1. 16 3月, 2016 1 次提交
  2. 06 2月, 2016 1 次提交
  3. 23 1月, 2016 1 次提交
    • R
      dax: support dirty DAX entries in radix tree · f9fe48be
      Ross Zwisler 提交于
      Add support for tracking dirty DAX entries in the struct address_space
      radix tree.  This tree is already used for dirty page writeback, and it
      already supports the use of exceptional (non struct page*) entries.
      
      In order to properly track dirty DAX pages we will insert new
      exceptional entries into the radix tree that represent dirty DAX PTE or
      PMD pages.  These exceptional entries will also contain the writeback
      addresses for the PTE or PMD faults that we can use at fsync/msync time.
      
      There are currently two types of exceptional entries (shmem and shadow)
      that can be placed into the radix tree, and this adds a third.  We rely
      on the fact that only one type of exceptional entry can be found in a
      given radix tree based on its usage.  This happens for free with DAX vs
      shmem but we explicitly prevent shadow entries from being added to radix
      trees for DAX mappings.
      
      The only shadow entries that would be generated for DAX radix trees
      would be to track zero page mappings that were created for holes.  These
      pages would receive minimal benefit from having shadow entries, and the
      choice to have only one type of exceptional entry in a given radix tree
      makes the logic simpler both in clear_exceptional_entry() and in the
      rest of DAX.
      Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: "J. Bruce Fields" <bfields@fieldses.org>
      Cc: "Theodore Ts'o" <tytso@mit.edu>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Andreas Dilger <adilger.kernel@dilger.ca>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Jan Kara <jack@suse.com>
      Cc: Jeff Layton <jlayton@poochiereds.net>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f9fe48be
  4. 21 1月, 2016 5 次提交
  5. 16 1月, 2016 2 次提交
    • M
      mm: support madvise(MADV_FREE) · 854e9ed0
      Minchan Kim 提交于
      Linux doesn't have an ability to free pages lazy while other OS already
      have been supported that named by madvise(MADV_FREE).
      
      The gain is clear that kernel can discard freed pages rather than
      swapping out or OOM if memory pressure happens.
      
      Without memory pressure, freed pages would be reused by userspace
      without another additional overhead(ex, page fault + allocation +
      zeroing).
      
      Jason Evans said:
      
      : Facebook has been using MAP_UNINITIALIZED
      : (https://lkml.org/lkml/2012/1/18/308) in some of its applications for
      : several years, but there are operational costs to maintaining this
      : out-of-tree in our kernel and in jemalloc, and we are anxious to retire it
      : in favor of MADV_FREE.  When we first enabled MAP_UNINITIALIZED it
      : increased throughput for much of our workload by ~5%, and although the
      : benefit has decreased using newer hardware and kernels, there is still
      : enough benefit that we cannot reasonably retire it without a replacement.
      :
      : Aside from Facebook operations, there are numerous broadly used
      : applications that would benefit from MADV_FREE.  The ones that immediately
      : come to mind are redis, varnish, and MariaDB.  I don't have much insight
      : into Android internals and development process, but I would hope to see
      : MADV_FREE support eventually end up there as well to benefit applications
      : linked with the integrated jemalloc.
      :
      : jemalloc will use MADV_FREE once it becomes available in the Linux kernel.
      : In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's
      : available: *BSD, OS X, Windows, and Solaris -- every platform except Linux
      : (and AIX, but I'm not sure it even compiles on AIX).  The lack of
      : MADV_FREE on Linux forced me down a long series of increasingly
      : sophisticated heuristics for madvise() volume reduction, and even so this
      : remains a common performance issue for people using jemalloc on Linux.
      : Please integrate MADV_FREE; many people will benefit substantially.
      
      How it works:
      
      When madvise syscall is called, VM clears dirty bit of ptes of the
      range.  If memory pressure happens, VM checks dirty bit of page table
      and if it found still "clean", it means it's a "lazyfree pages" so VM
      could discard the page instead of swapping out.  Once there was store
      operation for the page before VM peek a page to reclaim, dirty bit is
      set so VM can swap out the page instead of discarding.
      
      One thing we should notice is that basically, MADV_FREE relies on dirty
      bit in page table entry to decide whether VM allows to discard the page
      or not.  IOW, if page table entry includes marked dirty bit, VM
      shouldn't discard the page.
      
      However, as a example, if swap-in by read fault happens, page table
      entry doesn't have dirty bit so MADV_FREE could discard the page
      wrongly.
      
