1. 24 6月, 2005 5 次提交
    • P
      [PATCH] jprobes: allow a jprobe to coexist with muliple kprobes · 8b0914ea
      Prasanna S Panchamukhi 提交于
      Presently either multiple kprobes or only one jprobe could be inserted.
      This patch removes the above limitation and allows one jprobe and multiple
      kprobes to coexist at the same address.  However multiple jprobes cannot
      coexist with multiple kprobes.  Currently I am working on the prototype to
      allow multiple jprobes coexist with multiple kprobes.
      Signed-off-by: NAnanth N Mavinakayanhalli <amavin@redhat.com>
      Signed-off-by: NPrasanna S Panchamukhi <prasanna@in.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      8b0914ea
    • P
      [PATCH] kprobes: Temporary disarming of reentrant probe · ea32c65c
      Prasanna S Panchamukhi 提交于
      In situations where a kprobes handler calls a routine which has a probe on it,
      then kprobes_handler() disarms the new probe forever.  This patch removes the
      above limitation by temporarily disarming the new probe.  When the another
      probe hits while handling the old probe, the kprobes_handler() saves previous
      kprobes state and handles the new probe without calling the new kprobes
      registered handlers.  kprobe_post_handler() restores back the previous kprobes
      state and the normal execution continues.
      
      However on x86_64 architecture, re-rentrancy is provided only through
      pre_handler().  If a routine having probe is referenced through
      post_handler(), then the probes on that routine are disarmed forever, since
      the exception stack is gets changed after the processor single steps the
      instruction of the new probe.
      
      This patch includes generic changes to support temporary disarming on
      reentrancy of probes.
      Signed-of-by: NPrasanna S Panchamukhi <prasanna@in.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      ea32c65c
    • H
      [PATCH] kprobes: moves lock-unlock to non-arch kprobe_flush_task · 0aa55e4d
      Hien Nguyen 提交于
      This patch moves the lock/unlock of the arch specific kprobe_flush_task()
      to the non-arch specific kprobe_flusk_task().
      Signed-off-by: NHien Nguyen <hien@us.ibm.com>
      Acked-by: NPrasanna S Panchamukhi <prasanna@in.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      0aa55e4d
    • R
      [PATCH] Move kprobe [dis]arming into arch specific code · 7e1048b1
      Rusty Lynch 提交于
      The architecture independent code of the current kprobes implementation is
      arming and disarming kprobes at registration time.  The problem is that the
      code is assuming that arming and disarming is a just done by a simple write
      of some magic value to an address.  This is problematic for ia64 where our
      instructions look more like structures, and we can not insert break points
      by just doing something like:
      
      *p->addr = BREAKPOINT_INSTRUCTION;
      
      The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent
      functions:
      
           * void arch_arm_kprobe(struct kprobe *p)
           * void arch_disarm_kprobe(struct kprobe *p)
      
      and then adds the new functions for each of the architectures that already
      implement kprobes (spar64/ppc64/i386/x86_64).
      
      I thought arch_[dis]arm_kprobe was the most descriptive of what was really
      happening, but each of the architectures already had a disarm_kprobe()
      function that was really a "disarm and do some other clean-up items as
      needed when you stumble across a recursive kprobe." So...  I took the
      liberty of changing the code that was calling disarm_kprobe() to call
      arch_disarm_kprobe(), and then do the cleanup in the block of code dealing
      with the recursive kprobe case.
      
      So far this patch as been tested on i386, x86_64, and ppc64, but still
      needs to be tested in sparc64.
      Signed-off-by: NRusty Lynch <rusty.lynch@intel.com>
      Signed-off-by: NAnil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      7e1048b1
    • H
      [PATCH] kprobes: function-return probes · b94cce92
      Hien Nguyen 提交于
      This patch adds function-return probes to kprobes for the i386
      architecture.  This enables you to establish a handler to be run when a
      function returns.
      
      1. API
      
      Two new functions are added to kprobes:
      
      	int register_kretprobe(struct kretprobe *rp);
      	void unregister_kretprobe(struct kretprobe *rp);
      
      2. Registration and unregistration
      
      2.1 Register
      
        To register a function-return probe, the user populates the following
        fields in a kretprobe object and calls register_kretprobe() with the
        kretprobe address as an argument:
      
        kp.addr - the function's address
      
        handler - this function is run after the ret instruction executes, but
        before control returns to the return address in the caller.
      
        maxactive - The maximum number of instances of the probed function that
        can be active concurrently.  For example, if the function is non-
        recursive and is called with a spinlock or mutex held, maxactive = 1
        should be enough.  If the function is non-recursive and can never
        relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should
        be enough.  maxactive is used to determine how many kretprobe_instance
        objects to allocate for this particular probed function.  If maxactive <=
        0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 *
        NR_CPUS) else maxactive=NR_CPUS)
      
        For example:
      
          struct kretprobe rp;
          rp.kp.addr = /* entrypoint address */
          rp.handler = /*return probe handler */
          rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */
          register_kretprobe(&rp);
      
        The following field may also be of interest:
      
        nmissed - Initialized to zero when the function-return probe is
        registered, and incremented every time the probed function is entered but
        there is no kretprobe_instance object available for establishing the
        function-return probe (i.e., because maxactive was set too low).
      
      2.2 Unregister
      
        To unregiter a function-return probe, the user calls
        unregister_kretprobe() with the same kretprobe object as registered
        previously.  If a probed function is running when the return probe is
        unregistered, the function will return as expected, but the handler won't
        be run.
      
      3. Limitations
      
      3.1 This patch supports only the i386 architecture, but patches for
          x86_64 and ppc64 are anticipated soon.
      
      3.2 Return probes operates by replacing the return address in the stack
          (or in a known register, such as the lr register for ppc).  This may
          cause __builtin_return_address(0), when invoked from the return-probed
          function, to return the address of the return-probes trampoline.
      
      3.3 This implementation uses the "Multiprobes at an address" feature in
          2.6.12-rc3-mm3.
      
      3.4 Due to a limitation in multi-probes, you cannot currently establish
          a return probe and a jprobe on the same function.  A patch to remove
          this limitation is being tested.
      
      This feature is required by SystemTap (http://sourceware.org/systemtap),
      and reflects ideas contributed by several SystemTap developers, including
      Will Cohen and Ananth Mavinakayanahalli.
      Signed-off-by: NHien Nguyen <hien@us.ibm.com>
      Signed-off-by: NPrasanna S Panchamukhi <prasanna@in.ibm.com>
      Signed-off-by: NFrederik Deweerdt <frederik.deweerdt@laposte.net>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      b94cce92
  2. 06 5月, 2005 2 次提交
  3. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4