- 15 7月, 2016 8 次提交
-
-
由 Andy Lutomirski 提交于
struct thread_info is a legacy mess. To prepare for its partial removal, move the uaccess control fields out -- they're straightforward. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/d0ac4d01c8e4d4d756264604e47445d5acc7900e.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andy Lutomirski 提交于
If we call do_exit() with a clean stack, we greatly reduce the risk of recursive oopses due to stack overflow in do_exit, and we allow do_exit to work even if we OOPS from an IST stack. The latter gives us a much better chance of surviving long enough after we detect a stack overflow to write out our logs. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/32f73ceb372ec61889598da5e5b145889b9f2e19.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andy Lutomirski 提交于
If we get a vmalloc fault while current->active_mm->pgd doesn't match CR3, we'll crash without this change. I've seen this failure mode on heavily instrumented kernels with virtually mapped stacks. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/4650d7674185f165ed8fdf9ac4c5c35c5c179ba8.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andy Lutomirski 提交于
If we overflow the stack into a guard page, we'll recursively fault when trying to dump the contents of the guard page. Use probe_kernel_address() so we can recover if this happens. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/e626d47a55d7b04dcb1b4d33faa95e8505b217c8.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andy Lutomirski 提交于
If we overflow the stack, print_context_stack() will abort. Detect this case and rewind back into the valid part of the stack so that we can trace it. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ee1690eb2715ccc5dc187fde94effa4ca0ccbbcd.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andy Lutomirski 提交于
kernel_unmap_pages_in_pgd() is dangerous: if a PGD entry in init_mm.pgd were to be cleared, callers would need to ensure that the pgd entry hadn't been propagated to any other pgd. Its only caller was efi_cleanup_page_tables(), and that, in turn, was unused, so just delete both functions. This leaves a couple of other helpers unused, so delete them, too. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NBorislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/77ff20fdde3b75cd393be5559ad8218870520248.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andy Lutomirski 提交于
This avoids pointless races in which another CPU or task might see a partially populated global PGD entry. These races should normally be harmless, but, if another CPU propagates the entry via vmalloc_fault() and then populate_pgd() fails (due to memory allocation failure, for example), this prevents a use-after-free of the PGD entry. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/bf99df27eac6835f687005364bd1fbd89130946c.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
So when memory hotplug removes a piece of physical memory from pagetable mappings, it also frees the underlying PGD entry. This complicates PGD management, so don't do this. We can keep the PGD mapped and the PUD table all clear - it's only a single 4K page per 512 GB of memory hotplugged. Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NAndy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <Waiman.Long@hp.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/064ff6c7275734537f969e876f6cd0baa954d2cc.1468527351.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 7月, 2016 4 次提交
-
-
由 Dave Hansen 提交于
The page table manipulation code seems to have grown a couple of sites that are looking for empty PTEs. Just in case one of these entries got a stray bit set, use pte_none() instead of checking for a zero pte_val(). The use pte_same() makes me a bit nervous. If we were doing a pte_same() check against two cleared entries and one of them had a stray bit set, it might fail the pte_same() check. But, I don't think we ever _do_ pte_same() for cleared entries. It is almost entirely used for checking for races in fault-in paths. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: dave.hansen@intel.com Cc: linux-mm@kvack.org Cc: mhocko@suse.com Link: http://lkml.kernel.org/r/20160708001915.813703D9@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dave Hansen 提交于
