- 22 9月, 2009 3 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
vread/vwrite access vmalloc area without checking there is a page or not. In most case, this works well. In old ages, the caller of get_vm_ara() is only IOREMAP and there is no memory hole within vm_struct's [addr...addr + size - PAGE_SIZE] ( -PAGE_SIZE is for a guard page.) After per-cpu-alloc patch, it uses get_vm_area() for reserve continuous virtual address but remap _later_. There tend to be a hole in valid vmalloc area in vm_struct lists. Then, skip the hole (not mapped page) is necessary. This patch updates vread/vwrite() for avoiding memory hole. Routines which access vmalloc area without knowing for which addr is used are - /proc/kcore - /dev/kmem kcore checks IOREMAP, /dev/kmem doesn't. After this patch, IOREMAP is checked and /dev/kmem will avoid to read/write it. Fixes to /proc/kcore will be in the next patch in series. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: WANG Cong <xiyou.wangcong@gmail.com> Cc: Mike Smith <scgtrp@gmail.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
vmap area should be purged after vm_struct is removed from the list because vread/vwrite etc...believes the range is valid while it's on vm_struct list. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NWANG Cong <xiyou.wangcong@gmail.com> Cc: Mike Smith <scgtrp@gmail.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Figo.zhang 提交于
There is no need for double error checking. Signed-off-by: NFigo.zhang <figo1802@gmail.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 8月, 2009 2 次提交
-
-
由 Tejun Heo 提交于
To directly use spread NUMA memories for percpu units, percpu allocator will be updated to allow sparsely mapping units in a chunk. As the distances between units can be very large, this makes allocating single vmap area for each chunk undesirable. This patch implements pcpu_get_vm_areas() and pcpu_free_vm_areas() which allocates and frees sparse congruent vmap areas. pcpu_get_vm_areas() take @offsets and @sizes array which define distances and sizes of vmap areas. It scans down from the top of vmalloc area looking for the top-most address which can accomodate all the areas. The top-down scan is to avoid interacting with regular vmallocs which can push up these congruent areas up little by little ending up wasting address space and page table. To speed up top-down scan, the highest possible address hint is maintained. Although the scan is linear from the hint, given the usual large holes between memory addresses between NUMA nodes, the scanning is highly likely to finish after finding the first hole for the last unit which is scanned first. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Nick Piggin <npiggin@suse.de>
-
由 Tejun Heo 提交于
Separate out insert_vmalloc_vm() from __get_vm_area_node(). insert_vmalloc_vm() initializes vm_struct from vmap_area and inserts it into vmlist. insert_vmalloc_vm() only initializes fields which can be determined from @vm, @flags and @caller The rest should be initialized by the caller. For __get_vm_area_node(), all other fields just need to be cleared and this is done by using kzalloc instead of kmalloc. This will be used to implement pcpu_get_vm_areas(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Nick Piggin <npiggin@suse.de>
-
- 12 6月, 2009 2 次提交
-
-
由 Pekka Enberg 提交于
We can call vmalloc_init() after kmem_cache_init() and use kzalloc() instead of the bootmem allocator when initializing vmalloc data structures. Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NNick Piggin <npiggin@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NPekka Enberg <penberg@cs.helsinki.fi>
-
由 Catalin Marinas 提交于
This patch adds the callbacks to kmemleak_(alloc|free) functions from vmalloc/vfree. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 07 5月, 2009 1 次提交
-
-
由 Ralph Wuerthner 提交于
If alloc_vmap_area() fails the allocated struct vmap_area has to be freed. Signed-off-by: NRalph Wuerthner <ralphw@linux.vnet.ibm.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 4月, 2009 1 次提交
-
-
由 MinChan Kim 提交于
vmap's dirty_list is unused. It's for optimizing flushing. but Nick didn't write the code yet. so, we don't need it until time as it is needed. This patch removes vmap_block's dirty_list and codes related to it. Signed-off-by: NMinChan Kim <minchan.kim@gmail.com> Acked-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 2月, 2009 2 次提交