      For avoiding the problem, MADV_FREE did more checks with PageDirty and
      PageSwapCache.  It worked out because swapped-in page lives on swap
      cache and since it is evicted from the swap cache, the page has PG_dirty
      flag.  So both page flags check effectively prevent wrong discarding by
      MADV_FREE.
      
      However, a problem in above logic is that swapped-in page has PG_dirty
      still after they are removed from swap cache so VM cannot consider the
      page as freeable any more even if madvise_free is called in future.
      
      Look at below example for detail.
      
          ptr = malloc();
          memset(ptr);
          ..
          ..
          .. heavy memory pressure so all of pages are swapped out
          ..
          ..
          var = *ptr; -> a page swapped-in and could be removed from
                         swapcache. Then, page table doesn't mark
                         dirty bit and page descriptor includes PG_dirty
          ..
          ..
          madvise_free(ptr); -> It doesn't clear PG_dirty of the page.
          ..
          ..
          ..
          .. heavy memory pressure again.
          .. In this time, VM cannot discard the page because the page
          .. has *PG_dirty*
      
      To solve the problem, this patch clears PG_dirty if only the page is
      owned exclusively by current process when madvise is called because
      PG_dirty represents ptes's dirtiness in several processes so we could
      clear it only if we own it exclusively.
      
      Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc
      and hope glibc supports it) and jemalloc/tcmalloc already have supported
      the feature for other OS(ex, FreeBSD)
      
        barrios@blaptop:~/benchmark/ebizzy$ lscpu
        Architecture:          x86_64
        CPU op-mode(s):        32-bit, 64-bit
        Byte Order:            Little Endian
        CPU(s):                12
        On-line CPU(s) list:   0-11
        Thread(s) per core:    1
        Core(s) per socket:    1
        Socket(s):             12
        NUMA node(s):          1
        Vendor ID:             GenuineIntel
        CPU family:            6
        Model:                 2
        Stepping:              3
        CPU MHz:               3200.185
        BogoMIPS:              6400.53
        Virtualization:        VT-x
        Hypervisor vendor:     KVM
        Virtualization type:   full
        L1d cache:             32K
        L1i cache:             32K
        L2 cache:              4096K
        NUMA node0 CPU(s):     0-11
        ebizzy benchmark(./ebizzy -S 10 -n 512)
      
        Higher avg is better.
      
         vanilla-jemalloc             MADV_free-jemalloc
      
        1 thread
        records: 10                   records: 10
        avg:   2961.90                avg:  12069.70
        std:     71.96(2.43%)         std:    186.68(1.55%)
        max:   3070.00                max:  12385.00
        min:   2796.00                min:  11746.00
      
        2 thread
        records: 10                   records: 10
        avg:   5020.00                avg:  17827.00
        std:    264.87(5.28%)         std:    358.52(2.01%)
        max:   5244.00                max:  18760.00
        min:   4251.00                min:  17382.00
      
        4 thread
        records: 10                   records: 10
        avg:   8988.80                avg:  27930.80
        std:   1175.33(13.08%)        std:   3317.33(11.88%)
        max:   9508.00                max:  30879.00
        min:   5477.00                min:  21024.00
      
        8 thread
        records: 10                   records: 10
        avg:  13036.50                avg:  33739.40
        std:    170.67(1.31%)         std:   5146.22(15.25%)
        max:  13371.00                max:  40572.00
        min:  12785.00                min:  24088.00
      
        16 thread
        records: 10                   records: 10
        avg:  11092.40                avg:  31424.20
        std:    710.60(6.41%)         std:   3763.89(11.98%)
        max:  12446.00                max:  36635.00
        min:   9949.00                min:  25669.00
      
        32 thread
        records: 10                   records: 10
        avg:  11067.00                avg:  34495.80
        std:    971.06(8.77%)         std:   2721.36(7.89%)
        max:  12010.00                max:  38598.00
        min:   9002.00                min:  30636.00
      
      In summary, MADV_FREE is about much faster than MADV_DONTNEED.
      
      This patch (of 12):
      
      Add core MADV_FREE implementation.
      
