- 12 9月, 2016 10 次提交
-
-
由 Markus Elfring 提交于
The local variable "g2h_bitmap" will be set to an appropriate value a bit later. Thus omit the explicit initialisation at the beginning. Signed-off-by: NMarkus Elfring <elfring@users.sourceforge.net> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Markus Elfring 提交于
The kfree() function was called in two cases by the kvm_vcpu_ioctl_config_tlb() function during error handling even if the passed data structure element contained a null pointer. * Split a condition check for memory allocation failures. * Adjust jump targets according to the Linux coding style convention. Signed-off-by: NMarkus Elfring <elfring@users.sourceforge.net> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Markus Elfring 提交于
* A multiplication for the size determination of a memory allocation indicated that an array data structure should be processed. Thus use the corresponding function "kmalloc_array". This issue was detected by using the Coccinelle software. * Replace the specification of a data type by a pointer dereference to make the corresponding size determination a bit safer according to the Linux coding style convention. Signed-off-by: NMarkus Elfring <elfring@users.sourceforge.net> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Add VCPU stat counters to track affinity for passthrough interrupts. pthru_all: Counts all passthrough interrupts whose IRQ mappings are in the kvmppc_passthru_irq_map structure. pthru_host: Counts all cached passthrough interrupts that were injected from the host through kvm_set_irq (i.e. not handled in real mode). pthru_bad_aff: Counts how many cached passthrough interrupts have bad affinity (receiving CPU is not running VCPU that is the target of the virtual interrupt in the guest). Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
When a guest has a PCI pass-through device with an interrupt, it will direct the interrupt to a particular guest VCPU. In fact the physical interrupt might arrive on any CPU, and then get delivered to the target VCPU in the emulated XICS (guest interrupt controller), and eventually delivered to the target VCPU. Now that we have code to handle device interrupts in real mode without exiting to the host kernel, there is an advantage to having the device interrupt arrive on the same sub(core) as the target VCPU is running on. In this situation, the interrupt can be delivered to the target VCPU without any exit to the host kernel (using a hypervisor doorbell interrupt between threads if necessary). This patch aims to get passed-through device interrupts arriving on the correct core by setting the interrupt server in the real hardware XICS for the interrupt to the first thread in the (sub)core where its target VCPU is running. We do this in the real-mode H_EOI code because the H_EOI handler already needs to look at the emulated ICS state for the interrupt (whereas the H_XIRR handler doesn't), and we know we are running in the target VCPU context at that point. We set the server CPU in hardware using an OPAL call, regardless of what the IRQ affinity mask for the interrupt says, and without updating the affinity mask. This amounts to saying that when an interrupt is passed through to a guest, as a matter of policy we allow the guest's affinity for the interrupt to override the host's. This is inspired by an earlier patch from Suresh Warrier, although none of this code came from that earlier patch. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
When a passthrough IRQ is handled completely within KVM real mode code, it has to also update the IRQ stats since this does not go through the generic IRQ handling code. However, the per CPU kstat_irqs field is an allocated (not static) field and so cannot be directly accessed in real mode safely. The function this_cpu_inc_rm() is introduced to safely increment per CPU fields (currently coded for unsigned integers only) that are allocated and could thus be vmalloced also. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Add a module parameter kvm_irq_bypass for kvm_hv.ko to disable IRQ bypass for passthrough interrupts. The default value of this tunable is 1 - that is enable the feature. Since the tunable is used by built-in kernel code, we use the module_param_cb macro to achieve this. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Dump the passthrough irqmap structure associated with a guest as part of /sys/kernel/debug/powerpc/kvm-xics-*. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