-
-
由 Vegard Nossum 提交于
I just got this new warning from kmemcheck: WARNING: kmemcheck: Caught 32-bit read from freed memory (c7806a60) a06a80c7ecde70c1a04080c700000000a06709c1000000000000000000000000 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ^ Pid: 0, comm: swapper Not tainted (2.6.29-rc4 #230) EIP: 0060:[<c1096df7>] EFLAGS: 00000286 CPU: 0 EIP is at __purge_vmap_area_lazy+0x117/0x140 EAX: 00070f43 EBX: c7806a40 ECX: c1677080 EDX: 00027b66 ESI: 00002001 EDI: c170df0c EBP: c170df00 ESP: c178830c DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 CR0: 80050033 CR2: c7806b14 CR3: 01775000 CR4: 00000690 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: 00004000 DR7: 00000000 [<c1096f3e>] free_unmap_vmap_area_noflush+0x6e/0x70 [<c1096f6a>] remove_vm_area+0x2a/0x70 [<c1097025>] __vunmap+0x45/0xe0 [<c10970de>] vunmap+0x1e/0x30 [<c1008ba5>] text_poke+0x95/0x150 [<c1008ca9>] alternatives_smp_unlock+0x49/0x60 [<c171ef47>] alternative_instructions+0x11b/0x124 [<c171f991>] check_bugs+0xbd/0xdc [<c17148c5>] start_kernel+0x2ed/0x360 [<c171409e>] __init_begin+0x9e/0xa9 [<ffffffff>] 0xffffffff It happened here: $ addr2line -e vmlinux -i c1096df7 mm/vmalloc.c:540 Code: list_for_each_entry(va, &valist, purge_list) __free_vmap_area(va); It's this instruction: mov 0x20(%ebx),%edx Which corresponds to a dereference of va->purge_list.next: (gdb) p ((struct vmap_area *) 0)->purge_list.next Cannot access memory at address 0x20 It seems that we should use "safe" list traversal here, as the element is freed inside the loop. Please verify that this is the right fix. Acked-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NVegard Nossum <vegard.nossum@gmail.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Ingo Molnar <mingo@elte.hu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: <stable@kernel.org> [2.6.28.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
The new vmap allocator can wrap the address and get confused in the case of large allocations or VMALLOC_END near the end of address space. Problem reported by Christoph Hellwig on a 32-bit XFS workload. Signed-off-by: NNick Piggin <npiggin@suse.de> Reported-by: NChristoph Hellwig <hch@lst.de> Cc: <stable@kernel.org> [2.6.28.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 2月, 2009 1 次提交
-
-
由 Peter Zijlstra 提交于
Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 2月, 2009 1 次提交
-
-
由 Tejun Heo 提交于
Impact: allow larger alignment for early vmalloc area allocation Some early vmalloc users might want larger alignment, for example, for custom large page mapping. Add @align to vm_area_register_early(). While at it, drop docbook comment on non-existent @size. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
-
- 21 2月, 2009 1 次提交
-
-
由 Tejun Heo 提交于
Impact: proper vcache flush on unmap_kernel_range() flush_cache_vunmap() should be called before pages are unmapped. Add a call to it in unmap_kernel_range(). Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NNick Piggin <npiggin@suse.de> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: <stable@kernel.org> [2.6.28.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 2月, 2009 3 次提交
-
-
由 Tejun Heo 提交于
Impact: two more public map/unmap functions Implement map_kernel_range_noflush() and unmap_kernel_range_noflush(). These functions respectively map and unmap address range in kernel VM area but doesn't do any vcache or tlb flushing. These will be used by new percpu allocator. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au>
-
由 Tejun Heo 提交于
Impact: allow multiple early vm areas There are places where kernel VM area needs to be allocated before vmalloc is initialized. This is done by allocating static vm_struct, initializing several fields and linking it to vmlist and later vmalloc initialization picking up these from vmlist. This is currently done manually and if there's more than one such areas, there's no defined way to arbitrate who gets which address. This patch implements vm_area_register_early(), which takes vm_area struct with flags and size initialized, assigns address to it and puts it on the vmlist. This way, multiple early vm areas can determine which addresses they should use. The only current user - alpha mm init - is converted to use it. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Impact: proper vcache flush on unmap_kernel_range() flush_cache_vunmap() should be called before pages are unmapped. Add a call to it in unmap_kernel_range(). Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 19 2月, 2009 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