      [akpm@linux-foundation.org: small cleanups]
      Signed-off-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: Mika Penttil <mika.penttila@nextfour.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Jason Evans <je@fb.com>
      Cc: Daniel Micay <danielmicay@gmail.com>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: <yalin.wang2010@gmail.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: "Shaohua Li" <shli@kernel.org>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chen Gang <gang.chen.5i5j@gmail.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Roland Dreier <roland@kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      854e9ed0
    • K
      page-flags: define PG_locked behavior on compound pages · 48c935ad
      Kirill A. Shutemov 提交于
      lock_page() must operate on the whole compound page.  It doesn't make
      much sense to lock part of compound page.  Change code to use head
      page's PG_locked, if tail page is passed.
      
      This patch also gets rid of custom helper functions --
      __set_page_locked() and __clear_page_locked().  They are replaced with
      helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG.  Tail pages to these
      helper would trigger VM_BUG_ON().
      
      SLUB uses PG_locked as a bit spin locked.  IIUC, tail pages should never
      appear there.  VM_BUG_ON() is added to make sure that this assumption is
      correct.
      
      [akpm@linux-foundation.org: fix fs/cifs/file.c]
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Jerome Marchand <jmarchan@redhat.com>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      48c935ad
  6. 15 1月, 2016 7 次提交
  7. 07 11月, 2015 2 次提交
    • M
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep... · d0164adc
      Mel Gorman 提交于
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
      
      __GFP_WAIT has been used to identify atomic context in callers that hold
      spinlocks or are in interrupts.  They are expected to be high priority and
      have access one of two watermarks lower than "min" which can be referred
      to as the "atomic reserve".  __GFP_HIGH users get access to the first
      lower watermark and can be called the "high priority reserve".
      
      Over time, callers had a requirement to not block when fallback options
      were available.  Some have abused __GFP_WAIT leading to a situation where
      an optimisitic allocation with a fallback option can access atomic
      reserves.
      
      This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
      cannot sleep and have no alternative.  High priority users continue to use
      __GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
      are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
      callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
      redefined as a caller that is willing to enter direct reclaim and wake
      kswapd for background reclaim.
      
      This patch then converts a number of sites
      
      o __GFP_ATOMIC is used by callers that are high priority and have memory
        pools for those requests. GFP_ATOMIC uses this flag.
      
      o Callers that have a limited mempool to guarantee forward progress clear
        __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
        into this category where kswapd will still be woken but atomic reserves
        are not used as there is a one-entry mempool to guarantee progress.
      
      o Callers that are checking if they are non-blocking should use the
        helper gfpflags_allow_blocking() where possible. This is because
        checking for __GFP_WAIT as was done historically now can trigger false
        positives. Some exceptions like dm-crypt.c exist where the code intent
        is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
        flag manipulations.
      
      o Callers that built their own GFP flags instead of starting with GFP_KERNEL
        and friends now also need to specify __GFP_KSWAPD_RECLAIM.
      
      The first key hazard to watch out for is callers that removed __GFP_WAIT
      and was depending on access to atomic reserves for inconspicuous reasons.
      In some cases it may be appropriate for them to use __GFP_HIGH.
      
      The second key hazard is callers that assembled their own combination of
      GFP flags instead of starting with something like GFP_KERNEL.  They may
      now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
      if it's missed in most cases as other activity will wake kswapd.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d0164adc
    • M
      mm, page_alloc: remove unnecessary parameter from zone_watermark_ok_safe · e2b19197
      Mel Gorman 提交于
      Overall, the intent of this series is to remove the zonelist cache which
      was introduced to avoid high overhead in the page allocator.  Once this is
      done, it is necessary to reduce the cost of watermark checks.
      
      The series starts with minor micro-optimisations.
      
      Next it notes that GFP flags that affect watermark checks are abused.
      __GFP_WAIT historically identified callers that could not sleep and could
      access reserves.  This was later abused to identify callers that simply
      prefer to avoid sleeping and have other options.  A patch distinguishes
      between atomic callers, high-priority callers and those that simply wish
      to avoid sleep.
      
      The zonelist cache has been around for a long time but it is of dubious
      merit with a lot of complexity and some issues that are explained.  The
      most important issue is that a failed THP allocation can cause a zone to
      be treated as "full".  This potentially causes unnecessary stalls, reclaim
      activity or remote fallbacks.  The issues could be fixed but it's not
      worth it.  The series places a small number of other micro-optimisations
      on top before examining GFP flags watermarks.
      
      High-order watermarks enforcement can cause high-order allocations to fail
      even though pages are free.  The watermark checks both protect high-order
      atomic allocations and make kswapd aware of high-order pages but there is
      a much better way that can be handled using migrate types.  This series
      uses page grouping by mobility to reserve pageblocks for high-order
      allocations with the size of the reservation depending on demand.  kswapd
      awareness is maintained by examining the free lists.  By patch 12 in this
      series, there are no high-order watermark checks while preserving the
      properties that motivated the introduction of the watermark checks.
      
