- 10 8月, 2017 2 次提交
-
-
由 Rafael J. Wysocki 提交于
The names of the INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL symbol and the get_target_pstate_use_cpu_load() function don't need to be so long any more, so make them shorter. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Since there is only one P-state selection routine in intel_pstate now, make intel_pstate_adjust_pstate() call it directly and drop the target_pstate argument from that function. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 04 8月, 2017 1 次提交
-
-
由 Srinivas Pandruvada 提交于
In the current implementation, the response latency between seeing SCHED_CPUFREQ_IOWAIT set and the actual P-state adjustment can be up to 10ms. It can be reduced by bumping up the P-state to the max at the time SCHED_CPUFREQ_IOWAIT is passed to intel_pstate_update_util(). With this change, the IO performance improves significantly. For a simple "grep -r . linux" (Here linux is the kernel source folder) with caches dropped every time on a Broadwell Xeon workstation with per-core P-states, the user and system time is shorter by as much as 30% - 40%. The same performance difference was not observed on clients that don't support per-core P-state. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 8月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
After commit 62611cb9 (intel_pstate: delete scheduler hook in HWP mode) the INTEL_PSTATE_HWP_SAMPLING_INTERVAL is not used anywhere in the code, so drop it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 7月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
The ->get callback in the intel_pstate structure was mostly there for the scaling_cur_freq sysfs attribute to work, but after commit f8475cef (x86: use common aperfmperf_khz_on_cpu() to calculate KHz using APERF/MPERF) that attribute uses arch_freq_get_on_cpu() provided by the x86 arch code on all processors supported by intel_pstate, so it doesn't need the ->get callback from the driver any more. Moreover, the very presence of the ->get callback in the intel_pstate structure causes the cpuinfo_cur_freq attribute to be present when intel_pstate operates in the active mode, which is bogus, because the role of that attribute is to return the current CPU frequency as seen by the hardware. For intel_pstate, though, this is just an average frequency and not really current, but computed for the previous sampling interval (the actual current frequency may be way different at the point this value is obtained by reading from cpuinfo_cur_freq), and after commit 82b4e03e (intel_pstate: skip scheduler hook when in "performance" mode) the value in cpuinfo_cur_freq may be stale or just 0, depending on the driver's operation mode. In fact, however, on the hardware supported by intel_pstate there is no way to read the current CPU frequency from it, so the cpuinfo_cur_freq attribute should not be present at all when this driver is in use. For this reason, drop intel_pstate_get() and clear the ->get callback pointer pointing to it, so that the cpuinfo_cur_freq is not present for intel_pstate in the active mode any more. Fixes: 82b4e03e (intel_pstate: skip scheduler hook when in "performance" mode) Reported-by: NHuaisheng Ye <yehs1@lenovo.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 27 7月, 2017 2 次提交
-
-
由 Rafael J. Wysocki 提交于
All systems use the same P-state selection "powersave" algorithm in the active mode if HWP is not used, so there's no need to provide a pointer for it in struct pstate_funcs any more. Drop ->update_util from struct pstate_funcs and make intel_pstate_set_update_util_hook() use intel_pstate_update_util() directly. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
All systems with a defined ACPI preferred profile that are not "servers" have been using the load-based P-state selection algorithm in intel_pstate since 4.12-rc1 (mobile systems and laptops have been using it since 4.10-rc1) and no problems with it have been reported to date. In particular, no regressions with respect to the PID-based P-state selection have been reported. Also testing indicates that the P-state selection algorithm based on CPU load is generally on par with the PID-based algorithm performance-wise, and for some workloads it turns out to be better than the other one, while being more straightforward and easier to understand at the same time. Moreover, the PID-based P-state selection algorithm in intel_pstate is known to be unstable in some situation and generally problematic, the issues with it are hard to address and it has become a significant maintenance burden. For these reasons, make intel_pstate use the "powersave" P-state selection algorithm based on CPU load in the active mode on all systems and drop the PID-based P-state selection code along with all things related to it from the driver. Also update the documentation accordingly. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 14 7月, 2017 1 次提交
-
-
由 Srinivas Pandruvada 提交于
