- 18 1月, 2009 1 次提交
-
-
由 Artem Bityutskiy 提交于
VFS calls '->sync_fs()' twice - first time with @wait = 0, second time with @wait = 1. As a result, we may commit and synchronize write-buffers twice. Avoid doing this by returning immediatelly if @wait = 0. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 07 1月, 2009 1 次提交
-
-
由 Artem Bityutskiy 提交于
WB_SYNC_HOLD is going to be zapped so we should not use it. Use %WB_SYNC_NONE instead. Here is what akpm said: "I think I'll just switch that to WB_SYNC_NONE. The `wait==0' mode is just an advisory thing to help the fs shove lots of data into the queues. If some gets missed then it'll be picked up on the second ->sync_fs call, with wait==1." Thanks to Randy Dunlap for catching this. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 31 12月, 2008 7 次提交
-
-
由 Artem Bityutskiy 提交于
Print node sizes and maximum node sizes. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
It is fine if there is not free space - we should still allow mounting this FS. This patch relaxes the free space requirements and adds info dumps. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
UBIFS commits on unmount to make the next mount faster. Currently, it commits only if there is more than LEB size bytes in the journal. This is not very good, because journal size may be large (512KiB). And there may be few deletions in the journal which do not take much journal space, but which do introduce a lot of TNC changes and make mount slow. Thus, jurt remove this condition and always commit. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
UBI now has (fake for now, though) synchronization call - use it. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Always run commit in sync_fs, because even if the journal seems to be almost empty, there may be a deletion which removes a large file, which affects the index greatly. And because we want better free space predictions after 'sync_fs()', we have to commit. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Argh. The ->sync_fs call is called _before_ all inodes are flushed. This means we first sync write buffers and commit, then all inodes are synced, and we end up with unflushed write buffers! Fix this by forcing synching all indoes from 'ubifs_sync_fs()'. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
The c->min_idx_lebs constant depends on c->old_idx_sz, which is read from the master node. This means that we have to initialize c->min_idx_lebs only after we have read the master node. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 23 12月, 2008 2 次提交
-
-
由 Artem Bityutskiy 提交于
Instead of using do_div(), use better primitives from linux/math64.h. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Take into account that 2 eraseblocks are never available because they are reserved for the index. This gives more realistic count of FS blocks. To avoid future confusions like this, introduce a constant. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 03 12月, 2008 4 次提交
-
-
由 Artem Bityutskiy 提交于
We need to have a possibility to see various UBIFS variables and ask UBIFS to dump various information. Debugfs is what we need. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Introduce a new data structure which contains all debugging stuff inside. This is cleaner than having debugging stuff directly in 'c'. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
It is very handy to be able to change default UBIFS compressor via mount options. Introduce -o compr=<name> mount option support. Currently only "none", "lzo" and "zlib" compressors are supported. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Save a 4 bytes of RAM per 'struct inode' by stroring inode compression type in bit-filed, instead of using 'int'. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 22 11月, 2008 3 次提交
-
-
由 Artem Bityutskiy 提交于
