- 13 3月, 2018 2 次提交
-
-
由 Thomas Gleixner 提交于
The MONOTONIC clock is not fast forwarded by the time spent in suspend on resume. This is only done for the BOOTTIME clock. The reason why the MONOTONIC clock is not forwarded is historical: the original Linux implementation was using jiffies as a base for the MONOTONIC clock and jiffies have never been advanced after resume. At some point when timekeeping was unified in the core code, the MONONOTIC clock was advanced after resume which also advanced jiffies causing interesting side effects. As a consequence the the MONOTONIC clock forwarding was disabled again and the BOOTTIME clock was introduced, which allows to read time since boot. Back then it was not possible to completely distangle the MONOTONIC clock and jiffies because there were still interfaces which exposed the MONOTONIC clock behaviour based on the timer wheel and therefore jiffies. As of today none of the MONOTONIC clock facilities depends on jiffies anymore so the forwarding can be done seperately. This is achieved by forwarding the variables which are used for the jiffies update after resume before the tick is restarted, In timekeeping resume, the change is rather simple. Instead of updating the offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time spent in suspend. The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between the REALTIME and the MONOTONIC clocks is the same as before suspend. There might be side effects in applications, which rely on the (unfortunately) well documented behaviour of the MONOTONIC clock, but the downsides of the existing behaviour are probably worse. There is one obvious issue. Up to now it was possible to retrieve the time spent in suspend by observing the delta between the MONOTONIC clock and the BOOTTIME clock. This is not longer available, but the previously introduced mechanism to read the active non-suspended monotonic time can mitigate that in a detectable fashion. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The planned change to unify the behaviour of the MONOTONIC and BOOTTIME clocks vs. suspend removes the ability to retrieve the active non-suspended time of a system. Provide a new CLOCK_MONOTONIC_ACTIVE clock which returns the active non-suspended time of the system via clock_gettime(). This preserves the old behaviour of CLOCK_MONOTONIC before the BOOTTIME/MONOTONIC unification. This new clock also allows applications to detect programmatically that the MONOTONIC and BOOTTIME clocks are identical. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165149.965235774@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 3月, 2018 2 次提交
-
-
由 Miroslav Lichvar 提交于
When the length of the NTP tick changes significantly, e.g. when an NTP/PTP application is correcting the initial offset of the clock, a large value may accumulate in the NTP error before the multiplier converges to the correct value. It may then take a very long time (hours or even days) before the error is corrected. This causes the clock to have an unstable frequency offset, which has a negative impact on the stability of synchronization with precise time sources (e.g. NTP/PTP using hardware timestamping or the PTP KVM clock). Use division to determine the correct multiplier directly from the NTP tick length and replace the iterative approach. This removes the last major source of the NTP error. The only remaining source is now limited resolution of the multiplier, which is corrected by adding 1 to the multiplier when the system clock is behind the NTP time. Signed-off-by: NMiroslav Lichvar <mlichvar@redhat.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1520620971-9567-3-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Miroslav Lichvar 提交于
When the timekeeping multiplier is changed, the NTP error is updated to correct the clock for the delay between the tick and the update of the clock. This error is corrected in later updates and the clock appears as if the frequency was changed exactly on the tick. Remove this correction to keep the point where the frequency is effectively changed at the time of the update. This removes a major source of the NTP error. Signed-off-by: NMiroslav Lichvar <mlichvar@redhat.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1520620971-9567-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 2月, 2018 3 次提交
-
-
由 Baolin Wang 提交于
Use ATTRIBUTE_GROUPS instead of manually creating the individual device files. Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: arnd@arndb.de Cc: sboyd@codeaurora.org Cc: broonie@kernel.org Cc: john.stultz@linaro.org Link: https://lkml.kernel.org/r/d80dccb981dc2461781ebb8d71a32ccdc1b0e6f9.1516167691.git.baolin.wang@linaro.org
-
由 Baolin Wang 提交于