In existing real mode ICP code, when updating the virtual ICP state, if there is a required action that cannot be completely handled in real mode, as for instance, a VCPU needs to be woken up, flags are set in the ICP to indicate the required action. This is checked when returning from hypercalls to decide whether the call needs switch back to the host where the action can be performed in virtual mode. Note that if h_ipi_redirect is enabled, real mode code will first try to message a free host CPU to complete this job instead of returning the host to do it ourselves. Currently, the real mode PCI passthrough interrupt handling code checks if any of these flags are set and simply returns to the host. This is not good enough as the trap value (0x500) is treated as an external interrupt by the host code. It is only when the trap value is a hypercall that the host code searches for and acts on unfinished work by calling kvmppc_xics_rm_complete. This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD which is returned by KVM if there is unfinished business to be completed in host virtual mode after handling a PCI passthrough interrupt. The host checks for this special interrupt condition and calls into the kvmppc_xics_rm_complete, which is made an exported function for this reason. [paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Currently, KVM switches back to the host to handle any external interrupt (when the interrupt is received while running in the guest). This patch updates real-mode KVM to check if an interrupt is generated by a passthrough adapter that is owned by this guest. If so, the real mode KVM will directly inject the corresponding virtual interrupt to the guest VCPU's ICS and also EOI the interrupt in hardware. In short, the interrupt is handled entirely in real mode in the guest context without switching back to the host. In some rare cases, the interrupt cannot be completely handled in real mode, for instance, a VCPU that is sleeping needs to be woken up. In this case, KVM simply switches back to the host with trap reason set to 0x500. This works, but it is clearly not very efficient. A following patch will distinguish this case and handle it correctly in the host. Note that we can use the existing check_too_hard() routine even though we are not in a hypercall to determine if there is unfinished business that needs to be completed in host virtual mode. The patch assumes that the mapping between hardware interrupt IRQ and virtual IRQ to be injected to the guest already exists for the PCI passthrough interrupts that need to be handled in real mode. If the mapping does not exist, KVM falls back to the default existing behavior. The KVM real mode code reads mappings from the mapped array in the passthrough IRQ map without taking any lock. We carefully order the loads and stores of the fields in the kvmppc_irq_map data structure using memory barriers to avoid an inconsistent mapping being seen by the reader. Thus, although it is possible to miss a map entry, it is not possible to read a stale value. [paulus@ozlabs.org - get irq_chip from irq_map rather than pimap, pulled out powernv eoi change into a separate patch, made kvmppc_read_intr get the vcpu from the paca rather than being passed in, rewrote the logic at the end of kvmppc_read_intr to avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S since we were always restoring SRR0/1 anyway, get rid of the cached array (just use the mapped array), removed the kick_all_cpus_sync() call, clear saved_xirr PACA field when we handle the interrupt in real mode, fix compilation with CONFIG_KVM_XICS=n.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 09 9月, 2016 8 次提交
-
-
由 Suresh Warrier 提交于
Add the irq_bypass_add_producer and irq_bypass_del_producer functions. These functions get called whenever a GSI is being defined for a guest. They create/remove the mapping between host real IRQ numbers and the guest GSI. Add the following helper functions to manage the passthrough IRQ map. kvmppc_set_passthru_irq() Creates a mapping in the passthrough IRQ map that maps a host IRQ to a guest GSI. It allocates the structure (one per guest VM) the first time it is called. kvmppc_clr_passthru_irq() Removes the passthrough IRQ map entry given a guest GSI. The passthrough IRQ map structure is not freed even when the number of mapped entries goes to zero. It is only freed when the VM is destroyed. [paulus@ozlabs.org - modified to use is_pnv_opal_msi() rather than requiring all passed-through interrupts to use the same irq_chip; changed deletion so it zeroes out the r_hwirq field rather than copying the last entry down and decrementing the number of entries.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