To avoid memory allocation failure during bulk-read, pre-allocate a bulk-read buffer, so that if there is only one bulk-reader at a time, it would just use the pre-allocated buffer and would not do any memory allocation. However, if there are more than 1 bulk- reader, then only one reader would use the pre-allocated buffer, while the other reader would allocate the buffer for itself. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Bulk-read allocates 128KiB or more using kmalloc. The allocation starts failing often when the memory gets fragmented. UBIFS still works fine in this case, because it falls-back to standard (non-optimized) read method, though. This patch teaches bulk-read to allocate exactly the amount of memory it needs, instead of allocating 128KiB every time. This patch is also a preparation to the further fix where we'll have a pre-allocated bulk-read buffer as well. For example, now the @bu object is prepared in 'ubifs_bulk_read()', so we could path either pre-allocated or allocated information to 'ubifs_do_bulk_read()' later. Or teaching 'ubifs_do_bulk_read()' not to allocate 'bu->buf' if it is already there. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Bulk-read allocates a lot of memory with 'kmalloc()', and when it is/gets fragmented 'kmalloc()' fails with a scarry warning. But because bulk-read is just an optimization, UBIFS keeps working fine. Supress the warning by passing __GFP_NOWARN option to 'kmalloc()'. This patch also introduces a macro for the magic 128KiB constant. This is just neater. Note, this is not really fixes the problem we had, but just hides the warnings. The further patches fix the problem. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 19 10月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
It is better to print "Reserved for root" than "Reserved pool size", because it is more obvious for users what this means. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 14 10月, 2008 1 次提交
-
-
由 Steven Whitehouse 提交于
This is a much better version of a previous patch to make the parser tables constant. Rather than changing the typedef, we put the "const" in all the various places where its required, allowing the __initconst exception for nfsroot which was the cause of the previous trouble. This was posted for review some time ago and I believe its been in -mm since then. Signed-off-by: NSteven Whitehouse <swhiteho@redhat.com> Cc: Alexander Viro <aviro@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 9月, 2008 7 次提交
-
-
由 Adrian Hunter 提交于
sync_fs can be called even if the file system is mounted read-only. Ensure the commit is not run in that case. Reported-by: NZoltan Sogor <weth@inf.u-szeged.hu> Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Artem Bityutskiy 提交于
Commit the journal when the FS is sync'ed. This will make statfs provide better free space report. And we anyway advice our users to sync the FS if they want better statfs report. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Adrian Hunter 提交于
UBIFS read performance can be improved by skipping the CRC check when data nodes are read. This option can be used if the underlying media is considered to be highly reliable. Note that CRCs are always checked for metadata. Read speed on Arm platform with OneNAND goes from 19 MiB/s to 27 MiB/s with data CRC checking disabled. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Adrian Hunter 提交于
Some flash media are capable of reading sequentially at faster rates. UBIFS bulk-read facility is designed to take advantage of that, by reading in one go consecutive data nodes that are also located consecutively in the same LEB. Read speed on Arm platform with OneNAND goes from 17 MiB/s to 19 MiB/s. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Julien Brunel 提交于
In case of error, the function kthread_create returns an ERR pointer, but never returns a NULL pointer. So a NULL test that comes before an IS_ERR test should be deleted. The semantic match that finds this problem is as follows: (http://www.emn.fr/x-info/coccinelle/) // <smpl> @match_bad_null_test@ expression x, E; statement S1,S2; @@ x = kthread_create(...) ... when != x = E * if (x == NULL) S1 else S2 // </smpl> Signed-off-by: NJulien Brunel <brunel@diku.dk> Signed-off-by: NJulia Lawall <julia@diku.dk> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
This commit adds a reserved pool size print and tweaks the prints to make them look nicer. It also fixes and cleans-up some comments. Additionally, it deletes some blank lines to make the code look a little nicer. In other words, nothing essential. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 17 9月, 2008 1 次提交
-
-
由 Sebastian Siewior 提交于
If the ubifs partition is mounted RO and then remounted RW we end up with no thread name in ubifs_remount_rw() and the thread appears nameless. Signed-off-by: NSebastian Siewior <bigeasy@linutronix.de> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 03 9月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
