- 14 11月, 2008 1 次提交
-
-
由 David Howells 提交于
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
- 26 10月, 2008 1 次提交
-
-
由 Linus Torvalds 提交于
This reverts commit a802dd0e by moving the call to init_workqueues() back where it belongs - after SMP has been initialized. It also moves stop_machine_init() - which needs workqueues - to a later phase using a core_initcall() instead of early_initcall(). That should satisfy all ordering requirements, and was apparently the reason why init_workqueues() was moved to be too early. Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 10月, 2008 2 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
page_cgroup_init() is called from mem_cgroup_init(). But at this point, we cannot call alloc_bootmem(). (and this caused panic at boot.) This patch moves page_cgroup_init() to init/main.c. Time table is following: == parse_args(). # we can trust mem_cgroup_subsys.disabled bit after this. .... cgroup_init_early() # "early" init of cgroup. .... setup_arch() # memmap is allocated. ... page_cgroup_init(); mem_init(); # we cannot call alloc_bootmem after this. .... cgroup_init() # mem_cgroup is initialized. == Before page_cgroup_init(), mem_map must be initialized. So, I added page_cgroup_init() to init/main.c directly. (*) maybe this is not very clean but - cgroup_init_early() is too early - in cgroup_init(), we have to use vmalloc instead of alloc_bootmem(). use of vmalloc area in x86-32 is important and we should avoid very large vmalloc() in x86-32. So, we want to use alloc_bootmem() and added page_cgroup_init() directly to init/main.c [akpm@linux-foundation.org: remove unneeded/bad mem_cgroup_subsys declaration] [akpm@linux-foundation.org: fix build] Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Tested-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com>
-
- 22 10月, 2008 2 次提交
-
-
由 Heiko Carstens 提交于
This allows to create workqueues from within the context of a pre smp initcall (aka early_initcall). Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
由 Rusty Russell 提交于
This is the one I really wanted: now it effects module loading, it makes sense to be able to flip it after boot. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Acked-by: NArjan van de Ven <arjan@linux.intel.com>
-
- 20 10月, 2008 1 次提交
-
-
由 Nick Piggin 提交于
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 10月, 2008 6 次提交
-
-
由 Thomas Gleixner 提交于
Revert the dynarray changes. They need more thought and polishing. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Yinghai Lu 提交于
Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
So we could remove some duplicated calling to irq_desc v2: make sure irq_desc in init/main.c is not used without generic_hardirqs Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
so could spare some memory with small alignment in bootmem also tighten the alignment checking, and make print out less debug info. Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
allow dyn-array in per_cpu area, allocated dynamically. usage: | /* in .h */ | struct kernel_stat { | struct cpu_usage_stat cpustat; | unsigned int *irqs; | }; | | /* in .c */ | DEFINE_PER_CPU(struct kernel_stat, kstat); | | DEFINE_PER_CPU_DYN_ARRAY_ADDR(per_cpu__kstat_irqs, per_cpu__kstat.irqs, sizeof(unsigned int), nr_irqs, sizeof(unsigned long), NULL); after setup_percpu()/per_cpu_alloc_dyn_array(), the dyn_array in per_cpu area is ready to use. Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
Allow crazy big arrays via bootmem at init stage. Architectures use CONFIG_HAVE_DYN_ARRAY to enable it. usage: | static struct irq_desc irq_desc_init __initdata = { | .status = IRQ_DISABLED, | .chip = &no_irq_chip, | .handle_irq = handle_bad_irq, | .depth = 1, | .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock), | #ifdef CONFIG_SMP | .affinity = CPU_MASK_ALL | #endif | }; | | static void __init init_work(void *data) | { | struct dyn_array *da = data; | struct irq_desc *desc; | int i; | | desc = *da->name; | | for (i = 0; i < *da->nr; i++) | memcpy(&desc[i], &irq_desc_init, sizeof(struct irq_desc)); | } | | struct irq_desc *irq_desc; | DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work); after pre_alloc_dyn_array() after setup_arch(), the array is ready to be used. Via this facility we can replace irq_desc[NR_IRQS] array with dyn_array irq_desc[nr_irqs]. v2: remove _nopanic in pre_alloc_dyn_array() Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 10月, 2008 7 次提交
-
-
由 Tim Bird 提交于