This patch introduces an IRQ mapping structure, the kvmppc_passthru_irqmap structure that is to be used to map the real hardware IRQ in the host with the virtual hardware IRQ (gsi) that is injected into a guest by KVM for passthrough adapters. Currently, we assume a separate IRQ mapping structure for each guest. Each kvmppc_passthru_irqmap has a mapping arrays, containing all defined real<->virtual IRQs. [paulus@ozlabs.org - removed irq_chip field from struct kvmppc_passthru_irqmap; changed parameter for kvmppc_get_passthru_irqmap from struct kvm_vcpu * to struct kvm *, removed small cached array.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Select IRQ_BYPASS_MANAGER for PPC when CONFIG_KVM is set. Add the PPC producer functions for add and del producer. [paulus@ozlabs.org - Moved new functions from book3s.c to powerpc.c so booke compiles; added kvm_arch_has_irq_bypass implementation.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Modify kvmppc_read_intr to make it a C function. Because it is called from kvmppc_check_wake_reason, any of the assembler code that calls either kvmppc_read_intr or kvmppc_check_wake_reason now has to assume that the volatile registers might have been modified. This also adds in the optimization of clearing saved_xirr in the case where we completely handle and EOI an IPI. Without this, the next device interrupt will require two trips through the host interrupt handling code. [paulus@ozlabs.org - made kvmppc_check_wake_reason create a stack frame when it is calling kvmppc_read_intr, which means we can set r12 to the trap number (0x500) after the call to kvmppc_read_intr, instead of using r31. Also moved the deliver_guest_interrupt label so as to restore XER and CTR, plus other minor tweaks.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paolo Bonzini 提交于
hmi.c functions are unused unless sibling_subcore_state is nonzero, and that in turn happens only if KVM is in use. So move the code to arch/powerpc/kvm/, putting it under CONFIG_KVM_BOOK3S_HV_POSSIBLE rather than CONFIG_PPC_BOOK3S_64. The sibling_subcore_state is also included in struct paca_struct only if KVM is supported by the kernel. Cc: Daniel Axtens <dja@axtens.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: linuxppc-dev@lists.ozlabs.org Cc: kvm-ppc@vger.kernel.org Cc: kvm@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
This adds a new function pnv_opal_pci_msi_eoi() which does the part of end-of-interrupt (EOI) handling of an MSI which involves doing an OPAL call. This function can be called in real mode. This doesn't just export pnv_ioda2_msi_eoi() because that does a call to icp_native_eoi(), which does not work in real mode. This also adds a function, is_pnv_opal_msi(), which KVM can call to check whether an interrupt is one for which we should be calling pnv_opal_pci_msi_eoi() when we need to do an EOI. [paulus@ozlabs.org - split out the addition of pnv_opal_pci_msi_eoi() from Suresh's patch "KVM: PPC: Book3S HV: Handle passthrough interrupts in guest"; added is_pnv_opal_msi(); wrote description.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Add simple cache inhibited accessors for memory mapped I/O. Unlike the accessors built from the DEF_MMIO_* macros, these don't include any hardware memory barriers, callers need to manage memory barriers on their own. These can only be called in hypervisor real mode. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> [paulus@ozlabs.org - added line to comment] Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This replaces a 2-D search through an array with a simple 8-bit table lookup for determining the actual and/or base page size for a HPT entry. The encoding in the second doubleword of the HPTE is designed to encode the actual and base page sizes without using any more bits than would be needed for a 4k page number, by using between 1 and 8 low-order bits of the RPN (real page number) field to encode the page sizes. A single "large page" bit in the first doubleword indicates that these low-order bits are to be interpreted like this. We can determine the page sizes by using the low-order 8 bits of the RPN to look up a 256-entry table. For actual page sizes less than 1MB, some of the upper bits of these 8 bits are going to be real address bits, but we can cope with that by replicating the entries for those smaller page sizes. While we're at it, let's move the hpte_page_size() and hpte_base_page_size() functions from a KVM-specific header to a header for 64-bit HPT systems, since this computation doesn't have anything specifically to do with KVM. Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 08 9月, 2016 5 次提交