      This patch (of 10):
      
      No user of zone_watermark_ok_safe() specifies alloc_flags.  This patch
      removes the unnecessary parameter.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Reviewed-by: NChristoph Lameter <cl@linux.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e2b19197
  8. 06 11月, 2015 3 次提交
  9. 23 9月, 2015 1 次提交
  10. 09 9月, 2015 4 次提交
  11. 05 9月, 2015 2 次提交
    • M
      mm: defer flush of writable TLB entries · d950c947
      Mel Gorman 提交于
      If a PTE is unmapped and it's dirty then it was writable recently.  Due to
      deferred TLB flushing, it's best to assume a writable TLB cache entry
      exists.  With that assumption, the TLB must be flushed before any IO can
      start or the page is freed to avoid lost writes or data corruption.  This
      patch defers flushing of potentially writable TLBs as long as possible.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d950c947
    • M
      mm: send one IPI per CPU to TLB flush all entries after unmapping pages · 72b252ae
      Mel Gorman 提交于
      An IPI is sent to flush remote TLBs when a page is unmapped that was
      potentially accesssed by other CPUs.  There are many circumstances where
      this happens but the obvious one is kswapd reclaiming pages belonging to a
      running process as kswapd and the task are likely running on separate
      CPUs.
      
      On small machines, this is not a significant problem but as machine gets
      larger with more cores and more memory, the cost of these IPIs can be
      high.  This patch uses a simple structure that tracks CPUs that
      potentially have TLB entries for pages being unmapped.  When the unmapping
      is complete, the full TLB is flushed on the assumption that a refill cost
      is lower than flushing individual entries.
      
      Architectures wishing to do this must give the following guarantee.
      
              If a clean page is unmapped and not immediately flushed, the
              architecture must guarantee that a write to that linear address
              from a CPU with a cached TLB entry will trap a page fault.
      
      This is essentially what the kernel already depends on but the window is
      much larger with this patch applied and is worth highlighting.  The
      architecture should consider whether the cost of the full TLB flush is
      higher than sending an IPI to flush each individual entry.  An additional
      architecture helper called flush_tlb_local is required.  It's a trivial
      wrapper with some accounting in the x86 case.
      
      The impact of this patch depends on the workload as measuring any benefit
      requires both mapped pages co-located on the LRU and memory pressure.  The
      case with the biggest impact is multiple processes reading mapped pages
      taken from the vm-scalability test suite.  The test case uses NR_CPU
      readers of mapped files that consume 10*RAM.
      
      Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs
      
                                                 4.2.0-rc1          4.2.0-rc1
                                                   vanilla       flushfull-v7
      Ops lru-file-mmap-read-elapsed      159.62 (  0.00%)   120.68 ( 24.40%)
      Ops lru-file-mmap-read-time_range    30.59 (  0.00%)     2.80 ( 90.85%)
      Ops lru-file-mmap-read-time_stddv     6.70 (  0.00%)     0.64 ( 90.38%)
      
                 4.2.0-rc1    4.2.0-rc1
                   vanilla flushfull-v7
      User          581.00       611.43
      System       5804.93      4111.76
      Elapsed       161.03       122.12
      
      This is showing that the readers completed 24.40% faster with 29% less
      system CPU time.  From vmstats, it is known that the vanilla kernel was
      interrupted roughly 900K times per second during the steady phase of the
      test and the patched kernel was interrupts 180K times per second.
      
      The impact is lower on a single socket machine.
      
                                                 4.2.0-rc1          4.2.0-rc1
                                                   vanilla       flushfull-v7
      Ops lru-file-mmap-read-elapsed       25.33 (  0.00%)    20.38 ( 19.54%)
      Ops lru-file-mmap-read-time_range     0.91 (  0.00%)     1.44 (-58.24%)
      Ops lru-file-mmap-read-time_stddv     0.28 (  0.00%)     0.47 (-65.34%)
      
                 4.2.0-rc1    4.2.0-rc1
                   vanilla flushfull-v7
      User           58.09        57.64
      System        111.82        76.56
      Elapsed        27.29        22.55
      
      It's still a noticeable improvement with vmstat showing interrupts went
      from roughly 500K per second to 45K per second.
      