The Intel(R) Xeon Phi(TM) Processor x200 Family (codename: Knights Landing) has an erratum where a processor thread setting the Accessed or Dirty bits may not do so atomically against its checks for the Present bit. This may cause a thread (which is about to page fault) to set A and/or D, even though the Present bit had already been atomically cleared. These bits are truly "stray". In the case of the Dirty bit, the thread associated with the stray set was *not* allowed to write to the page. This means that we do not have to launder the bit(s); we can simply ignore them. If the PTE is used for storing a swap index or a NUMA migration index, the A bit could be misinterpreted as part of the swap type. The stray bits being set cause a software-cleared PTE to be interpreted as a swap entry. In some cases (like when the swap index ends up being for a non-existent swapfile), the kernel detects the stray value and WARN()s about it, but there is no guarantee that the kernel can always detect it. When we have 64-bit PTEs (64-bit mode or 32-bit PAE), we were able to move the swap PTE format around to avoid these troublesome bits. But, 32-bit non-PAE is tight on bits. So, disallow it from running on this hardware. I can't imagine anyone wanting to run 32-bit non-highmem kernels on this hardware, but disallowing them from running entirely is surely the safe thing to do. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: dave.hansen@intel.com Cc: linux-mm@kvack.org Cc: mhocko@suse.com Link: http://lkml.kernel.org/r/20160708001914.D0B50110@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dave Hansen 提交于
The erratum we are fixing here can lead to stray setting of the A and D bits. That means that a pte that we cleared might suddenly have A/D set. So, stop considering those bits when determining if a pte is pte_none(). The same goes for the other pmd_none() and pud_none(). pgd_none() can be skipped because it is not affected; we do not use PGD entries for anything other than pagetables on affected configurations. This adds a tiny amount of overhead to all pte_none() checks. I doubt we'll be able to measure it anywhere. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: dave.hansen@intel.com Cc: linux-mm@kvack.org Cc: mhocko@suse.com Link: http://lkml.kernel.org/r/20160708001912.5216F89C@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dave Hansen 提交于
This erratum can result in Accessed/Dirty getting set by the hardware when we do not expect them to be (on !Present PTEs). Instead of trying to fix them up after this happens, we just allow the bits to get set and try to ignore them. We do this by shifting the layout of the bits we use for swap offset/type in our 64-bit PTEs. It looks like this: bitnrs: | ... | 11| 10| 9|8|7|6|5| 4| 3|2|1|0| names: | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U|W|P| before: | OFFSET (9-63) |0|X|X| TYPE(1-5) |0| after: | OFFSET (14-63) | TYPE (9-13) |0|X|X|X| X| X|X|X|0| Note that D was already a don't care (X) even before. We just move TYPE up and turn its old spot (which could be hit by the A bit) into all don't cares. We take 5 bits away from the offset, but that still leaves us with 50 bits which lets us index into a 62-bit swapfile (4 EiB). I think that's probably fine for the moment. We could theoretically reclaim 5 of the bits (1, 2, 3, 4, 7) but it doesn't gain us anything. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: dave.hansen@intel.com Cc: linux-mm@kvack.org Cc: mhocko@suse.com Link: http://lkml.kernel.org/r/20160708001911.9A3FD2B6@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 7月, 2016 2 次提交
-
-
由 Paolo Bonzini 提交于
This matches what is already done for prepare_exit_to_usermode(), and saves about 60 clock cycles (4% speedup) with the benchmark in the previous commit message. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Reviewed-by: NAndy Lutomirski <luto@kernel.org> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kvm@vger.kernel.org Link: http://lkml.kernel.org/r/1466434712-31440-3-git-send-email-pbonzini@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paolo Bonzini 提交于