Change the time resolution for initcall_debug to microseconds, from milliseconds. This is handy to determine which initcalls you want to work on for faster booting. One one of my test machines, over 90% of the initcalls are less than a millisecond and (without this patch) these are all reported as 0 msecs. Working on the 900 us ones is more important than the 4 us ones. With 'quiet' on the kernel command line, this adds no significant overhead to kernel boot time. Signed-off-by: NTim Bird <tim.bird@am.sony.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Frederic Weisbecker 提交于
At this time, only built-in initcalls interest us. We can't really produce a relevant graph if we include the modules initcall too. I had good results after this patch (see svg in attachment). Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Frederic Weisbecker 提交于
After some initcall traces, some initcall names may be inconsistent. That's because these functions will disappear from the .init section and also their name from the symbols table. So we have to copy the name of the function in a buffer large enough during the trace appending. It is not costly for the ring_buffer because the number of initcall entries is commonly not really large. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Frederic Weisbecker 提交于
Change the boot tracer printing to make it parsable for the scripts/bootgraph.pl script. We have now to output two lines for each initcall, according to the printk in do_one_initcall() in init/main.c We need now the call's time and the return's time. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Frédéric Weisbecker 提交于
Launch the boot tracing inside the initcall_debug area. Old printk have not been removed to keep the old way of initcall tracing for backward compatibility. [ mingo@elte.hu: resolved conflicts ] Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
When optimizing the kernel boot time, it's very valuable to visualize what is going on at which time. In addition, with the fastboot asynchronous initcall level, it's very valuable to see which initcall gets run where and when. This patch adds a script to turn a dmesg into a SVG graph (that can be shown with tools such as InkScape, Gimp or Firefox) and a small change to the initcall code to print the PID of the thread calling the initcall (so that the script can work out the parallelism). Signed-off-by: NArjan van de Ven <arjan@linux.intel.com>
-
由 Steven Rostedt 提交于
This is the infrastructure to the converting the mcount call sites recorded by the __mcount_loc section into nops on boot. It also allows for using these sites to enable tracing as normal. When the __mcount_loc section is used, the "ftraced" kernel thread is disabled. This uses the current infrastructure to record the mcount call sites as well as convert them to nops. The mcount function is kept as a stub on boot up and not converted to the ftrace_record_ip function. We use the ftrace_record_ip to only record from the table. This patch does not handle modules. That comes with a later patch. Signed-off-by: NSteven Rostedt <srostedt@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 12 10月, 2008 1 次提交
-
-
由 Arjan van de Ven 提交于
When optimizing the kernel boot time, it's very valuable to visualize what is going on at which time. In addition, with some of the initializing going asynchronous soon, it's valuable to track/print which worker thread is executing the initialization. This patch adds a script to turn a dmesg into a SVG graph (that can be shown with tools such as InkScape, Gimp or Firefox) and a small change to the initcall code to print the PID of the thread calling the initcall (so that the script can work out the parallelism). Signed-off-by: NArjan van de Ven <arjan@linux.intel.com>
-
- 04 10月, 2008 1 次提交
-
-
由 Linus Torvalds 提交于
.. small detail, but the silly e1000e initcall warning debugging caused me to look at this code. Rather than gouge my eyes out with a spoon, I just fixed it. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 8月, 2008 1 次提交
-
-
由 Arjan van de Ven 提交于
The kernel has this really nice facility where if you put "initcall_debug" on the kernel commandline, it'll print which function it's going to execute just before calling an initcall, and then after the call completes it will 1) print if it had an error code 2) checks for a few simple bugs (like leaving irqs off) and 3) print how long the init call took in milliseconds. While trying to optimize the boot speed of my laptop, I have been loving number 3 to figure out what to optimize... ... and then I wished that the same thing was done for module loading. This patch makes the module loader use this exact same functionality; it's a logical extension in my view (since modules are just sort of late binding initcalls anyway) and so far I've found it quite useful in finding where things are too slow in my boot. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