We have get_vm_area_caller() and __get_vm_area() but not __get_vm_area_caller() On powerpc, I use __get_vm_area() to separate the ranges of addresses given to vmalloc vs. ioremap (various good reasons for that) so in order to be able to implement the new caller tracking in /proc/vmallocinfo, I need a "_caller" variant of it. (akpm: needed for ongoing powerpc development, so merge it early) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 1月, 2009 2 次提交
-
-
由 Andrew Morton 提交于
Revert commit e97a630e ("mm: vmalloc use mutex for purge") Bryan Donlan reports: : After testing 2.6.29-rc1 on xen-x86 with a btrfs root filesystem, I : got the OOPS quoted below and a hard freeze shortly after boot. : Boot messages and config are attached. : : ------------[ cut here ]------------ : Kernel BUG at c05ef80d [verbose debug info unavailable] : invalid opcode: 0000 [#1] SMP : last sysfs file: /sys/block/xvdc/size : Modules linked in: : : Pid: 0, comm: swapper Not tainted (2.6.29-rc1 #6) : EIP: 0061:[<c05ef80d>] EFLAGS: 00010087 CPU: 2 : EIP is at schedule+0x7cd/0x950 : EAX: d5aeca80 EBX: 00000002 ECX: 00000000 EDX: d4cb9a40 : ESI: c12f5600 EDI: d4cb9a40 EBP: d6033fa4 ESP: d6033ef4 : DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0069 : Process swapper (pid: 0, ti=d6032000 task=d6020b70 task.ti=d6032000) : Stack: : 000d85bc 00000000 000186a0 00000000 0dd11410 c0105417 c12efe00 0dc367c3 : 00000011 c0105d46 d5a5d310 deadbeef d4cb9a40 c07cc600 c05f1340 c12e0060 : deadbeef d6020b70 d6020d08 00000002 c014377d 00000000 c12f5600 00002c22 : Call Trace: : [<c0105417>] xen_force_evtchn_callback+0x17/0x30 : [<c0105d46>] check_events+0x8/0x12 : [<c05f1340>] _spin_unlock_irqrestore+0x20/0x40 : [<c014377d>] hrtimer_start_range_ns+0x12d/0x2e0 : [<c014c4f6>] tick_nohz_restart_sched_tick+0x146/0x160 : [<c0107485>] cpu_idle+0xa5/0xc0 and bisected it to this commit. Let's remove it now while we have a think about the problem. Reported-by: NBryan Donlan <bdonlan@gmail.com> Tested-by: NChristophe Saout <christophe@saout.de> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ivan Kokshaysky 提交于
On alpha, we have to map some stuff in the VMALLOC space very early in the boot process (to make SRM console callbacks work and so on, see arch/alpha/mm/init.c). For old VM allocator, we just manually placed a vm_struct onto the global vmlist and this worked for ages. Unfortunately, the new allocator isn't aware of this, so it constantly tries to allocate the VM space which is already in use, making vmalloc on alpha defunct. This patch forces KVA to import vmlist entries on init. [akpm@linux-foundation.org: remove unneeded check (per Johannes)] Signed-off-by: NIvan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Nick Piggin <npiggin@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 1月, 2009 4 次提交
-
-
由 Nick Piggin 提交于
Lazy unmapping in the vmalloc code has now opened the possibility for use after free bugs to go undetected. We can catch those by forcing an unmap and flush (which is going to be slow, but that's what happens). Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
The vmalloc purge lock can be a mutex so we can sleep while a purge is going on (purge involves a global kernel TLB invalidate, so it can take quite a while). Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Glauber Costa 提交于
If we do that, output of files like /proc/vmallocinfo will show things like "vmalloc_32", "vmalloc_user", or whomever the caller was as the caller. This info is not as useful as the real caller of the allocation. So, proposal is to call __vmalloc_node node directly, with matching parameters to save the caller information Signed-off-by: NGlauber Costa <glommer@redhat.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Glauber Costa 提交于
If we can't service a vmalloc allocation, show size of the allocation that actually failed. Useful for debugging. Signed-off-by: NGlauber Costa <glommer@redhat.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 1月, 2009 1 次提交
