- 08 4月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
On the Power platform, the log tail debug checks fire excessively causing the system to panic early in testing. The debug checks are known to be racy, though on x86_64 there is no evidence that they trigger at all. We want to keep the checks active on debug systems to alert us to problems with log space accounting, but we need to reduce the impact of a racy check on testing on the Power platform. As a result, convert the ASSERT conditions to warnings, and allow them to fire only once per filesystem mount. This will prevent false positives from interfering with testing, whilst still providing us with the indication that they may be a problem with log space accounting should that occur. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
- 31 3月, 2011 1 次提交
-
-
由 Lucas De Marchi 提交于
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: NLucas De Marchi <lucas.demarchi@profusion.mobi>
-
- 07 3月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
Convert the xfs log operations to use the new error logging interfaces. This removes the xlog_{warn,panic} wrappers and makes almost all errors emit the device they belong to instead of just refering to "XFS". Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 2 次提交
-
-
由 Dave Chinner 提交于
The only thing that the grant lock remains to protect is the grant head manipulations when adding or removing space from the log. These calculations are already based on atomic variables, so we can already update them safely without locks. However, the grant head manpulations require atomic multi-step calculations to be executed, which the algorithms currently don't allow. To make these multi-step calculations atomic, convert the algorithms to compare-and-exchange loops on the atomic variables. That is, we sample the old value, perform the calculation and use atomic64_cmpxchg() to attempt to update the head with the new value. If the head has not changed since we sampled it, it will succeed and we are done. Otherwise, we rerun the calculation again from a new sample of the head. This allows us to remove the grant lock from around all the grant head space manipulations, and that effectively removes the grant lock from the log completely. Hence we can remove the grant lock completely from the log at this point. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant ticket wait queues are currently protected by the log grant lock. However, the queues are functionally independent from each other, and operations on them only require serialisation against other queue operations now that all of the other log variables they use are atomic values. Hence, we can make them independent of the grant lock by introducing new locks just to protect the lists operations. because the lists are independent, we can use a lock per list and ensure that reserve and write head queuing do not contend. To ensure forced shutdowns work correctly in conjunction with the new fast paths, ensure that we check whether the log has been shut down in the grant functions once we hold the relevant spin locks but before we go to sleep. This is needed to co-ordinate correctly with the wakeups that are issued on the ticket queues so we don't leave any processes sleeping on the queues during a shutdown. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 03 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
Convert the log grant heads to atomic64_t types in preparation for converting the accounting algorithms to atomic operations. his patch just converts the variables; the algorithmic changes are in a separate patch for clarity. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
log->l_tail_lsn is currently protected by the log grant lock. The lock is only needed for serialising readers against writers, so we don't really need the lock if we make the l_tail_lsn variable an atomic. Converting the l_tail_lsn variable to an atomic64_t means we can start to peel back the grant lock from various operations. Also, provide functions to safely crack an atomic LSN variable into it's component pieces and to recombined the components into an atomic variable. Use them where appropriate. This also removes the need for explicitly holding a spinlock to read the l_tail_lsn on 32 bit platforms. Signed-off-by: NDave Chinner <dchinner@redhat.com>
-
- 03 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
log->l_last_sync_lsn is updated in only one critical spot - log buffer Io completion - and is protected by the grant lock here. This requires the grant lock to be taken for every log buffer IO completion. Converting the l_last_sync_lsn variable to an atomic64_t means that we do not need to take the grant lock in log buffer IO completion to update it. This also removes the need for explicitly holding a spinlock to read the l_last_sync_lsn on 32 bit platforms. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 3 次提交
-
-
由 Dave Chinner 提交于
The log grant queues are one of the few places left using sv_t constructs for waiting. Given we are touching this code, we should convert them to plain wait queues. While there, convert all the other sv_t users in the log code as well. Seeing as this removes the last users of the sv_t type, remove the header file defining the wrapper and the fragments that still reference it. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Prepare for switching the grant heads to atomic variables by combining the two 32 bit values that make up the grant head into a single 64 bit variable. Provide wrapper functions to combine and split the grant heads appropriately for calculations and use them as necessary. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The grant write and reserve queues use a roll-your-own double linked list, so convert it to a standard list_head structure and convert all the list traversals to use list_for_each_entry(). We can also get rid of the XLOG_TIC_IN_Q flag as we can use the list_empty() check to tell if the ticket is in a list or not. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 17 12月, 2010 1 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 29 9月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