- 06 8月, 2008 1 次提交
-
-
Following files don't need <linux/hdreg.h> at all: - arch/mips/jazz/setup.c - arch/sh/boards/mach-systemh/irq.c - drivers/macintosh/mediabay.c - drivers/scsi/hptiop.c - drivers/usb/storage/freecom.c - arch/powerpc/include/asm/ide.h - init/main.c Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: NBartlomiej Zolnierkiewicz <bzolnier@gmail.com>
-
- 31 7月, 2008 1 次提交
-
-
由 Geert Uytterhoeven 提交于
commit fb6624eb (initrd: Fix virtual/physical mix-up in overwrite test) introduced the compiler warning below on mips, as its virt_to_page() doesn't cast the passed address to unsigned long internally, unlike on most other architectures: init/main.c: In function `start_kernel': init/main.c:633: warning: passing argument 1 of `virt_to_phys' makes pointer from integer without a cast init/main.c:636: warning: passing argument 1 of `virt_to_phys' makes pointer from integer without a cast For now, kill the warning by explicitly casting initrd_start to `void *', as that's the type it should really be. Reported-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2008 2 次提交
-
-
A previous patch added the early_initcall(), to allow a cleaner hooking of pre-SMP initcalls. Now we remove the older interface, converting all existing users to the new one. [akpm@linux-foundation.org: cleanups] [akpm@linux-foundation.org: build fix] [kosaki.motohiro@jp.fujitsu.com: warning fix] [kosaki.motohiro@jp.fujitsu.com: warning fix] Signed-off-by: NEduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
Added early initcall (pre-SMP) support, using an identical interface to that of regular initcalls. Functions called from do_pre_smp_initcalls() could be converted to use this cleaner interface. This is required by CPU hotplug, because early users have to register notifiers before going SMP. One such CPU hotplug user is the relay interface with buffer-only channels, which needs to register such a notifier, to be usable in early code. This in turn is used by kmemtrace. Signed-off-by: NEduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 7月, 2008 1 次提交
-
-
由 Adrian Bunk 提交于
This patch adds proper prototypes for pid{hash,map}_init() in include/linux/pid_namespace.h Signed-off-by: NAdrian Bunk <bunk@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 7月, 2008 1 次提交
-
-
由 Geert Uytterhoeven 提交于
On recent kernels, I get the following error when using an initrd: | initrd overwritten (0x00b78000 < 0x07668000) - disabling it. My Amiga 4000 has 12 MiB of RAM at physical address 0x07400000 (virtual 0x00000000). The initrd is located at the end of RAM: 0x00b78000 - 0x00c00000 (virtual). The overwrite test compares the (virtual) initrd location to the (physical) first available memory location, which fails. This patch converts initrd_start to a page frame number, so it can safely be compared with min_low_pfn. Before the introduction of discontiguous memory support on m68k (12d810c1), min_low_pfn was just left untouched by the m68k-specific code (zero, I guess), and everything worked fine. Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 7月, 2008 1 次提交
-
-
由 Max Krasnyansky 提交于
This is based on Linus' idea of creating cpu_active_map that prevents scheduler load balancer from migrating tasks to the cpu that is going down. It allows us to simplify domain management code and avoid unecessary domain rebuilds during cpu hotplug event handling. Please ignore the cpusets part for now. It needs some more work in order to avoid crazy lock nesting. Although I did simplfy and unify domain reinitialization logic. We now simply call partition_sched_domains() in all the cases. This means that we're using exact same code paths as in cpusets case and hence the test below cover cpusets too. Cpuset changes to make rebuild_sched_domains() callable from various contexts are in the separate patch (right next after this one). This not only boots but also easily handles while true; do make clean; make -j 8; done and while true; do on-off-cpu 1; done at the same time. (on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing). Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing this on right now in gnome-terminal and things are moving just fine. Also this is running with most of the debug features enabled (lockdep, mutex, etc) no BUG_ONs or lockdep complaints so far. I believe I addressed all of the Dmitry's comments for original Linus' version. I changed both fair and rt balancer to mask out non-active cpus. And replaced cpu_is_offline() with !cpu_active() in the main scheduler code where it made sense (to me). Signed-off-by: NMax Krasnyanskiy <maxk@qualcomm.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NGregory Haskins <ghaskins@novell.com> Cc: dmitry.adamushko@gmail.com Cc: pj@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 26 6月, 2008 1 次提交