-
-
由 Suraj Jitindar Singh 提交于
vcpu stats are used to collect information about a vcpu which can be viewed in the debugfs. For example halt_attempted_poll and halt_successful_poll are used to keep track of the number of times the vcpu attempts to and successfully polls. These stats are currently not used on powerpc. Implement incrementation of the halt_attempted_poll and halt_successful_poll vcpu stats for powerpc. Since these stats are summed over all the vcpus for all running guests it doesn't matter which vcpu they are attributed to, thus we choose the current runner vcpu of the vcore. Also add new vcpu stats: halt_poll_success_ns, halt_poll_fail_ns and halt_wait_ns to be used to accumulate the total time spend polling successfully, polling unsuccessfully and waiting respectively, and halt_successful_wait to accumulate the number of times the vcpu waits. Given that halt_poll_success_ns, halt_poll_fail_ns and halt_wait_ns are expressed in nanoseconds it is necessary to represent these as 64-bit quantities, otherwise they would overflow after only about 4 seconds. Given that the total time spend either polling or waiting will be known and the number of times that each was done, it will be possible to determine the average poll and wait times. This will give the ability to tune the kvm module parameters based on the calculated average wait and poll times. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Reviewed-by: NDavid Matlack <dmatlack@google.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suraj Jitindar Singh 提交于
vms and vcpus have statistics associated with them which can be viewed within the debugfs. Currently it is assumed within the vcpu_stat_get() and vm_stat_get() functions that all of these statistics are represented as u32s, however the next patch adds some u64 vcpu statistics. Change all vcpu statistics to u64 and modify vcpu_stat_get() accordingly. Since vcpu statistics are per vcpu, they will only be updated by a single vcpu at a time so this shouldn't present a problem on 32-bit machines which can't atomically increment 64-bit numbers. However vm statistics could potentially be updated by multiple vcpus from that vm at a time. To avoid the overhead of atomics make all vm statistics ulong such that they are 64-bit on 64-bit systems where they can be atomically incremented and are 32-bit on 32-bit systems which may not be able to atomically increment 64-bit numbers. Modify vm_stat_get() to expect ulongs. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Reviewed-by: NDavid Matlack <dmatlack@google.com> Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suraj Jitindar Singh 提交于
This patch introduces new halt polling functionality into the kvm_hv kernel module. When a vcore is idle it will poll for some period of time before scheduling itself out. When all of the runnable vcpus on a vcore have ceded (and thus the vcore is idle) we schedule ourselves out to allow something else to run. In the event that we need to wake up very quickly (for example an interrupt arrives), we are required to wait until we get scheduled again. Implement halt polling so that when a vcore is idle, and before scheduling ourselves, we poll for vcpus in the runnable_threads list which have pending exceptions or which leave the ceded state. If we poll successfully then we can get back into the guest very quickly without ever scheduling ourselves, otherwise we schedule ourselves out as before. There exists generic halt_polling code in virt/kvm_main.c, however on powerpc the polling conditions are different to the generic case. It would be nice if we could just implement an arch specific kvm_check_block() function, but there is still other arch specific things which need to be done for kvm_hv (for example manipulating vcore states) which means that a separate implementation is the best option. Testing of this patch with a TCP round robin test between two guests with virtio network interfaces has found a decrease in round trip time of ~15us on average. A performance gain is only seen when going out of and back into the guest often and quickly, otherwise there is no net benefit from the polling. The polling interval is adjusted such that when we are often scheduled out for long periods of time it is reduced, and when we often poll successfully it is increased. The rate at which the polling interval increases or decreases, and the maximum polling interval, can be set through module parameters. Based on the implementation in the generic kvm module by Wanpeng Li and Paolo Bonzini, and on direction from Paul Mackerras. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suraj Jitindar Singh 提交于