Convert DEVICE_ATTR to DEVICE_ATTR_RW/RO/WO which is the preferred and simpler way of implementation. Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: arnd@arndb.de Cc: sboyd@codeaurora.org Cc: broonie@kernel.org Cc: john.stultz@linaro.org Link: https://lkml.kernel.org/r/8f35c77e753e957b61187e8e7b2e4a3d61e4a72b.1516167691.git.baolin.wang@linaro.org
-
由 Baolin Wang 提交于
If the override clocksource name is empty there is no point in walking the clocksource list for a match. Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: arnd@arndb.de Cc: sboyd@codeaurora.org Cc: broonie@kernel.org Cc: john.stultz@linaro.org Link: https://lkml.kernel.org/r/069ce2a605546bcad6552968cff755f0a03f9f10.1516167691.git.baolin.wang@linaro.org
-
- 12 2月, 2018 1 次提交
-
-
由 Linus Torvalds 提交于
This is the mindless scripted replacement of kernel use of POLL* variables as described by Al, done by this script: for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'` for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done done with de-mangling cleanups yet to come. NOTE! On almost all architectures, the EPOLL* constants have the same values as the POLL* constants do. But they keyword here is "almost". For various bad reasons they aren't the same, and epoll() doesn't actually work quite correctly in some cases due to this on Sparc et al. The next patch from Al will sort out the final differences, and we should be all done. Scripted-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 2月, 2018 1 次提交
-
-
由 Sergey Senozhatsky 提交于
hrtimer does not seem to use any of kallsyms functions/defines. Link: http://lkml.kernel.org/r/20171208025616.16267-9-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 1月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
The hrtimer interrupt code contains a hang detection and mitigation mechanism, which prevents that a long delayed hrtimer interrupt causes a continous retriggering of interrupts which prevent the system from making progress. If a hang is detected then the timer hardware is programmed with a certain delay into the future and a flag is set in the hrtimer cpu base which prevents newly enqueued timers from reprogramming the timer hardware prior to the chosen delay. The subsequent hrtimer interrupt after the delay clears the flag and resumes normal operation. If such a hang happens in the last hrtimer interrupt before a CPU is unplugged then the hang_detected flag is set and stays that way when the CPU is plugged in again. At that point the timer hardware is not armed and it cannot be armed because the hang_detected flag is still active, so nothing clears that flag. As a consequence the CPU does not receive hrtimer interrupts and no timers expire on that CPU which results in RCU stalls and other malfunctions. Clear the flag along with some other less critical members of the hrtimer cpu base to ensure starting from a clean state when a CPU is plugged in. Thanks to Paul, Sebastian and Anna-Maria for their help to get down to the root cause of that hard to reproduce heisenbug. Once understood it's trivial and certainly justifies a brown paperbag. Fixes: 41d2e494 ("hrtimer: Tune hrtimer_interrupt hang logic") Reported-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Sewior <bigeasy@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801261447590.2067@nanos
-
- 23 1月, 2018 1 次提交
-
-
由 Eric W. Biederman 提交于
The function clear_siginfo is just a nice wrapper around memset so this results in no functional change. This change makes mistakes a little more difficult and it makes it clearer what is going on. Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 16 1月, 2018 25 次提交
-
-
由 Anna-Maria Gleixner 提交于
All prerequisites to handle hrtimers for expiry in either hard or soft interrupt context are in place. Add the missing bit in hrtimer_init() which associates the timer to the hard or the softirq clock base. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-30-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer callbacks are always invoked in hard interrupt context. Several users in tree require soft interrupt context for their callbacks and achieve this by combining a hrtimer with a tasklet. The hrtimer schedules the tasklet in hard interrupt context and the tasklet callback gets invoked in softirq context later. That's suboptimal and aside of that the real-time patch moves most of the hrtimers into softirq context. So adding native support for hrtimers expiring in softirq context is a valuable extension for both mainline and the RT patch set. Each valid hrtimer clock id has two associated hrtimer clock bases: one for timers expiring in hardirq context and one for timers expiring in softirq context. Implement the functionality to associate a hrtimer with the hard or softirq related clock bases and update the relevant functions to take them into account when the next expiry time needs to be evaluated. Add a check into the hard interrupt context handler functions to check whether the first expiring softirq based timer has expired. If it's expired the softirq is raised and the accounting of softirq based timers to evaluate the next expiry time for programming the timer hardware is skipped until the softirq processing has finished. At the end of the softirq processing the regular processing is resumed. Suggested-by: NThomas Gleixner <tglx@linutronix.de> Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-29-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The softirq based hrtimer can utilize most of the existing hrtimers functions, but need to operate on a different data set. Add an 'active_mask' parameter to various functions so the hard and soft bases can be selected. Fixup the existing callers and hand in the ACTIVE_HARD mask. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-28-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
Currently hrtimer callback functions are always executed in hard interrupt context. Users of hrtimers, which need their timer function to be executed in soft interrupt context, make use of tasklets to get the proper context. Add additional hrtimer clock bases for timers which must expire in softirq context, so the detour via the tasklet can be avoided. This is also required for RT, where the majority of hrtimer is moved into softirq hrtimer context. The selection of the expiry mode happens via a mode bit. Introduce HRTIMER_MODE_SOFT and the matching combinations with the ABS/REL/PINNED bits and update the decoding of hrtimer_mode in tracepoints. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-27-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
__run_hrtimer() is called with the hrtimer_cpu_base.lock held and interrupts disabled. Before invoking the timer callback the base lock is dropped, but interrupts stay disabled. The upcoming support for softirq based hrtimers requires that interrupts are enabled before the timer callback is invoked. To avoid code duplication, take hrtimer_cpu_base.lock with raw_spin_lock_irqsave(flags) at the call site and hand in the flags as a parameter. So raw_spin_unlock_irqrestore() before the callback invocation will either keep interrupts disabled in interrupt context or restore to interrupt enabled state when called from softirq context. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-26-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
Preparatory patch for softirq based hrtimers to avoid code duplication. No functional change. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-25-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
Preparatory patch for softirq based hrtimers to avoid code duplication, factor out the __hrtimer_start_range_ns() function from hrtimer_start_range_ns(). No functional change. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-24-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer_reprogram() must have access to the hrtimer_clock_base of the new first expiring timer to access hrtimer_clock_base.offset for adjusting the expiry time to CLOCK_MONOTONIC. This is required to evaluate whether the new left most timer in the hrtimer_clock_base is the first expiring timer of all clock bases in a hrtimer_cpu_base. The only user of hrtimer_reprogram() is hrtimer_start_range_ns(), which has a pointer to hrtimer_clock_base() already and hands it in as a parameter. But hrtimer_start_range_ns() will be split for the upcoming support for softirq based hrtimers to avoid code duplication and will lose the direct access to the clock base pointer. Instead of handing in timer and timer->base as a parameter remove the base parameter from hrtimer_reprogram() instead and retrieve the clock base internally. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-23-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The current decision whether a timer can be queued on a remote CPU checks for timer->expiry <= remote_cpu_base.expires_next. This is too restrictive because a timer with the same expiry time as an existing timer will be enqueued on right-hand size of the existing timer inside the rbtree, i.e. behind the first expiring timer. So its safe to allow enqueuing timers with the same expiry time as the first expiring timer on a remote CPU base. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-22-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer_reprogram() is conditionally invoked from hrtimer_start_range_ns() when hrtimer_cpu_base.hres_active is true. In the !hres_active case there is a special condition for the nohz_active case: If the newly enqueued timer expires before the first expiring timer on a remote CPU then the remote CPU needs to be notified and woken up from a NOHZ idle sleep to take the new first expiring timer into account. Previous changes have already established the prerequisites to make the remote enqueue behaviour the same whether high resolution mode is active or not: If the to be enqueued timer expires before the first expiring timer on a remote CPU, then it cannot be enqueued there. This was done for the high resolution mode because there is no way to access the remote CPU timer hardware. The same is true for NOHZ, but was handled differently by unconditionally enqueuing the timer and waking up the remote CPU so it can reprogram its timer. Again there is no compelling reason for this difference. hrtimer_check_target(), which makes the 'can remote enqueue' decision is already unconditional, but not yet functional because nothing updates hrtimer_cpu_base.expires_next in the !hres_active case. To unify this the following changes are required: 1) Make the store of the new first expiry time unconditonal in hrtimer_reprogram() and check __hrtimer_hres_active() before proceeding to the actual hardware access. This check also lets the compiler eliminate the rest of the function in case of CONFIG_HIGH_RES_TIMERS=n. 2) Invoke hrtimer_reprogram() unconditionally from hrtimer_start_range_ns() 3) Remove the remote wakeup special case for the !high_res && nohz_active case. Confine the timers_nohz_active static key to timer.c which is the only user now. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-21-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
When the first hrtimer on the current CPU is removed, hrtimer_force_reprogram() is invoked but only when CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active is set. hrtimer_force_reprogram() updates hrtimer_cpu_base.expires_next and reprograms the clock event device. When CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active is set, a pointless hrtimer interrupt can be prevented. hrtimer_check_target() makes the 'can remote enqueue' decision. As soon as hrtimer_check_target() is unconditionally available and hrtimer_cpu_base.expires_next is updated by hrtimer_reprogram(), hrtimer_force_reprogram() needs to be available unconditionally as well to prevent the following scenario with CONFIG_HIGH_RES_TIMERS=n: - the first hrtimer on this CPU is removed and hrtimer_force_reprogram() is not executed - CPU goes idle (next timer is calculated and hrtimers are taken into account) - a hrtimer is enqueued remote on the idle CPU: hrtimer_check_target() compares expiry value and hrtimer_cpu_base.expires_next. The expiry value is after expires_next, so the hrtimer is enqueued. This timer will fire late, if it expires before the effective first hrtimer on this CPU and the comparison was with an outdated expires_next value. To prevent this scenario, make hrtimer_force_reprogram() unconditional except the effective reprogramming part, which gets eliminated by the compiler in the CONFIG_HIGH_RES_TIMERS=n case. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-20-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer_force_reprogram() needs to be available unconditionally for softirq based hrtimers. Move the function and all required struct members out of the CONFIG_HIGH_RES_TIMERS #ifdef. There is no functional change because hrtimer_force_reprogram() is only invoked when hrtimer_cpu_base.hres_active is true and CONFIG_HIGH_RES_TIMERS=y. Making it unconditional increases the text size for the CONFIG_HIGH_RES_TIMERS=n case slightly, but avoids replication of that code for the upcoming softirq based hrtimers support. Most of the code gets eliminated in the CONFIG_HIGH_RES_TIMERS=n case by the compiler. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-19-anna-maria@linutronix.de [ Made it build on !CONFIG_HIGH_RES_TIMERS ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer_reprogram() needs to be available unconditionally for softirq based hrtimers. Move the function and all required struct members out of the CONFIG_HIGH_RES_TIMERS #ifdef. There is no functional change because hrtimer_reprogram() is only invoked when hrtimer_cpu_base.hres_active is true. Making it unconditional increases the text size for the CONFIG_HIGH_RES_TIMERS=n case, but avoids replication of that code for the upcoming softirq based hrtimers support. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-18-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer_cpu_base.next_timer stores the pointer to the next expiring timer in a CPU base. This pointer cannot be dereferenced and is solely used to check whether a hrtimer which is removed is the hrtimer which is the first to expire in the CPU base. If this is the case, then the timer hardware needs to be reprogrammed to avoid an extra interrupt for nothing. Again, this is conditional functionality, but there is no compelling reason to make this conditional. As a preparation, hrtimer_cpu_base.next_timer needs to be available unconditonally. Aside of that the upcoming support for softirq based hrtimers requires access to this pointer unconditionally as well, so our motivation is not entirely simplicity based. Make the update of hrtimer_cpu_base.next_timer unconditional and remove the #ifdef cruft. The impact on CONFIG_HIGH_RES_TIMERS=n && CONFIG_NOHZ=n is marginal as it's just a store on an already dirtied cacheline. No functional change. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-17-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