Thanks to all the work that was done by Andy Lutomirski and others, enter_from_user_mode() and prepare_exit_to_usermode() are now called only with interrupts disabled. Let's provide them a version of user_enter()/user_exit() that skips saving and restoring the interrupt flag. On an AMD-based machine I tested this patch on, with force-enabled context tracking, the speed-up in system calls was 90 clock cycles or 6%, measured with the following simple benchmark: #include <sys/signal.h> #include <time.h> #include <unistd.h> #include <stdio.h> unsigned long rdtsc() { unsigned long result; asm volatile("rdtsc; shl $32, %%rdx; mov %%eax, %%eax\n" "or %%rdx, %%rax" : "=a" (result) : : "rdx"); return result; } int main() { unsigned long tsc1, tsc2; int pid = getpid(); int i; tsc1 = rdtsc(); for (i = 0; i < 100000000; i++) kill(pid, SIGWINCH); tsc2 = rdtsc(); printf("%ld\n", tsc2 - tsc1); } Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Reviewed-by: NAndy Lutomirski <luto@kernel.org> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kvm@vger.kernel.org Link: http://lkml.kernel.org/r/1466434712-31440-2-git-send-email-pbonzini@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 08 7月, 2016 3 次提交
-
-
由 Borislav Petkov 提交于
No need to have it appear in objdump output. No functionality change. Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160708141016.GH3808@pd.tnicSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dmitry Safonov 提交于
Add possibility for 32-bit user-space applications to move the vDSO mapping. Previously, when a user-space app called mremap() for the vDSO address, in the syscall return path it would land on the previous address of the vDSOpage, resulting in segmentation violation. Now it lands fine and returns to userspace with a remapped vDSO. This will also fix the context.vdso pointer for 64-bit, which does not affect the user of vDSO after mremap() currently, but this may change in the future. As suggested by Andy, return -EINVAL for mremap() that would split the vDSO image: that operation cannot possibly result in a working system so reject it. Renamed and moved the text_mapping structure declaration inside map_vdso(), as it used only there and now it complements the vvar_mapping variable. There is still a problem for remapping the vDSO in glibc applications: the linker relocates addresses for syscalls on the vDSO page, so you need to relink with the new addresses. Without that the next syscall through glibc may fail: Program received signal SIGSEGV, Segmentation fault. #0 0xf7fd9b80 in __kernel_vsyscall () #1 0xf7ec8238 in _exit () from /usr/lib32/libc.so.6 Signed-off-by: NDmitry Safonov <dsafonov@virtuozzo.com> Acked-by: NAndy Lutomirski <luto@kernel.org> Cc: 0x7f454c46@gmail.com Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160628113539.13606-2-dsafonov@virtuozzo.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jiri Kosina 提交于
Currently it's possible for broken (or malicious) userspace to flood a kernel log indefinitely with messages a-la Program dmidecode tried to access /dev/mem between f0000->100000 because range_is_allowed() is case of CONFIG_STRICT_DEVMEM being turned on dumps this information each and every time devmem_is_allowed() fails. Reportedly userspace that is able to trigger contignuous flow of these messages exists. It would be possible to rate limit this message, but that'd have a questionable value; the administrator wouldn't get information about all the failing accessess, so then the information would be both superfluous and incomplete at the same time :) Returning EPERM (which is what is actually happening) is enough indication for userspace what has happened; no need to log this particular error as some sort of special condition. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1607081137020.24757@cbobk.fhfr.pmSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 7月, 2016 1 次提交
-
-
由 Ville Syrjälä 提交于
Since commit 4b6e2571 the rapl perf module calls itself intel-rapl. That name was already in use by the rapl powercap driver, which now fails to load if the perf module is loaded. Fix the problem by renaming the perf module to intel-rapl-perf, so that both modules can coexist. Fixes: 4b6e2571 ("x86/perf/intel/rapl: Make the Intel RAPL PMU driver modular") Signed-off-by: NVille Syrjälä <ville.syrjala@linux.intel.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1466694409-3620-1-git-send-email-ville.syrjala@linux.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 03 7月, 2016 2 次提交
-
-
由 Josh Poimboeuf 提交于