I have been seeing occasional pauses in transaction throughput up to 30s long under heavy parallel workloads. The only notable thing was that the xfsaild was trying to be active during the pauses, but making no progress. It was running exactly 20 times a second (on the 50ms no-progress backoff), and the number of pushbuf events was constant across this time as well. IOWs, the xfsaild appeared to be stuck on buffers that it could not push out. Further investigation indicated that it was trying to push out inode buffers that were pinned and/or locked. The xfsbufd was also getting woken at the same frequency (by the xfsaild, no doubt) to push out delayed write buffers. The xfsbufd was not making any progress because all the buffers in the delwri queue were pinned. This scan- and-make-no-progress dance went one in the trace for some seconds, before the xfssyncd came along an issued a log force, and then things started going again. However, I noticed something strange about the log force - there were way too many IO's issued. 516 log buffers were written, to be exact. That added up to 129MB of log IO, which got me very interested because it's almost exactly 25% of the size of the log. He delayed logging code is suppose to aggregate the minimum of 25% of the log or 8MB worth of changes before flushing. That's what really puzzled me - why did a log force write 129MB instead of only 8MB? Essentially what has happened is that no CIL pushes had occurred since the previous tail push which cleared out 25% of the log space. That caused all the new transactions to block because there wasn't log space for them, but they kick the xfsaild to push the tail. However, the xfsaild was not making progress because there were buffers it could not lock and flush, and the xfsbufd could not flush them because they were pinned. As a result, both the xfsaild and the xfsbufd could not move the tail of the log forward without the CIL first committing. The cause of the problem was that the background CIL push, which should happen when 8MB of aggregated changes have been committed, is being held off by the concurrent transaction commit load. The background push does a down_write_trylock() which will fail if there is a concurrent transaction commit holding the push lock in read mode. With 8 CPUs all doing transactions as fast as they can, there was enough concurrent transaction commits to hold off the background push until tail-pushing could no longer free log space, and the halt would occur. It should be noted that there is no reason why it would halt at 25% of log space used by a single CIL checkpoint. This bug could definitely violate the "no transaction should be larger than half the log" requirement and hence result in corruption if the system crashed under heavy load. This sort of bug is exactly the reason why delayed logging was tagged as experimental.... The fix is to start blocking background pushes once the threshold has been exceeded. Rework the threshold calculations to keep the amount of log space a CIL checkpoint can use to below that of the AIL push threshold to avoid the problem completely. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 24 8月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
Delayed logging adds some serialisation to the log force process to ensure that it does not deference a bad commit context structure when determining if a CIL push is necessary or not. It does this by grabing the CIL context lock exclusively, then dropping it before pushing the CIL if necessary. This causes serialisation of all log forces and pushes regardless of whether a force is necessary or not. As a result fsync heavy workloads (like dbench) can be significantly slower with delayed logging than without. To avoid this penalty, copy the current sequence from the context to the CIL structure when they are swapped. This allows us to do unlocked checks on the current sequence without having to worry about dereferencing context structures that may have already been freed. Hence we can remove the CIL context locking in the forcing code and only call into the push code if the current context matches the sequence we need to force. By passing the sequence into the push code, we can check the sequence again once we have the CIL lock held exclusive and abort if the sequence has already been pushed. This avoids a lock round-trip and unnecessary CIL pushes when we have racing push calls. The result is that the regression in dbench performance goes away - this change improves dbench performance on a ramdisk from ~2100MB/s to ~2500MB/s. This compares favourably to not using delayed logging which retuns ~2500MB/s for the same workload. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 24 5月, 2010 3 次提交
-
-
由 Dave Chinner 提交于
If we let the CIL grow without bound, it will grow large enough to violate recovery constraints (must be at least one complete transaction in the log at all times) or take forever to write out through the log buffers. Hence we need a check during asynchronous transactions as to whether the CIL needs to be pushed. We track the amount of log space the CIL consumes, so it is relatively simple to limit it on a pure size basis. Make the limit the minimum of just under half the log size (recovery constraint) or 8MB of log space (which is an awful lot of metadata). Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