David Woodhouse suggested to be consistent with other FSes and xor the beginning and the end of the UUID. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 31 8月, 2008 4 次提交
-
-
由 Artem Bityutskiy 提交于
UBIFS stores 16-bit UUID in the superblock, and it is a good idea to return part of it in 'f_fsid' filed of kstatfs structure. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Since free space we report in statfs is file size which should fit to the FS - change the way we calculate free space and use leb_overhead instead of dark_wm in calculations. Results of "freespace" test (120MiB volume, 16KiB LEB size, 512 bytes page size). Before the change: freespace: Test 1: fill the space we have 3 times freespace: was free: 85204992 bytes 81.3 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 11284480 bytes 10.8 MiB, wrote 13.2% more than predicted freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 12935168 bytes 12.3 MiB, wrote 15.5% more than predicted freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 12939264 bytes 12.3 MiB, wrote 15.5% more than predicted freespace: Test 1 finished freespace: Test 2: gradually lessen amount of free space and fill the FS freespace: do 10 steps, lessen free space by 7596218 bytes 7.2 MiB each time freespace: was free: 78675968 bytes 75.0 MiB, wrote: 88903680 bytes 84.8 MiB, delta: 10227712 bytes 9.8 MiB, wrote 13.0% more than predicted freespace: was free: 72015872 bytes 68.7 MiB, wrote: 81514496 bytes 77.7 MiB, delta: 9498624 bytes 9.1 MiB, wrote 13.2% more than predicted freespace: was free: 63938560 bytes 61.0 MiB, wrote: 72589312 bytes 69.2 MiB, delta: 8650752 bytes 8.2 MiB, wrote 13.5% more than predicted freespace: was free: 56127488 bytes 53.5 MiB, wrote: 63762432 bytes 60.8 MiB, delta: 7634944 bytes 7.3 MiB, wrote 13.6% more than predicted freespace: was free: 48336896 bytes 46.1 MiB, wrote: 54935552 bytes 52.4 MiB, delta: 6598656 bytes 6.3 MiB, wrote 13.7% more than predicted freespace: was free: 40587264 bytes 38.7 MiB, wrote: 46157824 bytes 44.0 MiB, delta: 5570560 bytes 5.3 MiB, wrote 13.7% more than predicted freespace: was free: 32841728 bytes 31.3 MiB, wrote: 37384192 bytes 35.7 MiB, delta: 4542464 bytes 4.3 MiB, wrote 13.8% more than predicted freespace: was free: 25100288 bytes 23.9 MiB, wrote: 28618752 bytes 27.3 MiB, delta: 3518464 bytes 3.4 MiB, wrote 14.0% more than predicted freespace: was free: 17342464 bytes 16.5 MiB, wrote: 19841024 bytes 18.9 MiB, delta: 2498560 bytes 2.4 MiB, wrote 14.4% more than predicted freespace: was free: 9605120 bytes 9.2 MiB, wrote: 11063296 bytes 10.6 MiB, delta: 1458176 bytes 1.4 MiB, wrote 15.2% more than predicted freespace: Test 2 finished freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS freespace: do 10 steps, lessen free space by 7606272 bytes 7.3 MiB each time freespace: trashing: was free: 83668992 bytes 79.8 MiB, need free: 7606272 bytes 7.3 MiB, files created: 248297, delete 225724 (90.9% of them) freespace: was free: 70803456 bytes 67.5 MiB, wrote: 82485248 bytes 78.7 MiB, delta: 11681792 bytes 11.1 MiB, wrote 16.5% more than predicted freespace: trashing: was free: 81080320 bytes 77.3 MiB, need free: 15212544 bytes 14.5 MiB, files created: 248711, delete 202047 (81.2% of them) freespace: was free: 59867136 bytes 57.1 MiB, wrote: 71897088 bytes 68.6 MiB, delta: 12029952 bytes 11.5 MiB, wrote 20.1% more than predicted freespace: trashing: was free: 82243584 bytes 78.4 MiB, need free: 22818816 bytes 21.8 MiB, files created: 248866, delete 179817 (72.3% of them) freespace: was free: 50905088 bytes 48.5 MiB, wrote: 63168512 bytes 60.2 MiB, delta: 12263424 bytes 11.7 MiB, wrote 24.1% more than predicted freespace: trashing: was free: 83402752 bytes 79.5 MiB, need free: 30425088 bytes 29.0 MiB, files created: 248920, delete 158114 (63.5% of them) freespace: was free: 42651648 bytes 40.7 MiB, wrote: 55406592 bytes 52.8 MiB, delta: 12754944 bytes 12.2 MiB, wrote 29.9% more than predicted freespace: trashing: was free: 84402176 bytes 80.5 MiB, need free: 38031360 bytes 36.3 MiB, files created: 248709, delete 136641 (54.9% of them) freespace: was free: 35233792 bytes 33.6 MiB, wrote: 48250880 bytes 46.0 MiB, delta: 13017088 bytes 12.4 MiB, wrote 36.9% more than predicted freespace: trashing: was