The struct kvmppc_vcore is a structure used to store various information about a virtual core for a kvm guest. The runnable_threads element of the struct provides a list of all of the currently runnable vcpus on the core (those in the KVMPPC_VCPU_RUNNABLE state). The previous implementation of this list was a linked_list. The next patch requires that the list be able to be iterated over without holding the vcore lock. Reimplement the runnable_threads list in the kvmppc_vcore struct as an array. Implement function to iterate over valid entries in the array and update access sites accordingly. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suraj Jitindar Singh 提交于
The next commit will introduce a member to the kvmppc_vcore struct which references MAX_SMT_THREADS which is defined in kvm_book3s_asm.h, however this file isn't included in kvm_host.h directly. Thus compiling for certain platforms such as pmac32_defconfig and ppc64e_defconfig with KVM fails due to MAX_SMT_THREADS not being defined. Move the struct kvmppc_vcore definition to kvm_book3s.h which explicitly includes kvm_book3s_asm.h. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 25 8月, 2016 1 次提交
-
-
由 Paul Mackerras 提交于
As discussed recently on the kvm mailing list, David Gibson's intention in commit 178a7875 ("vfio: Enable VFIO device for powerpc", 2016-02-01) was to have the KVM VFIO device built in on all powerpc platforms. This patch adds the "select KVM_VFIO" statement that makes this happen. Currently, arch/powerpc/kvm/Makefile doesn't include vfio.o for the 64-bit kvm module, because the list of objects doesn't use the $(common-objs-y) list. The reason it doesn't is because we don't necessarily want coalesced_mmio.o or emulate.o (for example if HV KVM is the only target), and common-objs-y includes both. Since this is confusing, this patch adjusts the definitions so that we now use $(common-objs-y) in the list for the 64-bit kvm.ko module, emulate.o is removed from common-objs-y and added in the places that need it, and the inclusion of coalesced_mmio.o now depends on CONFIG_KVM_MMIO. Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 8月, 2016 2 次提交
-
-
由 Paul Mackerras 提交于
It doesn't make sense to create irqfds for a VM that doesn't have in-kernel interrupt controller emulation. There is an existing interface for architecture code to tell the irqfd code whether or not any interrupt controller has been initialized, called kvm_arch_intc_initialized(), so let's implement that for powerpc. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
It turns out that if userspace creates a pseries-type VM without in-kernel XICS (interrupt controller) emulation, and then connects an eventfd to the VM as an irqfd, and the eventfd gets signalled, that the code will try to deliver an interrupt via the non-existent XICS object and crash the host kernel with a NULL pointer dereference. To fix this, we check for the presence of the XICS object before trying to deliver the interrupt, and return with an error if not. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 13 8月, 2016 7 次提交
-
-
由 Guenter Roeck 提交于
h8300 builds fail with arch/h8300/include/asm/io.h:9:15: error: unknown type name ‘u8’ arch/h8300/include/asm/io.h:15:15: error: unknown type name ‘u16’ arch/h8300/include/asm/io.h:21:15: error: unknown type name ‘u32’ and many related errors. Fixes: 23c82d41bdf4 ("kexec-allow-architectures-to-override-boot-mapping-fix") Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NGuenter Roeck <linux@roeck-us.net>
-
由 Guenter Roeck 提交于
unicore32 fails to compile with the following errors. mm/memory.c: In function ‘__handle_mm_fault’: mm/memory.c:3381: error: too many arguments to function ‘arch_vma_access_permitted’ mm/gup.c: In function ‘check_vma_flags’: mm/gup.c:456: error: too many arguments to function ‘arch_vma_access_permitted’ mm/gup.c: In function ‘vma_permits_fault’: mm/gup.c:640: error: too many arguments to function ‘arch_vma_access_permitted’ Fixes: d61172b4 ("mm/core, x86/mm/pkeys: Differentiate instruction fetches") Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NGuenter Roeck <linux@roeck-us.net> Acked-by: NGuan Xuetao <gxt@mprc.pku.edu.cn>