A basic perf callgraph record operation causes an immediate panic on a 32-bit kernel compiled with CONFIG_CC_STACKPROTECTOR=y: $ perf record -g ls Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: c0404fbd CPU: 0 PID: 998 Comm: ls Not tainted 4.7.0-rc5+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014 c0dd5967 ff7afe1c 00000086 f41dbc2c c07445a0 464c457f f41dbca8 f41dbc44 c05646f4 f41dbca8 464c457f f41dbca8 464c457f f41dbc54 c04625be c0ce56fc c0404fbd f41dbc88 c0404fbd b74668f0 f41dc000 00000000 c0000000 00000000 Call Trace: [<c07445a0>] dump_stack+0x58/0x78 [<c05646f4>] panic+0x8e/0x1c6 [<c04625be>] __stack_chk_fail+0x1e/0x30 [<c0404fbd>] ? perf_callchain_user+0x22d/0x230 [<c0404fbd>] perf_callchain_user+0x22d/0x230 [<c055f89f>] get_perf_callchain+0x1ff/0x270 [<c055f988>] perf_callchain+0x78/0x90 [<c055c7eb>] perf_prepare_sample+0x24b/0x370 [<c055c934>] perf_event_output_forward+0x24/0x70 [<c05531c0>] __perf_event_overflow+0xa0/0x210 [<c0550a93>] ? cpu_clock_event_read+0x43/0x50 [<c0553431>] perf_swevent_hrtimer+0x101/0x180 [<c0456235>] ? kmap_atomic_prot+0x35/0x140 [<c056dc69>] ? get_page_from_freelist+0x279/0x950 [<c058fdd8>] ? vma_interval_tree_remove+0x158/0x230 [<c05939f4>] ? wp_page_copy.isra.82+0x2f4/0x630 [<c05a050d>] ? page_add_file_rmap+0x1d/0x50 [<c0565611>] ? unlock_page+0x61/0x80 [<c0566755>] ? filemap_map_pages+0x305/0x320 [<c059769f>] ? handle_mm_fault+0xb7f/0x1560 [<c074cbeb>] ? timerqueue_del+0x1b/0x70 [<c04cfefe>] ? __remove_hrtimer+0x2e/0x60 [<c04d017b>] __hrtimer_run_queues+0xcb/0x2a0 [<c0553330>] ? __perf_event_overflow+0x210/0x210 [<c04d0a2a>] hrtimer_interrupt+0x8a/0x180 [<c043ecc2>] local_apic_timer_interrupt+0x32/0x60 [<c043f643>] smp_apic_timer_interrupt+0x33/0x50 [<c0b0cd38>] apic_timer_interrupt+0x34/0x3c Kernel Offset: disabled ---[ end Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: c0404fbd The panic is caused by the fact that perf_callchain_user() mistakenly assumes it's 64-bit only and ends up corrupting the stack. Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: stable@vger.kernel.org # v4.5+ Fixes: 75925e1a ("perf/x86: Optimize stack walk user accesses") Link: http://lkml.kernel.org/r/1a547f5077ec30f75f9b57074837c3c80df86e5e.1467432113.git.jpoimboe@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Stephane Eranian 提交于
This patch updates the event constraints for non-PEBS mode for Intel Broadwell and Skylake processors. When HT is off, each CPU gets 8 generic counters. However, not all events can be programmed on any of the 8 counters. This patch adds the constraints for the MEM_* events which can only be measured on the bottom 4 counters. The constraints are also valid when HT is off because, then, there are only 4 generic counters and they are the bottom counters. Signed-off-by: NStephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1467411742-13245-1-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 02 7月, 2016 1 次提交
-
-
由 Sinan Kaya 提交于
Trying to make the ISA and PCI init functionality common turned out to be a bad idea, because the ISA path depends on external functionality. Restore the previous behavior and limit the refactoring to PCI interrupts only. Fixes: 1fcb6a81 "ACPI,PCI,IRQ: remove redundant code in acpi_irq_penalty_init()" Signed-off-by: NSinan Kaya <okaya@codeaurora.org> Tested-by: NWim Osterholt <wim@djo.tudelft.nl> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 7月, 2016 2 次提交
-
-
由 Borislav Petkov 提交于
Fix boot crash that triggers if this driver is built into a kernel and run on non-AMD systems. AMD northbridges users call amd_cache_northbridges() and it returns a negative value to signal that we weren't able to cache/detect any northbridges on the system. At least, it should do so as all its callers expect it to do so. But it does return a negative value only when kmalloc() fails. Fix it to return -ENODEV if there are no NBs cached as otherwise, amd_nb users like amd64_edac, for example, which relies on it to know whether it should load or not, gets loaded on systems like Intel Xeons where it shouldn't. Reported-and-tested-by: NTony Battersby <tonyb@cybernetics.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1466097230-5333-2-git-send-email-bp@alien8.de Link: https://lkml.kernel.org/r/5761BEB0.9000807@cybernetics.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Rafael J. Wysocki 提交于
