- 24 1月, 2013 3 次提交
-
-
由 Christoffer Dall 提交于
This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <c.dall@virtualopensystems.com>
-
由 Christoffer Dall 提交于
Sets up KVM code to handle all exceptions taken to Hyp mode. When the kernel is booted in Hyp mode, calling an hvc instruction with r0 pointing to the new vectors, the HVBAR is changed to the the vector pointers. This allows subsystems (like KVM here) to execute code in Hyp-mode with the MMU disabled. We initialize other Hyp-mode registers and enables the MMU for Hyp-mode from the id-mapped hyp initialization code. Afterwards, the HVBAR is changed to point to KVM Hyp vectors used to catch guest faults and to switch to Hyp mode to perform a world-switch into a KVM guest. Also provides memory mapping code to map required code pages, data structures, and I/O regions accessed in Hyp mode at the same virtual address as the host kernel virtual addresses, but which conforms to the architectural requirements for translations in Hyp mode. This interface is added in arch/arm/kvm/arm_mmu.c and comprises: - create_hyp_mappings(from, to); - create_hyp_io_mappings(from, to, phys_addr); - free_hyp_pmds(); Reviewed-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <c.dall@virtualopensystems.com>
-
由 Christoffer Dall 提交于
Targets KVM support for Cortex A-15 processors. Contains all the framework components, make files, header files, some tracing functionality, and basic user space API. Only supported core is Cortex-A15 for now. Most functionality is in arch/arm/kvm/* or arch/arm/include/asm/kvm_*.h. Reviewed-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <c.dall@virtualopensystems.com>
-