The busy percent calculated for the Knights Landing (KNL) platform is 1024 times smaller than the correct busy value. This causes performance to get stuck at the lowest ratio. The scaling algorithm used for KNL is performance-based, but it still looks at the CPU load to set the scaled busy factor to 0 when the load is less than 1 percent. In this case, since the computed load is 1024x smaller than it should be, the scaled busy factor will always be 0, irrespective of CPU business. This needs a fix similar to the turbostat one in commit b2b34dfe (tools/power turbostat: KNL workaround for %Busy and Avg_MHz). For this reason, add one more callback to processor-specific callbacks to specify an MPERF multiplier represented by a number of bit positions to shift the value of that register to the left to copmensate for its rate difference with respect to the TSC. This shift value is used during CPU busy calculations. Fixes: ffb81056 (intel_pstate: Avoid getting stuck in high P-states when idle) Reported-and-tested-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: 4.6+ <stable@vger.kernel.org> # 4.6+ [ rjw: Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 7月, 2017 1 次提交
-
-
由 Srinivas Pandruvada 提交于
When the minimum performance limit percentage is set to the power-up default, it is possible that minimum performance ratio is off by one. In the set_policy() callback the minimum ratio is calculated by applying global.min_perf_pct to turbo_ratio and rounding up, but the power-up default global.min_perf_pct is already rounded up to the next percent in min_perf_pct_min(). That results in two round up operations, so for the default min_perf_pct one of them is not required. It is better to remove rounding up in min_perf_pct_min() as this matches the displayed min_perf_pct prior to commit c5a2ee7d (cpufreq: intel_pstate: Active mode P-state limits rework) in 4.12. For example on a platform with max turbo ratio of 37 and minimum ratio of 10, the min_perf_pct resulted in 28 with the above commit. Before this commit it was 27 and it will be the same after this change. Fixes: 1a4fe38a (cpufreq: intel_pstate: Remove max/min fractions to limit performance) Reported-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 7月, 2017 1 次提交
-
-
由 Arvind Yadav 提交于
attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const. File size before: text data bss dec hex filename 15197 2552 40 17789 457d drivers/cpufreq/intel_pstate.o File size After adding 'const': text data bss dec hex filename 15261 2488 40 17789 457d drivers/cpufreq/intel_pstate.o Signed-off-by: NArvind Yadav <arvind.yadav.cs@gmail.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 30 6月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
After commit 82b4e03e (intel_pstate: skip scheduler hook when in "performance" mode) get_target_pstate_use_performance() and get_target_pstate_use_cpu_load() are never called if scaling_governor is "performance", so drop the CPUFREQ_POLICY_PERFORMANCE checks from them as they will never trigger anyway. Moreover, the documentation needs to be updated to reflect the change made by the above commit, so do that too. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
-
- 27 6月, 2017 2 次提交
-
-
由 Len Brown 提交于
When the governor is set to "performance", intel_pstate does not need the scheduler hook for doing any calculations. Under these conditions, its only purpose is to continue to maintain cpufreq/scaling_cur_freq. The cpufreq/scaling_cur_freq sysfs attribute is now provided by shared x86 cpufreq code on modern x86 systems, including all systems supported by the intel_pstate driver. So in "performance" governor mode, the scheduler hook can be skipped. This applies to both in Software and Hardware P-state control modes. Suggested-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NLen Brown <len.brown@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Len Brown 提交于
The cpufreq/scaling_cur_freq sysfs attribute is now provided by shared x86 cpufreq code on modern x86 systems, including all systems supported by the intel_pstate driver. In HWP mode, maintaining that value was the sole purpose of the scheduler hook, intel_pstate_update_util_hwp(), so it can now be removed. Signed-off-by: NLen Brown <len.brown@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 24 6月, 2017 1 次提交
-
-
由 Srinivas Pandruvada 提交于
In the current model the max/min perf limits are a fraction of current user space limits to the allowed max_freq or 100% for global limits. This results in wrong ratio limits calculation because of rounding issues for some user space limits. Initially we tried to solve this issue by issue by having more shift bits to increase precision. Still there are isolated cases where we still have error. This can be avoided by using ratios all together. Since the way we get cpuinfo.max_freq is by multiplying scaling factor to max ratio, we can easily keep the max/min ratios in terms of ratios and not fractions. For example: if the max ratio = 36 cpuinfo.max_freq = 36 * 100000 = 3600000 Suppose user space sets a limit of 1200000, then we can calculate max ratio limit as = 36 * 1200000 / 3600000 = 12 This will be correct for any user limits. The other advantage is that, we don't need to do any calculation in the fast path as ratio limit is already calculated via set_policy() callback. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 6月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Commit c5a2ee7d (cpufreq: intel_pstate: Active mode P-state limits rework) incorrectly assumed that pstate.turbo_pstate would always be nonzero for CPU0 in min_perf_pct_min() if cpufreq_register_driver() had succeeded which may not be the case in virtualized environments. If that assumption doesn't hold, it leads to an early crash on boot in intel_pstate_register_driver(), so add a sanity check to min_perf_pct_min() to prevent the crash from happening. Fixes: c5a2ee7d (cpufreq: intel_pstate: Active mode P-state limits rework) Reported-and-tested-by: NJongman Heo <jongman.heo@samsung.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 5月, 2017 1 次提交