Logan Gunthorpe reports that hibernation stopped working reliably for him after commit ab76f7b4 (x86/mm: Set NX on gap between __ex_table and rodata). That turns out to be a consequence of a long-standing issue with the 64-bit image restoration code on x86, which is that the temporary page tables set up by it to avoid page tables corruption when the last bits of the image kernel's memory contents are copied into their original page frames re-use the boot kernel's text mapping, but that mapping may very well get corrupted just like any other part of the page tables. Of course, if that happens, the final jump to the image kernel's entry point will go to nowhere. The exact reason why commit ab76f7b4 matters here is that it sometimes causes a PMD of a large page to be split into PTEs that are allocated dynamically and get corrupted during image restoration as described above. To fix that issue note that the code copying the last bits of the image kernel's memory contents to the page frames occupied by them previoulsy doesn't use the kernel text mapping, because it runs from a special page covered by the identity mapping set up for that code from scratch. Hence, the kernel text mapping is only needed before that code starts to run and then it will only be used just for the final jump to the image kernel's entry point. Accordingly, the temporary page tables set up in swsusp_arch_resume() on x86-64 need to contain the kernel text mapping too. That mapping is only going to be used for the final jump to the image kernel, so it only needs to cover the image kernel's entry point, because the first thing the image kernel does after getting control back is to switch over to its own original page tables. Moreover, the virtual address of the image kernel's entry point in that mapping has to be the same as the one mapped by the image kernel's page tables. With that in mind, modify the x86-64's arch_hibernation_header_save() and arch_hibernation_header_restore() routines to pass the physical address of the image kernel's entry point (in addition to its virtual address) to the boot kernel (a small piece of assembly code involved in passing the entry point's virtual address to the image kernel is not necessary any more after that, so drop it). Update RESTORE_MAGIC too to reflect the image header format change. Next, in set_up_temporary_mappings(), use the physical and virtual addresses of the image kernel's entry point passed in the image header to set up a minimum kernel text mapping (using memory pages that won't be overwritten by the image kernel's memory contents) that will map those addresses to each other as appropriate. This makes the concern about the possible corruption of the original boot kernel text mapping go away and if the the minimum kernel text mapping used for the final jump marks the image kernel's entry point memory as executable, the jump to it is guaraneed to succeed. Fixes: ab76f7b4 (x86/mm: Set NX on gap between __ex_table and rodata) Link: http://marc.info/?l=linux-pm&m=146372852823760&w=2Reported-by: NLogan Gunthorpe <logang@deltatee.com> Reported-and-tested-by: NBorislav Petkov <bp@suse.de> Tested-by: NKees Cook <keescook@chromium.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 27 6月, 2016 6 次提交
-
-
由 Quentin Casasnovas 提交于
I couldn't get Xen to boot a L2 HVM when it was nested under KVM - it was getting a GP(0) on a rather unspecial vmread from Xen: (XEN) ----[ Xen-4.7.0-rc x86_64 debug=n Not tainted ]---- (XEN) CPU: 1 (XEN) RIP: e008:[<ffff82d0801e629e>] vmx_get_segment_register+0x14e/0x450 (XEN) RFLAGS: 0000000000010202 CONTEXT: hypervisor (d1v0) (XEN) rax: ffff82d0801e6288 rbx: ffff83003ffbfb7c rcx: fffffffffffab928 (XEN) rdx: 0000000000000000 rsi: 0000000000000000 rdi: ffff83000bdd0000 (XEN) rbp: ffff83000bdd0000 rsp: ffff83003ffbfab0 r8: ffff830038813910 (XEN) r9: ffff83003faf3958 r10: 0000000a3b9f7640 r11: ffff83003f82d418 (XEN) r12: 0000000000000000 r13: ffff83003ffbffff r14: 0000000000004802 (XEN) r15: 0000000000000008 cr0: 0000000080050033 cr4: 00000000001526e0 (XEN) cr3: 000000003fc79000 cr2: 0000000000000000 (XEN) ds: 0000 es: 0000 fs: 0000 gs: 0000 ss: 0000 cs: e008 (XEN) Xen code around <ffff82d0801e629e> (vmx_get_segment_register+0x14e/0x450): (XEN) 00 00 41 be 02 48 00 00 <44> 0f 78 74 24 08 0f 86 38 56 00 00 b8 08 68 00 (XEN) Xen stack trace from rsp=ffff83003ffbfab0: ... (XEN) Xen call trace: (XEN) [<ffff82d0801e629e>] vmx_get_segment_register+0x14e/0x450 (XEN) [<ffff82d0801f3695>] get_page_from_gfn_p2m+0x165/0x300 (XEN) [<ffff82d0801bfe32>] hvmemul_get_seg_reg+0x52/0x60 (XEN) [<ffff82d0801bfe93>] hvm_emulate_prepare+0x53/0x70 (XEN) [<ffff82d0801ccacb>] handle_mmio+0x2b/0xd0 (XEN) [<ffff82d0801be591>] emulate.c#_hvm_emulate_one+0x111/0x2c0 (XEN) [<ffff82d0801cd6a4>] handle_hvm_io_completion+0x274/0x2a0 (XEN) [<ffff82d0801f334a>] __get_gfn_type_access+0xfa/0x270 (XEN) [<ffff82d08012f3bb>] timer.c#add_entry+0x4b/0xb0 (XEN) [<ffff82d08012f80c>] timer.c#remove_entry+0x7c/0x90 (XEN) [<ffff82d0801c8433>] hvm_do_resume+0x23/0x140 (XEN) [<ffff82d0801e4fe7>] vmx_do_resume+0xa7/0x140 (XEN) [<ffff82d080164aeb>] context_switch+0x13b/0xe40 (XEN) [<ffff82d080128e6e>] schedule.c#schedule+0x22e/0x570 (XEN) [<ffff82d08012c0cc>] softirq.c#__do_softirq+0x5c/0x90 (XEN) [<ffff82d0801602c5>] domain.c#idle_loop+0x25/0x50 (XEN) (XEN) (XEN) **************************************** (XEN) Panic on CPU 1: (XEN) GENERAL PROTECTION FAULT (XEN) [error_code=0000] (XEN) **************************************** Tracing my host KVM showed it was the one injecting the GP(0) when emulating the VMREAD and checking the destination segment permissions in get_vmx_mem_address(): 3) | vmx_handle_exit() { 3) | handle_vmread() { 3) | nested_vmx_check_permission() { 3) | vmx_get_segment() { 3) 0.074 us | vmx_read_guest_seg_base(); 3) 0.065 us | vmx_read_guest_seg_selector(); 3) 0.066 us | vmx_read_guest_seg_ar(); 3) 1.636 us | } 3) 0.058 us | vmx_get_rflags(); 3) 0.062 us | vmx_read_guest_seg_ar(); 3) 3.469 us | } 3) | vmx_get_cs_db_l_bits() { 3) 0.058 us | vmx_read_guest_seg_ar(); 3) 0.662 us | } 3) | get_vmx_mem_address() { 3) 0.068 us | vmx_cache_reg(); 3) | vmx_get_segment() { 3) 0.074 us | vmx_read_guest_seg_base(); 3) 0.068 us | vmx_read_guest_seg_selector(); 3) 0.071 us | vmx_read_guest_seg_ar(); 3) 1.756 us | } 3) | kvm_queue_exception_e() { 3) 0.066 us | kvm_multiple_exception(); 3) 0.684 us | } 3) 4.085 us | } 3) 9.833 us | } 3) + 10.366 us | } Cross-checking the KVM/VMX VMREAD emulation code with the Intel Software Developper Manual Volume 3C - "VMREAD - Read Field from Virtual-Machine Control Structure", I found that we're enforcing that the destination operand is NOT located in a read-only data segment or any code segment when the L1 is in long mode - BUT that check should only happen when it is in protected mode. Shuffling the code a bit to make our emulation follow the specification allows me to boot a Xen dom0 in a nested KVM and start HVM L2 guests without problems. Fixes: f9eb4af6 ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions") Signed-off-by: NQuentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Eugene Korenevsky <ekorenevsky@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: linux-stable <stable@vger.kernel.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Marcelo Tosatti 提交于
The host timer which emulates the guest LAPIC TSC deadline timer has its expiration diminished by lapic_timer_advance_ns nanoseconds. Therefore if, at wait_lapic_expire, a difference larger than lapic_timer_advance_ns is encountered, delay at most lapic_timer_advance_ns. This fixes a problem where the guest can cause the host to delay for large amounts of time. Reported-by: NAlan Jenkins <alan.christopher.jenkins@gmail.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Marcelo Tosatti 提交于
Move the inline function nsec_to_cycles from x86.c to x86.h, as the next patch uses it from lapic.c. Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Minfei Huang 提交于
There is a generic function __pvclock_read_cycles to be used to get both flags and cycles. For function pvclock_read_flags, it's useless to get cycles value. To make this function be more effective, get this variable flags directly in function. Signed-off-by: NMinfei Huang <mnghuan@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Minfei Huang 提交于
Function __pvclock_read_cycles is short enough, so there is no need to have another function pvclock_get_nsec_offset to calculate tsc delta. It's better to combine it into function __pvclock_read_cycles. Remove useless variables in function __pvclock_read_cycles. Signed-off-by: NMinfei Huang <mnghuan@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Minfei Huang 提交于