      The patch will have no impact on workloads with no memory pressure or have
      relatively few mapped pages.  It will have an unpredictable impact on the
      workload running on the CPU being flushed as it'll depend on how many TLB
      entries need to be refilled and how long that takes.  Worst case, the TLB
      will be completely cleared of active entries when the target PFNs were not
      resident at all.
      
      [sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NSasha Levin <sasha.levin@oracle.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      72b252ae
  12. 05 8月, 2015 1 次提交
    • M
      mm, vmscan: Do not wait for page writeback for GFP_NOFS allocations · ecf5fc6e
      Michal Hocko 提交于
      Nikolay has reported a hang when a memcg reclaim got stuck with the
      following backtrace:
      
      PID: 18308  TASK: ffff883d7c9b0a30  CPU: 1   COMMAND: "rsync"
        #0 __schedule at ffffffff815ab152
        #1 schedule at ffffffff815ab76e
        #2 schedule_timeout at ffffffff815ae5e5
        #3 io_schedule_timeout at ffffffff815aad6a
        #4 bit_wait_io at ffffffff815abfc6
        #5 __wait_on_bit at ffffffff815abda5
        #6 wait_on_page_bit at ffffffff8111fd4f
        #7 shrink_page_list at ffffffff81135445
        #8 shrink_inactive_list at ffffffff81135845
        #9 shrink_lruvec at ffffffff81135ead
       #10 shrink_zone at ffffffff811360c3
       #11 shrink_zones at ffffffff81136eff
       #12 do_try_to_free_pages at ffffffff8113712f
       #13 try_to_free_mem_cgroup_pages at ffffffff811372be
       #14 try_charge at ffffffff81189423
       #15 mem_cgroup_try_charge at ffffffff8118c6f5
       #16 __add_to_page_cache_locked at ffffffff8112137d
       #17 add_to_page_cache_lru at ffffffff81121618
       #18 pagecache_get_page at ffffffff8112170b
       #19 grow_dev_page at ffffffff811c8297
       #20 __getblk_slow at ffffffff811c91d6
       #21 __getblk_gfp at ffffffff811c92c1
       #22 ext4_ext_grow_indepth at ffffffff8124565c
       #23 ext4_ext_create_new_leaf at ffffffff81246ca8
       #24 ext4_ext_insert_extent at ffffffff81246f09
       #25 ext4_ext_map_blocks at ffffffff8124a848
       #26 ext4_map_blocks at ffffffff8121a5b7
       #27 mpage_map_one_extent at ffffffff8121b1fa
       #28 mpage_map_and_submit_extent at ffffffff8121f07b
       #29 ext4_writepages at ffffffff8121f6d5
       #30 do_writepages at ffffffff8112c490
       #31 __filemap_fdatawrite_range at ffffffff81120199
       #32 filemap_flush at ffffffff8112041c
       #33 ext4_alloc_da_blocks at ffffffff81219da1
       #34 ext4_rename at ffffffff81229b91
       #35 ext4_rename2 at ffffffff81229e32
       #36 vfs_rename at ffffffff811a08a5
       #37 SYSC_renameat2 at ffffffff811a3ffc
       #38 sys_renameat2 at ffffffff811a408e
       #39 sys_rename at ffffffff8119e51e
       #40 system_call_fastpath at ffffffff815afa89
      
      Dave Chinner has properly pointed out that this is a deadlock in the
      reclaim code because ext4 doesn't submit pages which are marked by
      PG_writeback right away.
      
      The heuristic was introduced by commit e62e384e ("memcg: prevent OOM
      with too many dirty pages") and it was applied only when may_enter_fs
      was specified.  The code has been changed by c3b94f44 ("memcg:
      further prevent OOM with too many dirty pages") which has removed the
      __GFP_FS restriction with a reasoning that we do not get into the fs
      code.  But this is not sufficient apparently because the fs doesn't
      necessarily submit pages marked PG_writeback for IO right away.
      
      ext4_bio_write_page calls io_submit_add_bh but that doesn't necessarily
      submit the bio.  Instead it tries to map more pages into the bio and
      mpage_map_one_extent might trigger memcg charge which might end up
      waiting on a page which is marked PG_writeback but hasn't been submitted
      yet so we would end up waiting for something that never finishes.
      
      Fix this issue by replacing __GFP_IO by may_enter_fs check (for case 2)
      before we go to wait on the writeback.  The page fault path, which is
      the only path that triggers memcg oom killer since 3.12, shouldn't
      require GFP_NOFS and so we shouldn't reintroduce the premature OOM
      killer issue which was originally addressed by the heuristic.
      