-
-
由 Len Brown 提交于
intel_pstate exports sysfs attributes for setting and observing HWP.EPP. These attributes use strings to describe 4 operating states, and inside the driver, these strings are mapped to numerical register values. The authorative mapping between the strings and numerical HWP.EPP values are now globally defined in msr-index.h, replacing the out-dated mapping that were open-coded into intel_pstate.c new old string --- --- ------ 0 0 performance 128 64 balance_performance 192 128 balance_power 255 192 power Note that the HW and BIOS default value on most system is 128, which intel_pstate will now call "balance_performance" while it used to call it "balance_power". Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 18 4月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Make the schedutil governor take the initial (default) value of the rate_limit_us sysfs attribute from the (new) transition_delay_us policy parameter (to be set by the scaling driver). That will allow scaling drivers to make schedutil use smaller default values of rate_limit_us and reduce the default average time interval between consecutive frequency changes. Make intel_pstate set transition_delay_us to 500. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 30 3月, 2017 1 次提交
-
-
由 Box, David E 提交于
Use same parameters as INTEL_FAM6_ATOM_GOLDMONT to enable Gemini Lake. Signed-off-by: NBox, David E <david.e.box@intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 29 3月, 2017 16 次提交
-
-
由 Rafael J. Wysocki 提交于
Some computations in intel_pstate_get_min_max() are not necessary and one of its two callers doesn't even use the full result. First off, the fixed-point value of cpu->max_perf represents a non-negative number between 0 and 1 inclusive and cpu->min_perf cannot be greater than cpu->max_perf. It is not necessary to check those conditions every time the numbers in question are used. Moreover, since intel_pstate_max_within_limits() only needs the upper boundary, it doesn't make sense to compute the lower one in there and returning min and max from intel_pstate_get_min_max() via pointers doesn't look particularly nice. For the above reasons, drop intel_pstate_get_min_max(), add a helper to get the base P-state for min/max computations and carry out them directly in the previous callers of intel_pstate_get_min_max(). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
intel_pstate_hwp_set() is the only function walking policy->cpus in intel_pstate. The rest of the code simply assumes one CPU per policy, including the initialization code. Therefore it doesn't make sense for intel_pstate_hwp_set() to walk policy->cpus as it is guaranteed to have only one bit set for policy->cpu. For this reason, rearrange intel_pstate_hwp_set() to take the CPU number as the argument and drop the loop over policy->cpus from it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Add a new function pid_in_use() to return the information on whether or not the PID-based P-state selection algorithm is in use. That allows a couple of complicated conditions in the code to be reduced to simple checks against the new function's return value. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The cpu_defaults structure is redundant, because it only contains one member of type struct pstate_funcs which can be used directly instead of struct cpu_defaults. For this reason, drop struct cpu_defaults, use struct pstate_funcs directly instead of it where applicable and rename all of the variables of that type accordingly. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Move the definitions of the cpu_defaults structures after the definitions of utilization update callback routines to avoid extra declarations of the latter. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Avoid using extra function pointers during P-state selection by dropping the get_target_pstate member from struct pstate_funcs, adding a new update_util callback to it (to be registered with the CPU scheduler as the utilization update callback in the active mode) and reworking the utilization update callback routines to invoke specific P-state selection functions directly. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Notice that some overhead in the utilization update callbacks registered by intel_pstate in the active mode can be avoided if those callbacks are tailored to specific configurations of the driver. For example, the utilization update callback for the HWP enabled case only needs to update the average CPU performance periodically whereas the utilization update callback for the PID-based algorithm does not need to take IO-wait boosting into account and so on. With that in mind, define three utilization update callbacks for three different use cases: HWP enabled, the CPU load "powersave" P-state selection algorithm and the PID-based "powersave" P-state selection algorithm and modify the driver initialization to choose the callback matching its current configuration. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
One of the checks in intel_pstate_update_status() implicitly relies on the information that there are only two struct cpufreq_driver objects available, but it is better to do it directly against the value it really is about (to make the code easier to follow if nothing else). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The driver_registered variable in intel_pstate is used for checking whether or not the driver has been registered, but intel_pstate_driver can be used for that too (with the rule that the driver is not registered as long as it is NULL). That is a bit more straightforward and the code may be simplified a bit this way, so modify the driver accordingly. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