Protocol for the "version" fields is: hypervisor raises it (making it uneven) before it starts updating the fields and raises it again (making it even) when it is done. Thus the guest can make sure the time values it got are consistent by checking the version before and after reading them. Add CPU barries after getting version value just like what function vread_pvclock does, because all of callees in this function is inline. Fixes: 502dfeff Cc: stable@vger.kernel.org Signed-off-by: NMinfei Huang <mnghuan@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 25 6月, 2016 4 次提交
-
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. efi_alloc_page_tables uses __GFP_REPEAT but it allocates an order-0 page. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-4-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. PGALLOC_GFP uses __GFP_REPEAT but none of the allocation which uses this flag is for more than order-0. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-3-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
This is the third version of the patchset previously sent [1]. I have basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get rid of superfluous gfp flags" which went through dm tree. I am sending it now because it is tree wide and chances for conflicts are reduced considerably when we want to target rc2. I plan to send the next step and rename the flag and move to a better semantic later during this release cycle so we will have a new semantic ready for 4.8 merge window hopefully. Motivation: While working on something unrelated I've checked the current usage of __GFP_REPEAT in the tree. It seems that a majority of the usage is and always has been bogus because __GFP_REPEAT has always been about costly high order allocations while we are using it for order-0 or very small orders very often. It seems that a big pile of them is just a copy&paste when a code has been adopted from one arch to another. I think it makes some sense to get rid of them because they are just making the semantic more unclear. Please note that GFP_REPEAT is documented as * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. while !costly requests have basically nofail semantic. So one could reasonably expect that order-0 request with __GFP_REPEAT will not loop for ever. This is not implemented right now though. I would like to move on with __GFP_REPEAT and define a better semantic for it. $ git grep __GFP_REPEAT origin/master | wc -l 111 $ git grep __GFP_REPEAT | wc -l 36 So we are down to the third after this patch series. The remaining places really seem to be relying on __GFP_REPEAT due to large allocation requests. This still needs some double checking which I will do later after all the simple ones are sorted out. I am touching a lot of arch specific code here and I hope I got it right but as a matter of fact I even didn't compile test for some archs as I do not have cross compiler for them. Patches should be quite trivial to review for stupid compile mistakes though. The tricky parts are usually hidden by macro definitions and thats where I would appreciate help from arch maintainers. [1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org This patch (of 19): __GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. Yet we have the full kernel tree with its usage for apparently order-0 allocations. This is really confusing because __GFP_REPEAT is explicitly documented to allow allocation failures which is a weaker semantic than the current order-0 has (basically nofail). Let's simply drop __GFP_REPEAT from those places. This would allow to identify place which really need allocator to retry harder and formulate a more specific semantic for what the flag is supposed to do actually. Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Crispin <blogic@openwrt.org> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