-
-
由 Jens Axboe 提交于
This adds kernel/smp.c which contains helpers for IPI function calls. In addition to supporting the existing smp_call_function() in a more efficient manner, it also adds a more scalable variant called smp_call_function_single() for calling a given function on a single CPU only. The core of this is based on the x86-64 patch from Nick Piggin, lots of changes since then. "Alan D. Brunelle" <Alan.Brunelle@hp.com> has contributed lots of fixes and suggestions as well. Also thanks to Paul E. McKenney <paulmck@linux.vnet.ibm.com> for reviewing RCU usage and getting rid of the data allocation fallback deadlock. Acked-by: NIngo Molnar <mingo@elte.hu> Reviewed-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 19 5月, 2008 1 次提交
-
-
由 Paul E. McKenney 提交于
Fourth cut of patch to provide the call_rcu_sched(). This is again to synchronize_sched() as call_rcu() is to synchronize_rcu(). Should be fine for experimental and -rt use, but not ready for inclusion. With some luck, I will be able to tell Andrew to come out of hiding on the next round. Passes multi-day rcutorture sessions with concurrent CPU hotplugging. Fixes since the first version include a bug that could result in indefinite blocking (spotted by Gautham Shenoy), better resiliency against CPU-hotplug operations, and other minor fixes. Fixes since the second version include reworking grace-period detection to avoid deadlocks that could happen when running concurrently with CPU hotplug, adding Mathieu's fix to avoid the softlockup messages, as well as Mathieu's fix to allow use earlier in boot. Fixes since the third version include a wrong-CPU bug spotted by Andrew, getting rid of the obsolete synchronize_kernel API that somehow snuck back in, merging spin_unlock() and local_irq_restore() in a few places, commenting the code that checks for quiescent states based on interrupting from user-mode execution or the idle loop, removing some inline attributes, and some code-style changes. Known/suspected shortcomings: o I still do not entirely trust the sleep/wakeup logic. Next step will be to use a private snapshot of the CPU online mask in rcu_sched_grace_period() -- if the CPU wasn't there at the start of the grace period, we don't need to hear from it. And the bit about accounting for changes in online CPUs inside of rcu_sched_grace_period() is ugly anyway. o It might be good for rcu_sched_grace_period() to invoke resched_cpu() when a given CPU wasn't responding quickly, but resched_cpu() is declared static... This patch also fixes a long-standing bug in the earlier preemptable-RCU implementation of synchronize_rcu() that could result in loss of concurrent external changes to a task's CPU affinity mask. I still cannot remember who reported this... Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 16 5月, 2008 3 次提交
-
-
由 Cyrill Gorcunov 提交于
This patch fixes a build bug on m68k - gcc decides to emit a call to the strlen library function, which we don't implement. More importantly - my previous patch "init: don't lose initcall return values" (commit e662e1cf) had introduced potential buffer overflow by wrong calculation of string accumulator size. Use strlcat() instead, fixing both bugs. Many thanks Andreas Schwab and Geert Uytterhoeven for helping to catch and fix the bug. Signed-off-by: NCyrill Gorcunov <gorcunov@gmail.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
One function to just loop over the entries, one function to actually do the call and the associated debugging code. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
Everybody wants to pass it a function pointer, and in fact, that is what you _must_ pass it for it to make sense (since it knows that ia64 and ppc64 use descriptors for function pointers and fetches the actual address from there). So don't make the argument be a 'unsigned long' and force everybody to add a cast. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 5月, 2008 1 次提交
-
-
由 Cyrill Gorcunov 提交于
There is an ability to lose an initcall return value if it happened with irq disabled or imbalanced preemption (and if we debug initcall). Signed-off-by: NCyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 5月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
this replaces the rq->clock stuff (and possibly cpu_clock()). - architectures that have an 'imperfect' hardware clock can set CONFIG_HAVE_UNSTABLE_SCHED_CLOCK - the 'jiffie' window might be superfulous when we update tick_gtod before the __update_sched_clock() call in sched_clock_tick() - cpu_clock() might be implemented as: sched_clock_cpu(smp_processor_id()) if the accuracy proves good enough - how far can TSC drift in a single jiffie when considering the filtering and idle hooks? [ mingo@elte.hu: various fixes and cleanups ] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 30 4月, 2008 3 次提交
