pointer information in pgdat. Signed-off-by: NGu Zheng <guz.fnst@cn.fujitsu.com> Reported-by: NXishi Qiu <qiuxishi@huawei.com> Suggested-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Xie XiuQi <xiexiuqi@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2014 2 次提交
-
-
由 Vlastimil Babka 提交于
Memory hotplug and failure mechanisms have several places where pcplists are drained so that pages are returned to the buddy allocator and can be e.g. prepared for offlining. This is always done in the context of a single zone, we can reduce the pcplists drain to the single zone, which is now possible. The change should make memory offlining due to hotremove or failure faster and not disturbing unrelated pcplists anymore. Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
The functions for draining per-cpu pages back to buddy allocators currently always operate on all zones. There are however several cases where the drain is only needed in the context of a single zone, and spilling other pcplists is a waste of time both due to the extra spilling and later refilling. This patch introduces new zone pointer parameter to drain_all_pages() and changes the dummy parameter of drain_local_pages() to be also a zone pointer. When NULL is passed, the functions operate on all zones as usual. Passing a specific zone pointer reduces the work to the single zone. All callers are updated to pass the NULL pointer in this patch. Conversion to single zone (where appropriate) is done in further patches. Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 11月, 2014 2 次提交
-
-
由 Tang Chen 提交于
When memory is hot-added, all the memory is in offline state. So clear all zones' present_pages because they will be updated in online_pages() and offline_pages(). Otherwise, /proc/zoneinfo will corrupt: When the memory of node2 is offline: # cat /proc/zoneinfo ...... Node 2, zone Movable ...... spanned 8388608 present 8388608 managed 0 When we online memory on node2: # cat /proc/zoneinfo ...... Node 2, zone Movable ...... spanned 8388608 present 16777216 managed 8388608 Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Reviewed-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: <stable@vger.kernel.org> [3.16+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tang Chen 提交于
In free_area_init_core(), zone->managed_pages is set to an approximate value for lowmem, and will be adjusted when the bootmem allocator frees pages into the buddy system. But free_area_init_core() is also called by hotadd_new_pgdat() when hot-adding memory. As a result, zone->managed_pages of the newly added node's pgdat is set to an approximate value in the very beginning. Even if the memory on that node has node been onlined, /sys/device/system/node/nodeXXX/meminfo has wrong value: hot-add node2 (memory not onlined) cat /sys/device/system/node/node2/meminfo Node 2 MemTotal: 33554432 kB Node 2 MemFree: 0 kB Node 2 MemUsed: 33554432 kB Node 2 Active: 0 kB This patch fixes this problem by reset node managed pages to 0 after hot-adding a new node. 1. Move reset_managed_pages_done from reset_node_managed_pages() to reset_all_zones_managed_pages() 2. Make reset_node_managed_pages() non-static 3. Call reset_node_managed_pages() in hotadd_new_pgdat() after pgdat is initialized Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Signed-off-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: <stable@vger.kernel.org> [3.16+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 10月, 2014 1 次提交
-
-
由 Yasuaki Ishimatsu 提交于
When hot adding the same memory after hot removal, the following messages are shown: WARNING: CPU: 20 PID: 6 at mm/page_alloc.c:4968 free_area_init_node+0x3fe/0x426() ... Call Trace: dump_stack+0x46/0x58 warn_slowpath_common+0x81/0xa0 warn_slowpath_null+0x1a/0x20 free_area_init_node+0x3fe/0x426 hotadd_new_pgdat+0x90/0x110 add_memory+0xd4/0x200 acpi_memory_device_add+0x1aa/0x289 acpi_bus_attach+0xfd/0x204 acpi_bus_attach+0x178/0x204 acpi_bus_scan+0x6a/0x90 acpi_device_hotplug+0xe8/0x418 acpi_hotplug_work_fn+0x1f/0x2b process_one_work+0x14e/0x3f0 worker_thread+0x11b/0x510 kthread+0xe1/0x100 ret_from_fork+0x7c/0xb0 The detaled explanation is as follows: When hot removing memory, pgdat is set to 0 in try_offline_node(). But if the pgdat is allocated by bootmem allocator, the clearing step is skipped. And when hot adding the same memory, the uninitialized pgdat is reused. But free_area_init_node() checks wether pgdat is set to zero. As a result, free_area_init_node() hits WARN_ON(). This patch clears pgdat which is allocated by bootmem allocator in try_offline_node(). Signed-off-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Wang Nan <wangnan0@huawei.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: NToshi Kani <toshi.kani@hp.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 10月, 2014 1 次提交
-
-
由 Zhang Zhen 提交于
Currently memory-hotplug has two limits: 1. If the memory block is in ZONE_NORMAL, you can change it to ZONE_MOVABLE, but this memory block must be adjacent to ZONE_MOVABLE. 2. If the memory block is in ZONE_MOVABLE, you can change it to ZONE_NORMAL, but this memory block must be adjacent to ZONE_NORMAL. With this patch, we can easy to know a memory block can be onlined to which zone, and don't need to know the above two limits. Updated the related Documentation. [akpm@linux-foundation.org: use conventional comment layout] [akpm@linux-foundation.org: fix build with CONFIG_MEMORY_HOTREMOVE=n] [akpm@linux-foundation.org: remove unused local zone_prev] Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 8月, 2014 3 次提交