PID controller parameters only need to be initialized if the get_target_pstate_use_performance() P-state selection routine is going to be used. It is not necessary to initialize them otherwise, so don't do that. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
In the HWP enabled case pid_params.sample_rate_ns only needs to be updated once, because it is global, so do that when setting hwp_active instead of doing it during the initialization of every CPU. Moreover, pid_params.sample_rate_ms is never used if HWP is enabled, so do not update it at all then. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
intel_pstate_busy_pid_reset() is the only caller of pid_reset(), pid_p_gain_set(), pid_i_gain_set(), and pid_d_gain_set(). Moreover, it passes constants as two parameters of pid_reset() and all of the other routines above essentially contain the same code, so fold all of them into the caller and drop unnecessary computations. Introduce percent_fp() for converting integer values in percent to fixed-point fractions and use it in the above code cleanup. Finally, rename intel_pstate_busy_pid_reset() to intel_pstate_pid_reset() as it also is used for the initialization of PID parameters for every CPU and the meaning of the "busy" part of the name is not particularly clear. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
There is only one caller of intel_pstate_reset_all_pid(), which is pid_param_set() used in the debugfs interface only, and having that code split does not make it particularly convenient to follow. For this reason, move the body of intel_pstate_reset_all_pid() into its caller and drop that function. Also change the loop from for_each_online_cpu() (which is obviously racy with respect to CPU offline/online) to for_each_possible_cpu(), so that all PID parameters are reset for all CPUs regardless of their online/offline status (to prevent, for example, a previously offline CPU from going online with a stale set of PID parameters). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Notice that both the existing struct cpu_defaults instances in which PID parameters are actually initialized use the same values of those parameters, so it is not really necessary to copy them over to pid_params dynamically. Instead, initialize pid_params statically with those values and drop the unused pid_policy member from struct cpu_defaults along with copy_pid_params() used for initializing it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The P-state selection algorithm used by intel_pstate for Atom processors is not based on the PID controller and the initialization of PID parametrs for those processors is pointless and confusing, so drop it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
After recent changes the purpose of struct perf_limits is not particularly clear any more and the code may be made somewhat easier to follow by eliminating it, so go for that. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 24 3月, 2017 4 次提交
-
-
由 Rafael J. Wysocki 提交于
Both intel_pstate_verify_policy() and intel_cpufreq_verify_policy() set policy->cpuinfo.max_freq depending on the turbo status, but the updates made by them are discarded by the core, because the policy object passed to them by the core is temporary and cpuinfo.max_freq from that object is not copied to the final policy object in cpufreq_set_policy(). However, cpufreq_set_policy() passes the temporary policy object to the ->setpolicy callback of the driver, so intel_pstate_set_policy() actually sees the policy->cpuinfo.max_freq value updated by intel_pstate_verify_policy() and not the final one. It also updates policy->max sometimes which basically has no effect after it returns, because the core discards that update. To avoid confusion, eliminate policy->cpuinfo.max_freq updates from intel_pstate_verify_policy() and intel_cpufreq_verify_policy() entirely and check the maximum frequency explicitly in intel_pstate_update_perf_limits() instead of relying on the transiently updated policy->cpuinfo.max_freq value. Moreover, move the max->policy adjustment carried out in intel_pstate_set_policy() to a separate function and call that function from the ->verify driver callbacks to ensure that it will actually be effective. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The coordination of P-state limits used by intel_pstate in the active mode (ie. by default) is problematic, because it synchronizes all of the limits (ie. the global ones and the per-policy ones) so as to use one common pair of P-state limits (min and max) across all CPUs in the system. The drawbacks of that are as follows: - If P-states are coordinated in hardware, it is not necessary to coordinate them in software on top of that, so in that case all of the above activity is in vain. - If P-states are not coordinated in hardware, then the processor is actually capable of setting different P-states for different CPUs and coordinating them at the software level simply doesn't allow that capability to be utilized. - The coordination works in such a way that setting a per-policy limit (eg. scaling_max_freq) for one CPU causes the common effective limit to change (and it will affect all of the other CPUs too), but