-
-
由 Thomas Gleixner 提交于
We can see an ever repeating problem pattern with objects of any kind in the kernel: 1) freeing of active objects 2) reinitialization of active objects Both problems can be hard to debug because the crash happens at a point where we have no chance to decode the root cause anymore. One problem spot are kernel timers, where the detection of the problem often happens in interrupt context and usually causes the machine to panic. While working on a timer related bug report I had to hack specialized code into the timer subsystem to get a reasonable hint for the root cause. This debug hack was fine for temporary use, but far from a mergeable solution due to the intrusiveness into the timer code. The code further lacked the ability to detect and report the root cause instantly and keep the system operational. Keeping the system operational is important to get hold of the debug information without special debugging aids like serial consoles and special knowledge of the bug reporter. The problems described above are not restricted to timers, but timers tend to expose it usually in a full system crash. Other objects are less explosive, but the symptoms caused by such mistakes can be even harder to debug. Instead of creating specialized debugging code for the timer subsystem a generic infrastructure is created which allows developers to verify their code and provides an easy to enable debug facility for users in case of trouble. The debugobjects core code keeps track of operations on static and dynamic objects by inserting them into a hashed list and sanity checking them on object operations and provides additional checks whenever kernel memory is freed. The tracked object operations are: - initializing an object - adding an object to a subsystem list - deleting an object from a subsystem list Each operation is sanity checked before the operation is executed and the subsystem specific code can provide a fixup function which allows to prevent the damage of the operation. When the sanity check triggers a warning message and a stack trace is printed. The list of operations can be extended if the need arises. For now it's limited to the requirements of the first user (timers). The core code enqueues the objects into hash buckets. The hash index is generated from the address of the object to simplify the lookup for the check on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a global lock. The debug code can be compiled in without being active. The runtime overhead is minimal and could be optimized by asm alternatives. A kernel command line option enables the debugging code. Thanks to Ingo Molnar for review, suggestions and cleanup patches. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@elte.hu> Cc: Greg KH <greg@kroah.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Pavel Emelyanov 提交于
There are some places that are known to operate on tasks' global pids only: * the rest_init() call (called on boot) * the kgdb's getthread * the create_kthread() (since the kthread is run in init ns) So use the find_task_by_pid_ns(..., &init_pid_ns) there and schedule the find_task_by_pid for removal. [sukadev@us.ibm.com: Fix warning in kernel/pid.c] Signed-off-by: NPavel Emelyanov <xemul@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NSukadev Bhattiprolu <sukadev@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
The global init has a lot of long standing problems with the unhandled fatal signals. - The "is_global_init(current)" check in get_signal_to_deliver() protects only the main thread. Sub-thread can dequee the fatal signal and shutdown the whole thread group except the main thread. If it dequeues SIGSTOP /sbin/init will be stopped, this is not right too. Note that we can't use is_global_init(->group_leader), this breaks exec and this can't solve other problems we have. - Even if afterwards ignored, the fatal signals sets SIGNAL_GROUP_EXIT on delivery. This breaks exec, has other bad implications, and this is just wrong. Introduce the new SIGNAL_UNKILLABLE flag to fix these problems. It also helps to solve some other problems addressed by the subsequent patches. Currently we use this flag for the global init only, but it could also be used by kthreads and (perhaps) by the sub-namespace inits. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Acked-by: N"Eric W. Biederman" <ebiederm@xmission.com> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-