-
由 Masahiro Yamada 提交于
When CONFIG_LOCALVERSION_AUTO is disabled, the version string is just a tag name (or with a '+' appended if HEAD is not a tagged commit). During the development (and especially when git-bisecting), longer version string would be helpful to identify the commit we are running. This is a default y option, so drop the unset to enable it. Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Riku Voipio 提交于
Enable options commonly needed by popular virtualization and container applications. Use modules when possible to avoid too much overhead for users not interested. - add namespace and cgroup options needed - add seccomp - optional, but enhances Qemu etc - bridge, nat, veth, macvtap and multicast for routing guests and containers - btfrs and overlayfs modules for container COW backends - while near it, make fuse a module instead of built-in. Generated with make saveconfig and dropping unrelated spurious change hunks while commiting. bloat-o-meter old-vmlinux vmlinux: add/remove: 905/390 grow/shrink: 767/229 up/down: 183513/-94861 (88652) .... Total: Before=10515408, After=10604060, chg +0.84% Signed-off-by: NRiku Voipio <riku.voipio@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Mark Rutland 提交于
In create_safe_exec_page(), we create a copy of the hibernate exit text, along with some page tables to map this via TTBR0. We then install the new tables in TTBR0. In swsusp_arch_resume() we call create_safe_exec_page() before trying a number of operations which may fail (e.g. copying the linear map page tables). If these fail, we bail out of swsusp_arch_resume() and return an error code, but leave TTBR0 as-is. Subsequently, the core hibernate code will call free_basic_memory_bitmaps(), which will free all of the memory allocations we made, including the page tables installed in TTBR0. Thus, we may have TTBR0 pointing at dangling freed memory for some period of time. If the hibernate attempt was triggered by a user requesting a hibernate test via the reboot syscall, we may return to userspace with the clobbered TTBR0 value. Avoid these issues by reorganising swsusp_arch_resume() such that we have no failure paths after create_safe_exec_page(). We also add a check that the zero page allocation succeeded, matching what we have for other allocations. Fixes: 82869ac5 ("arm64: kernel: Add support for hibernate/suspend-to-disk") Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NJames Morse <james.morse@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.7+ Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Mark Rutland 提交于
In create_safe_exec_page we install a set of global mappings in TTBR0, then subsequently invalidate TLBs. While TTBR0 points at the zero page, and the TLBs should be free of stale global entries, we may have stale ASID-tagged entries (e.g. from the EFI runtime services mappings) for the same VAs. Per the ARM ARM these ASID-tagged entries may conflict with newly-allocated global entries, and we must follow a Break-Before-Make approach to avoid issues resulting from this. This patch reworks create_safe_exec_page to invalidate TLBs while the zero page is still in place, ensuring that there are no potential conflicts when the new TTBR0 value is installed. As a single CPU is online while this code executes, we do not need to perform broadcast TLB maintenance, and can call local_flush_tlb_all(), which also subsumes some barriers. The remaining assembly is converted to use write_sysreg() and isb(). Other than this, we safely manipulate TTBRs in the hibernate dance. The code we install as part of the new TTBR0 mapping (the hibernated kernel's swsusp_arch_suspend_exit) installs a zero page into TTBR1, invalidates TLBs, then installs its preferred value. Upon being restored to the middle of swsusp_arch_suspend, the new image will call __cpu_suspend_exit, which will call cpu_uninstall_idmap, installing the zero page in TTBR0 and invalidating all TLB entries. Fixes: 82869ac5 ("arm64: kernel: Add support for hibernate/suspend-to-disk") Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NJames Morse <james.morse@arm.com> Tested-by: NJames Morse <james.morse@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.7+ Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Laura Abbott 提交于
Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NLaura Abbott <labbott@redhat.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 12 8月, 2016 7 次提交
-
-
由 James Hogan 提交于