-
-
由 Wang Nan 提交于
This series of patches fixes a problem when adding memory in bad manner. For example: for a x86_64 machine booted with "mem=400M" and with 2GiB memory installed, following commands cause problem: # echo 0x40000000 > /sys/devices/system/memory/probe [ 28.613895] init_memory_mapping: [mem 0x40000000-0x47ffffff] # echo 0x48000000 > /sys/devices/system/memory/probe [ 28.693675] init_memory_mapping: [mem 0x48000000-0x4fffffff] # echo online_movable > /sys/devices/system/memory/memory9/state # echo 0x50000000 > /sys/devices/system/memory/probe [ 29.084090] init_memory_mapping: [mem 0x50000000-0x57ffffff] # echo 0x58000000 > /sys/devices/system/memory/probe [ 29.151880] init_memory_mapping: [mem 0x58000000-0x5fffffff] # echo online_movable > /sys/devices/system/memory/memory11/state # echo online> /sys/devices/system/memory/memory8/state # echo online> /sys/devices/system/memory/memory10/state # echo offline> /sys/devices/system/memory/memory9/state [ 30.558819] Offlined Pages 32768 # free total used free shared buffers cached Mem: 780588 18014398509432020 830552 0 0 51180 -/+ buffers/cache: 18014398509380840 881732 Swap: 0 0 0 This is because the above commands probe higher memory after online a section with online_movable, which causes ZONE_HIGHMEM (or ZONE_NORMAL for systems without ZONE_HIGHMEM) overlaps ZONE_MOVABLE. After the second online_movable, the problem can be observed from zoneinfo: # cat /proc/zoneinfo ... Node 0, zone Movable pages free 65491 min 250 low 312 high 375 scanned 0 spanned 18446744073709518848 present 65536 managed 65536 ... This series of patches solve the problem by checking ZONE_MOVABLE when choosing zone for new memory. If new memory is inside or higher than ZONE_MOVABLE, makes it go there instead. After applying this series of patches, following are free and zoneinfo result (after offlining memory9): bash-4.2# free total used free shared buffers cached Mem: 780956 80112 700844 0 0 51180 -/+ buffers/cache: 28932 752024 Swap: 0 0 0 bash-4.2# cat /proc/zoneinfo Node 0, zone DMA pages free 3389 min 14 low 17 high 21 scanned 0 spanned 4095 present 3998 managed 3977 nr_free_pages 3389 ... start_pfn: 1 inactive_ratio: 1 Node 0, zone DMA32 pages free 73724 min 341 low 426 high 511 scanned 0 spanned 98304 present 98304 managed 92958 nr_free_pages 73724 ... start_pfn: 4096 inactive_ratio: 1 Node 0, zone Normal pages free 32630 min 120 low 150 high 180 scanned 0 spanned 32768 present 32768 managed 32768 nr_free_pages 32630 ... start_pfn: 262144 inactive_ratio: 1 Node 0, zone Movable pages free 65476 min 241 low 301 high 361 scanned 0 spanned 98304 present 65536 managed 65536 nr_free_pages 65476 ... start_pfn: 294912 inactive_ratio: 1 This patch (of 7): Introduce zone_for_memory() in arch independent code for arch_add_memory() use. Many arch_add_memory() function simply selects ZONE_HIGHMEM or ZONE_NORMAL and add new memory into it. However, with the existance of ZONE_MOVABLE, the selection method should be carefully considered: if new, higher memory is added after ZONE_MOVABLE is setup, the default zone and ZONE_MOVABLE may overlap each other. should_add_memory_movable() checks the status of ZONE_MOVABLE. If it has already contain memory, compare the address of new memory and movable memory. If new memory is higher than movable, it should be added into ZONE_MOVABLE instead of default zone. Signed-off-by: NWang Nan <wangnan0@huawei.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: "Mel Gorman" <mgorman@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tang Chen 提交于
In store_mem_state(), we have: ... 334 else if (!strncmp(buf, "offline", min_t(int, count, 7))) 335 online_type = -1; ... 355 case -1: 356 ret = device_offline(&mem->dev); 357 break; ... Here, "offline" is hard coded as -1. This patch does the following renaming: ONLINE_KEEP -> MMOP_ONLINE_KEEP ONLINE_KERNEL -> MMOP_ONLINE_KERNEL ONLINE_MOVABLE -> MMOP_ONLINE_MOVABLE and introduces MMOP_OFFLINE = -1 to avoid hard coding. Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Cc: Hu Tao <hutao@cn.fujitsu.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Fabian Frederick 提交于
grow_zone_span and grow_pgdat_span are only called by __meminit __add_zone Signed-off-by: NFabian Frederick <fabf@skynet.be> Cc: Toshi Kani <toshi.kani@hp.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 6月, 2014 3 次提交
-
-
由 David Rientjes 提交于
Memory migration uses a callback defined by the caller to determine how to allocate destination pages. When migration fails for a source page, however, it frees the destination page back to the system. This patch adds a memory migration callback defined by the caller to determine how to free destination pages. If a caller, such as memory compaction, builds its own freelist for migration targets, this can reuse already freed memory instead of scanning additional memory. If the caller provides a function to handle freeing of destination pages, it is called when page migration fails. If the caller passes NULL then freeing back to the system will be handled as usual. This patch introduces no functional change. Signed-off-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NMel Gorman <mgorman@suse.de> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Fabian Frederick 提交于
