- 05 12月, 2008 1 次提交
-
-
由 Sam Ravnborg 提交于
o sparc32 files with identical names to sparc64 renamed to <name>_32.S o introduced a few Kconfig helpers to simplify Makefile logic o refactored Makefile to prepare for unification - use obj-$(CONFIG_SPARC32) for sparc32 specific files - use <name>_$(BITS) for files where sparc64 has a _64 variant - sparc64 directly include a few files where sparc32 builds them, refer to these files directly (no BITS) - sneaked in -Werror as used by sparc64 o modified sparc/Makefile to use the new names for head/init_task Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 7月, 2008 2 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 5月, 2008 1 次提交
-
-
由 David S. Miller 提交于
So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 5月, 2008 1 次提交
-
-
由 David S. Miller 提交于
We need to be more liberal about the alignment of the buffer given to us by sigaltstack(). The user should not need to be mindful of all of the alignment constraints we have for the stack frame. This mirrors how we handle this situation in clone() as well. Also, we align the stack even in non-SA_ONSTACK cases so that signals due to bad stack alignment can be delivered properly. This makes such errors easier to debug and recover from. Finally, add the sanity check x86 has to make sure we won't overflow the signal stack. This fixes glibc testcases nptl/tst-cancel20.c and nptl/tst-cancelx20.c Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 4月, 2008 1 次提交
-
-
由 David S. Miller 提交于
Back around the same time we were bootstrapping the first 32-bit sparc Linux kernel with a SunOS userland, we made the signal frame match that of SunOS. By the time we even started putting together a native Linux userland for 32-bit Sparc we realized this layout wasn't sufficient for Linux's needs. Therefore we changed the layout, yet kept support for the old style signal frame layout in there. The detection mechanism is that we had sys_sigaction() start passing in a negative signal number to indicate "new style signal frames please". Anyways, no binaries exist in the world that use the old stuff. In fact, I bet Jakub Jelinek and myself are the only two people who ever had such binaries to be honest. So let's get rid of this stuff. I added an assertion using WARN_ON_ONCE() that makes sure 32-bit applications are passing in that negative signal number still. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 4月, 2008 1 次提交
-
-
由 Adrian Bunk 提交于
The following cleanups are now possible: - arch/sparc/kernel/entry.S:ret_sys_call no longer has to be global - arch/sparc/kernel/signal.c:sys_sigpause() can be removed Signed-off-by: NAdrian Bunk <bunk@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 4月, 2008 1 次提交
-
-
由 David S. Miller 提交于
As per Documentation/feature-removal-schedule.txt Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 5月, 2007 1 次提交
-
-
由 Randy Dunlap 提交于
Remove includes of <linux/smp_lock.h> where it is not used/needed. Suggested by Al Viro. Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc, sparc64, and arm (all 59 defconfigs). Signed-off-by: NRandy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 7月, 2006 1 次提交
-
-
由 Jörn Engel 提交于
Signed-off-by: NJörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: NAdrian Bunk <bunk@stusta.de>
-
- 19 1月, 2006 1 次提交
-
-
由 David S. Miller 提交于
This also includes by necessity _TIF_RESTORE_SIGMASK support, which actually resulted in a lot of cleanups. The sparc signal handling code is quite a mess and I should clean it up some day. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 8月, 2005 1 次提交
-
-
由 Steven Rostedt 提交于
It has been reported that the way Linux handles NODEFER for signals is not consistent with the way other Unix boxes handle it. I've written a program to test the behavior of how this flag affects signals and had several reports from people who ran this on various Unix boxes, confirming that Linux seems to be unique on the way this is handled. The way NODEFER affects signals on other Unix boxes is as follows: 1) If NODEFER is set, other signals in sa_mask are still blocked. 2) If NODEFER is set and the signal is in sa_mask, then the signal is still blocked. (Note: this is the behavior of all tested but Linux _and_ NetBSD 2.0 *). The way NODEFER affects signals on Linux: 1) If NODEFER is set, other signals are _not_ blocked regardless of sa_mask (Even NetBSD doesn't do this). 2) If NODEFER is set and the signal is in sa_mask, then the signal being handled is not blocked. The patch converts signal handling in all current Linux architectures to the way most Unix boxes work. Unix boxes that were tested: DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU 3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX. * NetBSD was the only other Unix to behave like Linux on point #2. The main concern was brought up by point #1 which even NetBSD isn't like Linux. So with this patch, we leave NetBSD as the lonely one that behaves differently here with #2. Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 17 4月, 2005 1 次提交
-
-
由 Linus Torvalds 提交于
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
-