free: 82530304 bytes 78.7 MiB, need free: 45637632 bytes 43.5 MiB, files created: 248778, delete 111208 (44.7% of them) freespace: was free: 27287552 bytes 26.0 MiB, wrote: 40267776 bytes 38.4 MiB, delta: 12980224 bytes 12.4 MiB, wrote 47.6% more than predicted freespace: trashing: was free: 85114880 bytes 81.2 MiB, need free: 53243904 bytes 50.8 MiB, files created: 248508, delete 93052 (37.4% of them) freespace: was free: 22437888 bytes 21.4 MiB, wrote: 35328000 bytes 33.7 MiB, delta: 12890112 bytes 12.3 MiB, wrote 57.4% more than predicted freespace: trashing: was free: 84103168 bytes 80.2 MiB, need free: 60850176 bytes 58.0 MiB, files created: 248637, delete 68743 (27.6% of them) freespace: was free: 15536128 bytes 14.8 MiB, wrote: 28319744 bytes 27.0 MiB, delta: 12783616 bytes 12.2 MiB, wrote 82.3% more than predicted freespace: trashing: was free: 84357120 bytes 80.4 MiB, need free: 68456448 bytes 65.3 MiB, files created: 248567, delete 46852 (18.8% of them) freespace: was free: 9015296 bytes 8.6 MiB, wrote: 22044672 bytes 21.0 MiB, delta: 13029376 bytes 12.4 MiB, wrote 144.5% more than predicted freespace: trashing: was free: 84942848 bytes 81.0 MiB, need free: 76062720 bytes 72.5 MiB, files created: 248636, delete 25993 (10.5% of them) freespace: was free: 6086656 bytes 5.8 MiB, wrote: 8331264 bytes 7.9 MiB, delta: 2244608 bytes 2.1 MiB, wrote 36.9% more than predicted freespace: Test 3 finished freespace: finished successfully After the change: freespace: Test 1: fill the space we have 3 times freespace: was free: 94048256 bytes 89.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 2441216 bytes 2.3 MiB, wrote 2.6% more than predicted freespace: was free: 92246016 bytes 88.0 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 4247552 bytes 4.1 MiB, wrote 4.6% more than predicted freespace: was free: 92254208 bytes 88.0 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 4235264 bytes 4.0 MiB, wrote 4.6% more than predicted freespace: Test 1 finished freespace: Test 2: gradually lessen amount of free space and fill the FS freespace: do 10 steps, lessen free space by 8386001 bytes 8.0 MiB each time freespace: was free: 86605824 bytes 82.6 MiB, wrote: 88252416 bytes 84.2 MiB, delta: 1646592 bytes 1.6 MiB, wrote 1.9% more than predicted freespace: was free: 78667776 bytes 75.0 MiB, wrote: 80715776 bytes 77.0 MiB, delta: 2048000 bytes 2.0 MiB, wrote 2.6% more than predicted freespace: was free: 69615616 bytes 66.4 MiB, wrote: 71630848 bytes 68.3 MiB, delta: 2015232 bytes 1.9 MiB, wrote 2.9% more than predicted freespace: was free: 61018112 bytes 58.2 MiB, wrote: 62783488 bytes 59.9 MiB, delta: 1765376 bytes 1.7 MiB, wrote 2.9% more than predicted freespace: was free: 52424704 bytes 50.0 MiB, wrote: 53968896 bytes 51.5 MiB, delta: 1544192 bytes 1.5 MiB, wrote 2.9% more than predicted freespace: was free: 43880448 bytes 41.8 MiB, wrote: 45199360 bytes 43.1 MiB, delta: 1318912 bytes 1.3 MiB, wrote 3.0% more than predicted freespace: was free: 35332096 bytes 33.7 MiB, wrote: 36425728 bytes 34.7 MiB, delta: 1093632 bytes 1.0 MiB, wrote 3.1% more than predicted freespace: was free: 26771456 bytes 25.5 MiB, wrote: 27643904 bytes 26.4 MiB, delta: 872448 bytes 852.0 KiB, wrote 3.3% more than predicted freespace: was free: 18231296 bytes 17.4 MiB, wrote: 18878464 bytes 18.0 MiB, delta: 647168 bytes 632.0 KiB, wrote 3.5% more than predicted freespace: was free: 9674752 bytes 9.2 MiB, wrote: 10088448 bytes 9.6 MiB, delta: 413696 bytes 404.0 KiB, wrote 4.3% more than predicted freespace: Test 2 finished freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS freespace: do 10 steps, lessen free space by 8397544 bytes 8.0 MiB each time freespace: trashing: was free: 92372992 bytes 88.1 MiB, need free: 8397552 bytes 8.0 MiB, files created: 248296, delete 225723 (90.9% of them) freespace: was free: 71909376 bytes 68.6 MiB, wrote: 82472960 bytes 78.7 MiB, delta: 10563584 bytes 10.1 MiB, wrote 14.7% more than predicted freespace: trashing: was free: 88989696 bytes 84.9 MiB, need free: 16795096 bytes 16.0 MiB, files created: 248794, delete 201838 (81.1% of them) freespace: was free: 60354560 bytes 57.6 MiB, wrote: 71782400 bytes 68.5 MiB, delta: 11427840 bytes 10.9 MiB, wrote 18.9% more than predicted freespace: trashing: was free: 90304512 bytes 86.1 MiB, need free: 25192640 bytes 24.0 MiB, files created: 248733, delete 