subsequent reads from the corresponding sysfs attributes for the other CPUs will return stale values (which is confusing). - Reads from the global P-state limit attributes, min_perf_pct and max_perf_pct, return the effective common values and not the last values set through these attributes. However, the last values set through these attributes become hard limits that cannot be exceeded by writes to scaling_min_freq and scaling_max_freq, respectively, and they are not exposed, so essentially users have to remember what they are. All of that is painful enough to warrant a change of the management of P-state limits in the active mode. To that end, redesign the active mode P-state limits management in intel_pstate in accordance with the following rules: (1) All CPUs are affected by the global limits (that is, none of them can be requested to run faster than the global max and none of them can be requested to run slower than the global min). (2) Each individual CPU is affected by its own per-policy limits (that is, it cannot be requested to run faster than its own per-policy max and it cannot be requested to run slower than its own per-policy min). (3) The global and per-policy limits can be set independently. Also, the global maximum and minimum P-state limits will be always expressed as percentages of the maximum supported turbo P-state. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Extend the set of systems for which intel_pstate will use the "powersave" P-state selection algorithm based on CPU load in the active mode by systems with ACPI preferred profile set to "tablet", "appliance PC", "desktop", or "workstation" (ie. everything with a specified preferred profile that is not a "server"). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Currently, some processors supporting HWP are only supported by intel_pstate if HWP is actually going to be used and not supported otherwise which is confusing. Specifically, they are not supported if "intel_pstate=no_hwp" is passed to the kernel in the command line or if the driver is started in the passive mode ("intel_pstate=passive"). There is no real reason for that, because everything about those processor is known anyway and the driver can work with them in all modes, so make that happen, but use the load-based P-state selection algorithm for the active mode "powersave" policy with them. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 22 3月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
The policy->cpuinfo.max_freq and policy->max updates in intel_cpufreq_turbo_update() are excessive as they are done for no good reason and may lead to problems in principle, so they should be dropped. However, after dropping them intel_cpufreq_turbo_update() becomes almost entirely pointless, because the check made by it is made again down the road in intel_pstate_prepare_request(). The only thing in it that still needs to be done is the call to update_turbo_state(), so drop intel_cpufreq_turbo_update() altogether and make its callers invoke update_turbo_state() directly instead of it. In addition to that, fix intel_cpufreq_verify_policy() so that it checks global.no_turbo in addition to global.turbo_disabled when updating policy->cpuinfo.max_freq to make it consistent with intel_pstate_verify_policy(). Fixes: 001c76f0 (cpufreq: intel_pstate: Generic governors support) Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 18 3月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
In the active mode intel_pstate currently uses two sets of global limits, each associated with one of the possible scaling_governor settings in that mode: "powersave" or "performance". The driver switches over from one of those sets to the other depending on the scaling_governor setting for the last CPU whose per-policy cpufreq interface in sysfs was last used to change parameters exposed in there. That obviously leads to no end of issues when the scaling_governor settings differ between CPUs. The most recent issue was introduced by commit a240c4aa (cpufreq: intel_pstate: Do not reinit performance limits in ->setpolicy) that eliminated the reinitialization of "performance" limits in intel_pstate_set_policy() preventing the max limit from being set to anything below 100, among other things. Namely, an undesirable side effect of commit a240c4aa is that now, after setting scaling_governor to "performance" in the active mode, the per-policy limits for the CPU in question go to the highest level and stay there even when it is switched back to "powersave" later. As it turns out, some distributions set scaling_governor to "performance" temporarily for all CPUs to speed-up system initialization, so that change causes them to misbehave later. To fix that, get rid of the performance/powersave global limits split and use just one set of global limits for everything. From the user's persepctive, after this modification, when scaling_governor is switched from "performance" to "powersave" or the other way around on one CPU, the limits settings (ie. the global max/min_perf_pct and per-policy scaling_max/min_freq for any CPUs) will not change. Still, switching from "performance" to "powersave" or the other way around changes the way in which P-states are selected and in particular "performance" causes the driver to always request the highest P-state it is allowed to ask for for the given CPU. Fixes: a240c4aa (cpufreq: intel_pstate: Do not reinit performance limits in ->setpolicy) Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-