Propagate errors from kvm_mips_handle_kseg0_tlb_fault() and kvm_mips_handle_mapped_seg_tlb_fault(), usually triggering an internal error since they normally indicate the guest accessed bad physical memory or the commpage in an unexpected way. Fixes: 858dd5d4 ("KVM/MIPS32: MMU/TLB operations for the Guest.") Fixes: e685c689 ("KVM/MIPS32: Privileged instruction/target branch emulation.") Signed-off-by: NJames Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org Cc: <stable@vger.kernel.org> # 3.10.x- Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 James Hogan 提交于
Two consecutive gfns are loaded into host TLB, so ensure the range check isn't off by one if guest_pmap_npages is odd. Fixes: 858dd5d4 ("KVM/MIPS32: MMU/TLB operations for the Guest.") Signed-off-by: NJames Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org Cc: <stable@vger.kernel.org> # 3.10.x- Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 James Hogan 提交于
kvm_mips_handle_mapped_seg_tlb_fault() calculates the guest frame number based on the guest TLB EntryLo values, however it is not range checked to ensure it lies within the guest_pmap. If the physical memory the guest refers to is out of range then dump the guest TLB and emit an internal error. Fixes: 858dd5d4 ("KVM/MIPS32: MMU/TLB operations for the Guest.") Signed-off-by: NJames Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org Cc: <stable@vger.kernel.org> # 3.10.x- Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 James Hogan 提交于
kvm_mips_handle_mapped_seg_tlb_fault() appears to map the guest page at virtual address 0 to PFN 0 if the guest has created its own mapping there. The intention is unclear, but it may have been an attempt to protect the zero page from being mapped to anything but the comm page in code paths you wouldn't expect from genuine commpage accesses (guest kernel mode cache instructions on that address, hitting trapping instructions when executing from that address with a coincidental TLB eviction during the KVM handling, and guest user mode accesses to that address). Fix this to check for mappings exactly at KVM_GUEST_COMMPAGE_ADDR (it may not be at address 0 since commit 42aa12e7 ("MIPS: KVM: Move commpage so 0x0 is unmapped")), and set the corresponding EntryLo to be interpreted as 0 (invalid). Fixes: 858dd5d4 ("KVM/MIPS32: MMU/TLB operations for the Guest.") Signed-off-by: NJames Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org Cc: <stable@vger.kernel.org> # 3.10.x- Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Christoffer Dall 提交于
KVM devices were manipulating list data structures without any form of synchronization, and some implementations of the create operations also suffered from a lack of synchronization. Now when we've split the xics create operation into create and init, we can hold the kvm->lock mutex while calling the create operation and when manipulating the devices list. The error path in the generic code gets slightly ugly because we have to take the mutex again and delete the device from the list, but holding the mutex during anon_inode_getfd or releasing/locking the mutex in the common non-error path seemed wrong. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Christoffer Dall 提交于
As we are about to hold the kvm->lock during the create operation on KVM devices, we should move the call to xics_debugfs_init into its own function, since holding a mutex over extended amounts of time might not be a good idea. Introduce an init operation on the kvm_device_ops struct which cannot fail and call this, if configured, after the device has been created. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Julius Niedworok 提交于
When triggering KVM_RUN without a user memory region being mapped (KVM_SET_USER_MEMORY_REGION) a validity intercept occurs. This could happen, if the user memory region was not mapped initially or if it was unmapped after the vcpu is initialized. The function kvm_s390_handle_requests checks for the KVM_REQ_MMU_RELOAD bit. The check function always clears this bit. If gmap_mprotect_notify returns an error code, the mapping failed, but the KVM_REQ_MMU_RELOAD was not set anymore. So the next time kvm_s390_handle_requests is called, the execution would fall trough the check for KVM_REQ_MMU_RELOAD. The bit needs to be resetted, if gmap_mprotect_notify returns an error code. Resetting the bit with kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu) fixes the bug. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NJulius Niedworok <jniedwor@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-