The ticket ID is needed to uniquely identify transactions when doing busy extent matching. Delayed logging changes the lifecycle of busy extents with respect to the transaction structure lifecycle. Hence we can no longer use the transaction structure as a means of determining the owner of the busy extent as it may be freed and reused while the busy extent is still active. This commit provides the infrastructure to access the xlog_tid_t held in the ticket from a transaction handle. This avoids the need for callers to peek into the transaction and log structures to find this out. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 19 5月, 2010 3 次提交
-
-
由 Alex Elder 提交于
There remains only one user of the l_sectbb_mask field in the log structure. Just kill it off and compute the mask where needed from the power-of-2 sector size. (Only update from last post is to accomodate the changes in the previous patch in the series.) Signed-off-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Alex Elder 提交于
Change struct log so it keeps track of the size (in basic blocks) of a log sector in l_sectBBsize rather than the log-base-2 of that value (previously, l_sectbb_log). The name was chosen for consistency with the other fields in the structure that represent a number of basic blocks. (Updated so that a variable used in computing and verifying a log's sector size is named "log2_size". Also added the "BB" to the structure field name, based on feedback from Eric Sandeen. Also dropped some superfluous parentheses.) Signed-off-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NEric Sandeen <sandeen@sandeen.net>
-
由 Christoph Hellwig 提交于
Replace the awkward xlog_write_adv_cnt with an inline helper that makes it more obvious that it's modifying it's paramters, and replace the use of an integer type for "ptr" with a real void pointer. Also move xlog_write_adv_cnt to xfs_log_priv.h as it will be used outside of xfs_log.c in the delayed logging series. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 16 1月, 2010 1 次提交
-
-
由 Eric Sandeen 提交于
Just minor housekeeping, a lot more functions can be trivially made static; others could if we reordered things a bit... Signed-off-by: NEric Sandeen <sandeen@sandeen.net> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 15 12月, 2009 1 次提交
-
-
由 Christoph Hellwig 提交于
Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 01 9月, 2009 1 次提交
-
-
由 Eric Sandeen 提交于
A lot more functions could be made static, but they need forward declarations; this does some easy ones, and also found a few unused functions in the process. Signed-off-by: NEric Sandeen <sandeen@sandeen.net> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NFelix Blyakher <felixb@sgi.com>
-
- 02 7月, 2009 1 次提交
-
-
由 Eric Sandeen 提交于
A lot more functions could be made static, but they need forward declarations; this does some easy ones, and also found a few unused functions in the process. Signed-off-by: NEric Sandeen <sandeen@sandeen.net> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NFelix Blyakher <felixb@sgi.com>
-
- 16 3月, 2009 1 次提交
-
-
由 Christoph Hellwig 提交于
Most callers of xlog_bread need to call xlog_align to get the actual offset. Consolidate that call into the main xlog_bread and provide a _xlog_bread for those few that don't want the actual offset. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com>
-
- 09 2月, 2009 1 次提交
-
-
由 Christoph Hellwig 提交于
Just another set of types obsfucating the code, remove them. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com>
-
- 01 12月, 2008 1 次提交
-
-
由 Christoph Hellwig 提交于
Move all fields from xlog_iclog_fields_t into xlog_in_core_t instead of having them in a substructure and the using #defines to make it look like they were directly in xlog_in_core_t. Also document that xlog_in_core_2_t is grossly misnamed, and make all references to it typesafe. (First sent on Semptember 15th) Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NNiv Sardi <xaiki@sgi.com>
-
- 17 11月, 2008 1 次提交
-
-
由 Dave Chinner 提交于
When an I/O error occurs during an intermediate commit on a rolling transaction, xfs_trans_commit() will free the transaction structure and the related ticket. However, the duplicate transaction that gets used as the transaction continues still contains a pointer to the ticket. Hence when the duplicate transaction is cancelled and freed, we free the ticket a second time. Add reference counting to the ticket so that we hold an extra reference to the ticket over the transaction commit. We drop the extra reference once we have checked that the transaction commit did not return an error, thus avoiding a double free on commit error. Credit to Nick Piggin for tripping over the problem. SGI-PV: 989741 Signed-off-by: NDave Chinner <david@fromorbit.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
- 30 10月, 2008 1 次提交
-
-
由 David Chinner 提交于
When we need to go from the log to the AIL, we have to go via the xfs_mount. Add a xfs_ail pointer to the log so we can go directly to the AIL associated with the log. SGI-PV: 988143 SGI-Modid: xfs-linux-melb:xfs-kern:32351a Signed-off-by: NDavid Chinner <david@fromorbit.com> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org>
-
- 17 9月, 2008 1 次提交
-
-
由 Lachlan McIlroy 提交于
Memory allocations for log->l_grant_trace and iclog->ic_trace are done on demand when the first event is logged. In xlog_state_get_iclog_space() we call xlog_trace_iclog() under a spinlock and allocating memory here can cause us to sleep with a spinlock held and deadlock the system. For the log grant tracing we use KM_NOSLEEP but that means we can lose trace entries. Since there is no locking to serialize the log grant tracing we could race and have multiple allocations and leak memory. So move the allocations to where we initialize the log/iclog structures. Use KM_NOFS to avoid recursing into the filesystem and drop log->l_trace since it's not even used. SGI-PV: 983738 SGI-Modid: xfs-linux-melb:xfs-kern:31896a Signed-off-by: NLachlan McIlroy <lachlan@sgi.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org>