-
-
由 Adam Lackorzynski 提交于
The flush_cache_vmap in vmap_page_range() is called with the end of the range twice. The following patch fixes this for me. Signed-off-by: NAdam Lackorzynski <adam@os.inf.tu-dresden.de> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2008 1 次提交
-
-
由 Hugh Dickins 提交于
Miles Lane tailing /sys files hit a BUG which Pekka Enberg has tracked to my 966c8c12 sprint_symbol(): use less stack exposing a bug in slub's list_locations() - kallsyms_lookup() writes a 0 to namebuf[KSYM_NAME_LEN-1], but that was beyond the end of page provided. The 100 slop which list_locations() allows at end of page looks roughly enough for all the other stuff it might print after the symbol before it checks again: break out KSYM_SYMBOL_LEN earlier than before. Latencytop and ftrace and are using KSYM_NAME_LEN buffers where they need KSYM_SYMBOL_LEN buffers, and vmallocinfo a 2*KSYM_NAME_LEN buffer where it wants a KSYM_SYMBOL_LEN buffer: fix those before anyone copies them. [akpm@linux-foundation.org: ftrace.h needs module.h] Signed-off-by: NHugh Dickins <hugh@veritas.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc Miles Lane <miles.lane@gmail.com> Acked-by: NPekka Enberg <penberg@cs.helsinki.fi> Acked-by: NSteven Rostedt <srostedt@redhat.com> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 12月, 2008 1 次提交
-
-
由 Nick Piggin 提交于
Jim Radford has reported that the vmap subsystem rewrite was sometimes causing his VIVT ARM system to behave strangely (seemed like going into infinite loops trying to fault in pages to userspace). We determined that the problem was most likely due to a cache aliasing issue. flush_cache_vunmap was only being called at the moment the page tables were to be taken down, however with lazy unmapping, this can happen after the page has subsequently been freed and allocated for something else. The dangling alias may still have dirty data attached to it. The fix for this problem is to do the cache flushing when the caller has called vunmap -- it would be a bug for them to write anything else to the mapping at that point. That appeared to solve Jim's problems. Reported-by: NJim Radford <radford@blackbean.org> Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 11月, 2008 3 次提交
-
-
由 Glauber Costa 提交于
Current vmalloc restart search for a free area in case we can't find one. The reason is there are areas which are lazily freed, and could be possibly freed now. However, current implementation start searching the tree from the last failing address, which is pretty much by definition at the end of address space. So, we fail. The proposal of this patch is to restart the search from the beginning of the requested vstart address. This fixes the regression in running KVM virtual machines for me, described in http://lkml.org/lkml/2008/10/28/349, caused by commit db64fe02. Signed-off-by: NGlauber Costa <glommer@redhat.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
An initial vmalloc failure should start off a synchronous flush of lazy areas, in case someone is in progress flushing them already, which could cause us to return an allocation failure even if there is plenty of KVA free. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
Fix off by one bug in the KVA allocator that can leave gaps in the address space. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 11月, 2008 2 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Xen can end up calling vm_unmap_aliases() before vmalloc_init() has been called. In this case its safe to make it a simple no-op. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Linux Memory Management List <linux-mm@kvack.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Russell King 提交于
As of 73bdf0a6, the kernel needs to know where modules are located in the virtual address space. On ARM, we located this region between MODULE_START and MODULE_END. Unfortunately, everyone else calls it MODULES_VADDR and MODULES_END. Update ARM to use the same naming, so is_vmalloc_or_module_addr() can work properly. Also update the comment on mm/vmalloc.c to reflect that ARM also places modules in a separate region from the vmalloc space. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 31 10月, 2008 1 次提交
-
-
由 Randy Dunlap 提交于