Replace ((x) >> PAGE_SHIFT) with the pfn macro. Signed-off-by: NFabian Frederick <fabf@skynet.be> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 1月, 2014 2 次提交
-
-
由 Nathan Zimmer 提交于
We don't need to do register_memory_resource() under lock_memory_hotplug() since it has its own lock and doesn't make any callbacks. Also register_memory_resource return NULL on failure so we don't have anything to cleanup at this point. The reason for this rfc is I was doing some experiments with hotplugging of memory on some of our larger systems. While it seems to work, it can be quite slow. With some preliminary digging I found that lock_memory_hotplug is clearly ripe for breakup. It could be broken up per nid or something but it also covers the online_page_callback. The online_page_callback shouldn't be very hard to break out. Also there is the issue of various structures(wmarks come to mind) that are only updated under the lock_memory_hotplug that would need to be dealt with. Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Hedi <hedi@sgi.com> Cc: Mike Travis <travis@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dave Hansen 提交于
bad_page() is cool in that it prints out a bunch of data about the page. But, I can never remember which page flags are good and which are bad, or whether ->index or ->mapping is required to be NULL. This patch allows bad/dump_page() callers to specify a string about why they are dumping the page and adds explanation strings to a number of places. It also adds a 'bad_flags' argument to bad_page(), which it then dumps out separately from the flags which are actually set. This way, the messages will show specifically why the page was bad, *specifically* which flags it is complaining about, if it was a page flag combination which was the problem. [akpm@linux-foundation.org: switch to pr_alert] Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Reviewed-by: NChristoph Lameter <cl@linux.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 1月, 2014 3 次提交
-
-
由 Santosh Shilimkar 提交于
Correct ensure_zone_is_initialized() function description according to the introduced memblock APIs for early memory allocations. Signed-off-by: NGrygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Walmsley <paul@pwsan.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: Tony Lindgren <tony@atomide.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Grygorii Strashko 提交于
Clean-up to remove depedency with bootmem headers. Signed-off-by: NGrygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Walmsley <paul@pwsan.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tony Lindgren <tony@atomide.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tang Chen 提交于
Linux kernel cannot migrate pages used by the kernel. As a result, hotpluggable memory used by the kernel won't be able to be hot-removed. To solve this problem, the basic idea is to prevent memblock from allocating hotpluggable memory for the kernel at early time, and arrange all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as ZONE_MOVABLE when initializing zones. In the previous patches, we have marked hotpluggable memory regions with MEMBLOCK_HOTPLUG flag in memblock.memory. In this patch, we make memblock skip these hotpluggable memory regions in the default top-down allocation function if movable_node boot option is specified. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Signed-off-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 11月, 2013 1 次提交
-
-
由 Tang Chen 提交于
The hot-Pluggable field in SRAT specifies which memory is hotpluggable. As we mentioned before, if hotpluggable memory is used by the kernel, it cannot be hot-removed. So memory hotplug users may want to set all hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it. Memory hotplug users may also set a node as movable node, which has ZONE_MOVABLE only, so that the whole node can be hot-removed. But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the kernel cannot use memory in movable nodes. This will cause NUMA performance down. And other users may be unhappy. So we need a way to allow users to enable and disable this functionality. In this patch, we introduce movable_node boot option to allow users to choose to not to consume hotpluggable memory at early boot time and later we can set it as ZONE_MOVABLE. To achieve this, the movable_node boot option will control the memblock allocation direction. That said, after memblock is ready, before SRAT is parsed, we should allocate memory near the kernel image as we explained in the previous patches. So if movable_node boot option is set, the kernel does the following: 1. After memblock is ready, make memblock allocate memory bottom up. 2. After SRAT is parsed, make memblock behave as default, allocate memory top down. Users can specify "movable_node" in kernel commandline to enable this functionality. For those who don't use memory hotplug or who don't want to lose their NUMA performance, just don't specify anything. The kernel will work as before. Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Signed-off-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com> Suggested-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Suggested-by: NIngo Molnar <mingo@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NToshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-