hrtimer_cpu_base.expires_next is used to cache the next event armed in the timer hardware. The value is used to check whether an hrtimer can be enqueued remotely. If the new hrtimer is expiring before expires_next, then remote enqueue is not possible as the remote hrtimer hardware cannot be accessed for reprogramming to an earlier expiry time. The remote enqueue check is currently conditional on CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active. There is no compelling reason to make this conditional. Move hrtimer_cpu_base.expires_next out of the CONFIG_HIGH_RES_TIMERS=y guarded area and remove the conditionals in hrtimer_check_target(). The check is currently a NOOP for the CONFIG_HIGH_RES_TIMERS=n and the !hrtimer_cpu_base.hres_active case because in these cases nothing updates hrtimer_cpu_base.expires_next yet. This will be changed with later patches which further reduce the #ifdef zoo in this code. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-16-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
__hrtimer_hres_active() is now available unconditionally, so replace open coded direct accesses to hrtimer_cpu_base.hres_active. No functional change. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-15-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The hrtimer_cpu_base::hres_active_member field depends on CONFIG_HIGH_RES_TIMERS=y currently, and all related functions to this member are conditional as well. To simplify the code make it unconditional and set it to zero during initialization. (This will also help with the upcoming softirq based hrtimers code.) The conditional code sections can be avoided by adding IS_ENABLED(HIGHRES) conditionals into common functions, which ensures dead code elimination. There is no functional change. Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-14-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The pointer to the currently running timer is stored in hrtimer_cpu_base before the base lock is dropped and the callback is invoked. This results in two levels of indirections and the upcoming support for softirq based hrtimer requires splitting the "running" storage into soft and hard IRQ context expiry. Storing both in the cpu base would require conditionals in all code paths accessing that information. It's possible to have a per clock base sequence count and running pointer without changing the semantics of the related mechanisms because the timer base pointer cannot be changed while a timer is running the callback. Unfortunately this makes cpu_clock base larger than 32 bytes on 32-bit kernels. Instead of having huge gaps due to alignment, remove the alignment and let the compiler pack CPU base for 32-bit kernels. The resulting cache access patterns are fortunately not really different from the current behaviour. On 64-bit kernels the 64-byte alignment stays and the behaviour is unchanged. This was determined by analyzing the resulting layout and looking at the number of cache lines involved for the frequently used clocks. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-12-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
Looping over all clock bases to find active bits is suboptimal if not all bases are active. Avoid this by converting it to a __ffs() evaluation. The functionallity is outsourced into its own function and is called via a macro as suggested by Peter Zijlstra. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-11-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The 'hrtimer_start' tracepoint lacks the mode information. The mode is important because consecutive starts can switch from ABS to REL or from PINNED to non PINNED. Append the mode field. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-10-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The POSIX specification defines that relative CLOCK_REALTIME timers are not affected by clock modifications. Those timers have to use CLOCK_MONOTONIC to ensure POSIX compliance. The introduction of the additional HRTIMER_MODE_PINNED mode broke this requirement for pinned timers. There is no user space visible impact because user space timers are not using pinned mode, but for consistency reasons this needs to be fixed. Check whether the mode has the HRTIMER_MODE_REL bit set instead of comparing with HRTIMER_MODE_ABS. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Fixes: 597d0275 ("timers: Framework for identifying pinned timers") Link: http://lkml.kernel.org/r/20171221104205.7269-7-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