-
- 13 8月, 2008 2 次提交
-
-
由 Christoph Hellwig 提交于
Remove all the useless flags and code keyed off it in xfs_mountfs. SGI-PV: 981498 SGI-Modid: xfs-linux-melb:xfs-kern:31831a Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
由 David Chinner 提交于
A lot of code has been converted away from semaphores, but there are still comments that reference semaphore behaviour. The log code is the worst offender. Update the comments to reflect what the code really does now. SGI-PV: 981498 SGI-Modid: xfs-linux-melb:xfs-kern:31814a Signed-off-by: NDavid Chinner <david@fromorbit.com> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
- 28 7月, 2008 1 次提交
-
-
由 Matthew Wilcox 提交于
The l_flushsema doesn't exactly have completion semantics, nor mutex semantics. It's used as a list of tasks which are waiting to be notified that a flush has completed. It was also being used in a way that was potentially racy, depending on the semaphore implementation. By using a sv_t instead of a semaphore we avoid the need for a separate counter, since we know we just need to wake everything on the queue. Original waitqueue implementation from Matthew Wilcox. Cleanup and conversion to sv_t by Christoph Hellwig. SGI-PV: 981507 SGI-Modid: xfs-linux-melb:xfs-kern:31059a Signed-off-by: NMatthew Wilcox <willy@linux.intel.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
- 18 4月, 2008 4 次提交
-
-
由 David Chinner 提交于
To reduce contention on the log in large CPU count, separate out different parts of the xlog_t structure onto different cachelines. Move each lock onto a different cacheline along with all the members that are accessed/modified while that lock is held. Also, move the debugging code into debug code. SGI-PV: 978729 SGI-Modid: xfs-linux-melb:xfs-kern:30772a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
由 David Chinner 提交于
The ticket allocator is just a simple slab implementation internal to the log. It requires the icloglock to be held when manipulating it and this contributes to contention on that lock. Just kill the entire allocator and use a memory zone instead. While there, allow us to gracefully fail allocation with ENOMEM. SGI-PV: 978729 SGI-Modid: xfs-linux-melb:xfs-kern:30771a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
由 David Chinner 提交于
Rather than use the icloglock for protecting the iclog completion callback chain, use a new per-iclog lock so that walking the callback chain doesn't require holding a global lock. This reduces contention on the icloglock during transaction commit and log I/O completion by reducing the number of times we need to hold the global icloglock during these operations. SGI-PV: 978729 SGI-Modid: xfs-linux-melb:xfs-kern:30770a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
由 David Chinner 提交于
Now that we update the log tail LSN less frequently on transaction completion, we pass the contention straight to the global log state lock (l_iclog_lock) during transaction completion. We currently have to take this lock to decrement the iclog reference count. there is a reference count on each iclog, so we need to take þhe global lock for all refcount changes. When large numbers of processes are all doing small trnasctions, the iclog reference counts will be quite high, and the state change that absolutely requires the l_iclog_lock is the except rather than the norm. Change the reference counting on the iclogs to use atomic_inc/dec so that we can use atomic_dec_and_lock during transaction completion and avoid the need for grabbing the l_iclog_lock for every reference count decrement except the one that matters - the last. SGI-PV: 975671 SGI-Modid: xfs-linux-melb:xfs-kern:30505a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NTim Shimmin <tes@sgi.com> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
- 10 4月, 2008 1 次提交
-
-
由 Eric Sandeen 提交于
Remove macro-to-small-function indirection from xfs_sb.h, and remove some which are completely unused. SGI-PV: 976035 SGI-Modid: xfs-linux-melb:xfs-kern:30528a Signed-off-by: NEric Sandeen <sandeen@sandeen.net> Signed-off-by: NDonald Douwsma <donaldd@sgi.com> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
- 07 2月, 2008 2 次提交
-
-
由 Christoph Hellwig 提交于
Mostly trivial conversion with one exceptions: h_num_logops was kept in native endian previously and only converted to big endian in xlog_sync, but we always keep it big endian now. With todays cpus fast byteswap instructions that's not an issue but the new variant keeps the code clean and maintainable. SGI-PV: 971186 SGI-Modid: xfs-linux-melb:xfs-kern:29821a Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com> Signed-off-by: NTim Shimmin <tes@sgi.com>
-
由 Christoph Hellwig 提交于
- the various assign lsn macros are replaced by a single inline, xlog_assign_lsn, which is equivalent to ASSIGN_ANY_LSN_HOST except for a more sane calling convention. ASSIGN_LSN_DISK is replaced by xlog_assign_lsn and a manual bytespap, and ASSIGN_LSN by the same, except we pass the cycle and block arguments explicitly instead of a log paramter. The latter two variants only had 2, respectively one user anyway. - the GET_CYCLE is replaced by a xlog_get_cycle inline with exactly the same calling conventions. - GET_CLIENT_ID is replaced by xlog_get_client_id which leaves away the unused arch argument. Instead of conditional defintions depending on host endianess we now do an unconditional swap and shift then, which generates equal code. - the unused XLOG_SET macro is removed. SGI-PV: 971186 SGI-Modid: xfs-linux-melb:xfs-kern:29820a Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com> Signed-off-by: NTim Shimmin <tes@sgi.com>
-