179342 (72.1% of them) freespace: was free: 51187712 bytes 48.8 MiB, wrote: 62943232 bytes 60.0 MiB, delta: 11755520 bytes 11.2 MiB, wrote 23.0% more than predicted freespace: trashing: was free: 91209728 bytes 87.0 MiB, need free: 33590184 bytes 32.0 MiB, files created: 248779, delete 157160 (63.2% of them) freespace: was free: 42704896 bytes 40.7 MiB, wrote: 55050240 bytes 52.5 MiB, delta: 12345344 bytes 11.8 MiB, wrote 28.9% more than predicted freespace: trashing: was free: 92700672 bytes 88.4 MiB, need free: 41987728 bytes 40.0 MiB, files created: 248848, delete 136135 (54.7% of them) freespace: was free: 35250176 bytes 33.6 MiB, wrote: 48115712 bytes 45.9 MiB, delta: 12865536 bytes 12.3 MiB, wrote 36.5% more than predicted freespace: trashing: was free: 93986816 bytes 89.6 MiB, need free: 50385272 bytes 48.1 MiB, files created: 248723, delete 115385 (46.4% of them) freespace: was free: 29995008 bytes 28.6 MiB, wrote: 41582592 bytes 39.7 MiB, delta: 11587584 bytes 11.1 MiB, wrote 38.6% more than predicted freespace: trashing: was free: 91881472 bytes 87.6 MiB, need free: 58782816 bytes 56.1 MiB, files created: 248645, delete 89569 (36.0% of them) freespace: was free: 22511616 bytes 21.5 MiB, wrote: 34705408 bytes 33.1 MiB, delta: 12193792 bytes 11.6 MiB, wrote 54.2% more than predicted freespace: trashing: was free: 91774976 bytes 87.5 MiB, need free: 67180360 bytes 64.1 MiB, files created: 248580, delete 66616 (26.8% of them) freespace: was free: 16908288 bytes 16.1 MiB, wrote: 26898432 bytes 25.7 MiB, delta: 9990144 bytes 9.5 MiB, wrote 59.1% more than predicted freespace: trashing: was free: 92450816 bytes 88.2 MiB, need free: 75577904 bytes 72.1 MiB, files created: 248654, delete 45381 (18.3% of them) freespace: was free: 10170368 bytes 9.7 MiB, wrote: 19111936 bytes 18.2 MiB, delta: 8941568 bytes 8.5 MiB, wrote 87.9% more than predicted freespace: trashing: was free: 93282304 bytes 89.0 MiB, need free: 83975448 bytes 80.1 MiB, files created: 248513, delete 24794 (10.0% of them) freespace: was free: 3911680 bytes 3.7 MiB, wrote: 7872512 bytes 7.5 MiB, delta: 3960832 bytes 3.8 MiB, wrote 101.3% more than predicted freespace: Test 3 finished freespace: finished successfully Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
This is a preparational patch for the following statfs() report fix. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
We have a hack which forces the amount of flash space to be equivalent to 'c->blocks_cnt' in case of empty FS. This is to make users happy and see '%0' used in 'df' when they mount an empty FS. This hack is not needed in 'ubifs_calc_available()', but it is only needed the caller, in 'ubifs_budg_get_free_space()'. So push it down there. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 13 8月, 2008 7 次提交
-
-
由 Artem Bityutskiy 提交于
Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Adrian Hunter 提交于
UBIFS does not presently re-use inode numbers, so leaving i_generation zero is most appropriate for now. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Every time anything is deleted, UBIFS writes the deletion inode node twice - once in 'ubifs_jnl_update()' and the second time in 'ubifs_jnl_write_inode()'. However, the second write is not needed if no commit happened after 'ubifs_jnl_update()'. This patch checks that condition and avoids writing the deletion inode for the second time. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Simplify 'ubifs_jnl_write_inode()' by removing the 'deletion' parameter which is not really needed because we may test inode->i_nlink and check whether this is a deletion or not. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Orphan inodes are deleted inodes which will disappear after FS re-mount. There is not need to write orphan inodes back, because they are not needed on the flash media. So optimize orphans a little by not writing them back. Just mark them as clean, free the budget, and report success to VFS. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Although the inode is marked as clean when it is being deleted, it might stay and be used as orphan, and be marked as dirty. So we have to free the budget when we delete it. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
1. Print inode mode in some of debugging messages 2. Add few more useful assertions Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-