As the actual pointer value is the same for the thread stack allocation and the thread_info, code that confused the two worked fine, but will break when the thread info is moved away from the stack allocation. It also looks very confusing. For example, the kprobe code wanted to know the current top of stack. To do that, it used this: (unsigned long)current_thread_info() + THREAD_SIZE which did indeed give the correct value. But it's not only a fairly nonsensical expression, it's also rather complex, especially since we actually have this: static inline unsigned long current_top_of_stack(void) which not only gives us the value we are interested in, but happens to be how "current_thread_info()" is currently defined as: (struct thread_info *)(current_top_of_stack() - THREAD_SIZE); so using current_thread_info() to figure out the top of the stack really is a very round-about thing to do. The other cases are just simpler confusion about task_thread_info() vs task_stack_page(), which currently return the same pointer - but if you want the stack page, you really should be using the latter one. And there was one entirely unused assignment of the current stack to a thread_info pointer. All cleaned up to make more sense today, and make it easier to move the thread_info away from the stack in the future. No semantic changes. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 6月, 2016 1 次提交
-
-
由 Linus Torvalds 提交于
None of the code actually wants a thread_info, it all wants a task_struct, and it's just converting to a thread_info pointer much too early. No semantic change. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 6月, 2016 2 次提交
-
-
由 David Vrabel 提交于
When page tables entries are set using xen_set_pte_init() during early boot there is no page fault handler that could handle a fault when performing an M2P lookup. In 64 bit guests (usually dom0) early_ioremap() would fault in xen_set_pte_init() because an M2P lookup faults because the MFN is in MMIO space and not mapped in the M2P. This lookup is done to see if the PFN in in the range used for the initial page table pages, so that the PTE may be set as read-only. The M2P lookup can be avoided by moving the check (and clear of RW) earlier when the PFN is still available. Reported-by: NKevin Moraga <kmoragas@riseup.net> Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com> Reviewed-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: NJuergen Gross <jgross@suse.com>
-
由 Juergen Gross 提交于
xen_cleanhighmap() is operating on level2_kernel_pgt only. The upper bound of the loop setting non-kernel-image entries to zero should not exceed the size of level2_kernel_pgt. Reported-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com>
-
- 18 6月, 2016 1 次提交
-
-
由 William Breathitt Gray 提交于
Several modern devices, such as PC/104 cards, are expected to run on modern systems via an ISA bus interface. Since ISA is a legacy interface for most modern architectures, ISA support should remain disabled in general. Support for ISA-style drivers should be enabled on a per driver basis. To allow ISA-style drivers on modern systems, this patch introduces the ISA_BUS_API and ISA_BUS Kconfig options. The ISA bus driver will now build conditionally on the ISA_BUS_API Kconfig option, which defaults to the legacy ISA Kconfig option. The ISA_BUS Kconfig option allows the ISA_BUS_API Kconfig option to be selected on architectures which do not enable ISA (e.g. X86_64). The ISA_BUS Kconfig option is currently only implemented for X86 architectures. Other architectures may have their own ISA_BUS Kconfig options added as required. Reviewed-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NWilliam Breathitt Gray <vilhelm.gray@gmail.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 16 6月, 2016 3 次提交
-
-
由 Yang Zhang 提交于
VT-d posted interrupt is relying on the CPU side's posted interrupt. Need to check whether VCPU's APICv is active before enabing VT-d posted interrupt. Fixes: d62caabb Cc: stable@vger.kernel.org Signed-off-by: NYang Zhang <yang.zhang.wz@gmail.com> Signed-off-by: NShengge Ding <shengge.dsg@alibaba-inc.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Suravee Suthikulpanit 提交于
Add logic to disable AVIC #ifndef CONFIG_X86_LOCAL_APIC. Suggested-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSuravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Suravee Suthikulpanit 提交于
The commit 8221c137 ("svm: Manage vcpu load/unload when enable AVIC") introduces a build error due to implicit function declaration when #ifdef CONFIG_X86_32 and #ifndef CONFIG_X86_LOCAL_APIC (as reported by Kbuild test robot i386-randconfig-x0-06121009). So, this patch introduces kvm_cpu_get_apicid() wrapper around __default_cpu_present_to_apicid() with additional handling if CONFIG_X86_LOCAL_APIC is not defined. Reported-by: Nkbuild test robot <fengguang.wu@intel.com> Fixes: commit 8221c137 ("svm: Manage vcpu load/unload when enable AVIC") Signed-off-by: NSuravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-