Delete excess kernel-doc notation in mm/ subdirectory. Actually this is a kernel-doc notation fix. Warning(/var/linsrc/linux-2.6.27-git10//mm/vmalloc.c:902): Excess function parameter or struct member 'returns' description in 'vm_map_ram' Signed-off-by: NRandy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 10月, 2008 1 次提交
-
-
由 Alexey Dobriyan 提交于
Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Acked-by: NChristoph Lameter <cl@linux-foundation.org>
-
- 21 10月, 2008 1 次提交
-
-
由 Huang Weiyi 提交于
Removed duplicated #include <linux/vmalloc.h> in mm/vmalloc.c and "internal.h" in mm/memory.c. Signed-off-by: NHuang Weiyi <weiyi.huang@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 10月, 2008 1 次提交
-
-
由 Nick Piggin 提交于
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 10月, 2008 1 次提交
-
-
由 Linus Torvalds 提交于
Impact: crash on module insertion with CONFIG_DEBUG_VIRTUAL We would incorrectly BUG due to: VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) && !is_module_address(addr)); ... because, at least on x86-64, is_module_address() doesn't do what it should. This patch introduces is_vmalloc_or_module_addr(), which is what we really want anyway, and uses it instead. Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 27 7月, 2008 1 次提交
-
-
由 Arjan van de Ven 提交于
Use WARN() instead of a printk+WARN_ON() pair; this way the message becomes part of the warning section for better reporting/collection. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 7月, 2008 1 次提交
-
-
由 Eric Dumazet 提交于
Christoph recently added /proc/vmallocinfo file to get information about vmalloc allocations. This patch adds NUMA specific information, giving number of pages allocated on each memory node. This should help to check that vmalloc() is able to respect NUMA policies. Example of output on a four nodes machine (one cpu per node) 1) network hash tables are evenly spreaded on four nodes (OK) (Same point for inodes and dentries hash tables) 2) iptables tables (x_tables) are correctly allocated on each cpu node (OK). 3) sys_swapon() allocates its memory from one node only. 4) each loaded module is using memory on one node. Sysadmins could tune their setup to change points 3) and 4) if necessary. grep "pages=" /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc2000031a000-0xffffc2000031d000 12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033e000-0xffffc20000341000 12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2 0xffffc20000341000-0xffffc20000344000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2 0xffffc20000344000-0xffffc20000347000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034a000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2 0xffffc2000034a000-0xffffc2000034d000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2 0xffffc20004381000-0xffffc20004402000 528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32 0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256 0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10 0xffffffffa0022000-0xffffffffa0028000 24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5 0xffffffffa0028000-0xffffffffa0050000 163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39 0xffffffffa0050000-0xffffffffa0052000 8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1 0xffffffffa0052000-0xffffffffa0056000 16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3 0xffffffffa0056000-0xffffffffa0081000 176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42 0xffffffffa0081000-0xffffffffa00ae000 184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44 0xffffffffa00ae000-0xffffffffa00b1000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00b1000-0xffffffffa00b9000 32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7 0xffffffffa00b9000-0xffffffffa00c4000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10 0xffffffffa00c6000-0xffffffffa00e0000 106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25 0xffffffffa00e0000-0xffffffffa00f1000 69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16 0xffffffffa00f1000-0xffffffffa00f4000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00f4000-0xffffffffa00f7000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 [akpm@linux-foundation.org: fix comment] Signed-off-by: NEric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 6月, 2008 1 次提交
-
-
由 Ingo Molnar 提交于
Signed-off-by: NIngo Molnar <mingo@elte.hu>
-