The hrtimer_start[_range_ns]() functions start a timer reliably on this CPU only when HRTIMER_MODE_PINNED is set. Furthermore the HRTIMER_MODE_PINNED mode is not considered when a hrtimer is initialized. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-6-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Anna-Maria Gleixner 提交于
schedule_hrtimeout_range_clock() uses an 'int clock' parameter for the clock ID, instead of the customary predefined "clockid_t" type. In hrtimer coding style the canonical variable name for the clock ID is 'clock_id', therefore change the name of the parameter here as well to make it all consistent. While at it, clean up the description for the 'clock_id' and 'mode' function parameters. The clock modes and the clock IDs are not restricted as the comment suggests. Fix the mode description as well for the callers of schedule_hrtimeout_range_clock(). No functional changes intended. Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-5-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The protection of a hrtimer which runs its callback against migration to a different CPU has nothing to do with hard interrupt context. The protection against migration of a hrtimer running the expiry callback is the pointer in the cpu_base which holds a pointer to the currently running timer. This pointer is evaluated in the code which potentially switches the timer base and makes sure it's kept on the CPU on which the callback is running. Reported-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/20171221104205.7269-3-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The hrtimer_cpu_base::migration_enable and ::nohz_active fields were originally introduced to avoid accessing global variables for these decisions. Still that results in a (cache hot) load and conditional branch, which can be avoided by using static keys. Implement it with static keys and optimize for the most critical case of high performance networking which tends to disable the timer migration functionality. No change in functionality. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: keescook@chromium.org Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1801142327490.2371@nanos Link: https://lkml.kernel.org/r/20171221104205.7269-2-anna-maria@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 1月, 2018 2 次提交
-
-
由 Thomas Gleixner 提交于
When the timer base is checked for expired timers then the deferrable base must be checked as well. This was missed when making the deferrable base independent of base::nohz_active. Fixes: ced6d5c1 ("timers: Use deferrable base independent of base::nohz_active") Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: stable@vger.kernel.org Cc: rt@linutronix.de
-
由 Max R. P. Grossmann 提交于
Because the return value of cpu_timer_sample_group() is not checked, compilers and static checkers can legitimately warn about a potential use of the uninitialized variable 'now'. This is not a runtime issue as all call sites hand in valid clock ids. Also cpu_timer_sample_group() is invoked unconditionally even when the result is not used because *oldval is NULL. Make the invocation conditional and check the return value. [ tglx: Massage changelog ] Signed-off-by: NMax R. P. Grossmann <m@max.pm> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: john.stultz@linaro.org Link: https://lkml.kernel.org/r/20180108190157.10048-1-m@max.pm
-
- 10 1月, 2018 1 次提交
-
-
由 Juri Lelli 提交于
This patch adds the possibility of getting the delivery of a SIGXCPU signal whenever there is a runtime overrun. The request is done through the sched_flags field within the sched_attr structure. Forward port of https://lkml.org/lkml/2009/10/16/170Tested-by: NMathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NClaudio Scordino <claudio@evidence.eu.com> Signed-off-by: NLuca Abeni <luca.abeni@santannapisa.it> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/1513077024-25461-1-git-send-email-claudio@evidence.eu.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 1月, 2018 1 次提交
-
-
由 Nick Desaulniers 提交于
Shifting a negative signed number is undefined behavior. Looking at the macros MAKE_PROCESS_CPUCLOCK and FD_TO_CLOCKID, it seems that the subexpression: (~(clockid_t) (pid) << 3) where clockid_t resolves to a signed int, which once negated, is undefined behavior to shift the value of if the results thus far are negative. It was further suggested to make these macros into inline functions. Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NNick Desaulniers <nick.desaulniers@gmail.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dimitri Sivanich <sivanich@hpe.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-kselftest@vger.kernel.org Cc: Shuah Khan <shuah@kernel.org> Cc: Deepa Dinamani <deepa.kernel@gmail.com> Link: https://lkml.kernel.org/r/1514517100-18051-1-git-send-email-nick.desaulniers@gmail.com
-