      As per David Chinner the xfs is doing similar thing since 2.6.15 already
      so ext4 is not the only affected filesystem.  Moreover he notes:
      
      : For example: IO completion might require unwritten extent conversion
      : which executes filesystem transactions and GFP_NOFS allocations. The
      : writeback flag on the pages can not be cleared until unwritten
      : extent conversion completes. Hence memory reclaim cannot wait on
      : page writeback to complete in GFP_NOFS context because it is not
      : safe to do so, memcg reclaim or otherwise.
      
      Cc: stable@vger.kernel.org # 3.9+
      [tytso@mit.edu: corrected the control flow]
      Fixes: c3b94f44 ("memcg: further prevent OOM with too many dirty pages")
      Reported-by: NNikolay Borisov <kernel@kyup.com>
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ecf5fc6e
  13. 01 7月, 2015 2 次提交
  14. 25 6月, 2015 2 次提交
    • Z
      mm: rename RECLAIM_SWAP to RECLAIM_UNMAP · 95bbc0c7
      Zhihui Zhang 提交于
      The name SWAP implies that we are dealing with anonymous pages only.  In
      fact, the original patch that introduced the min_unmapped_ratio logic
      was to fix an issue related to file pages.  Rename it to RECLAIM_UNMAP
      to match what does.
      
      Historically, commit a6dc60f8 ("vmscan: rename sc.may_swap to
      may_unmap") renamed .may_swap to .may_unmap, leaving RECLAIM_SWAP
      behind.  commit 2e2e4259 ("vmscan,memcg: reintroduce sc->may_swap")
      reintroduced .may_swap for memory controller.
      Signed-off-by: NZhihui Zhang <zzhsuny@gmail.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      95bbc0c7
    • N
      mm: vmscan: do not throttle based on pfmemalloc reserves if node has no reclaimable pages · f012a84a
      Nishanth Aravamudan 提交于
      Based upon 675becce ("mm: vmscan: do not throttle based on pfmemalloc
      reserves if node has no ZONE_NORMAL") from Mel.
      
      We have a system with the following topology:
      
      # numactl -H
      available: 3 nodes (0,2-3)
      node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
      23 24 25 26 27 28 29 30 31
      node 0 size: 28273 MB
      node 0 free: 27323 MB
      node 2 cpus:
      node 2 size: 16384 MB
      node 2 free: 0 MB
      node 3 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
      node 3 size: 30533 MB
      node 3 free: 13273 MB
      node distances:
      node   0   2   3
        0:  10  20  20
        2:  20  10  20
        3:  20  20  10
      
      Node 2 has no free memory, because:
      # cat /sys/devices/system/node/node2/hugepages/hugepages-16777216kB/nr_hugepages
      1
      
      This leads to the following zoneinfo:
      
      Node 2, zone      DMA
        pages free     0
              min      1840
              low      2300
              high     2760
              scanned  0
              spanned  262144
              present  262144
              managed  262144
      ...
        all_unreclaimable: 1
      
      If one then attempts to allocate some normal 16M hugepages via
      
      echo 37 > /proc/sys/vm/nr_hugepages
      
      The echo never returns and kswapd2 consumes CPU cycles.
      
      This is because throttle_direct_reclaim ends up calling
      wait_event(pfmemalloc_wait, pfmemalloc_watermark_ok...).
      pfmemalloc_watermark_ok() in turn checks all zones on the node if there
      are any reserves, and if so, then indicates the watermarks are ok, by
      seeing if there are sufficient free pages.
      
      675becce added a condition already for memoryless nodes.  In this case,
      though, the node has memory, it is just all consumed (and not
      reclaimable).  Effectively, though, the result is the same on this call to
      pfmemalloc_watermark_ok() and thus seems like a reasonable additional
      condition.
      
      With this change, the afore-mentioned 16M hugepage allocation attempt
      succeeds and correctly round-robins between Nodes 1 and 3.
      Signed-off-by: NNishanth Aravamudan <nacc@linux.vnet.ibm.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Anton Blanchard <anton@samba.org>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Dan Streetman <ddstreet@ieee.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f012a84a
  15. 02 6月, 2015 3 次提交
    • T
      mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use · 97c9341f
      Tejun Heo 提交于
      Because writeback wasn't cgroup aware before, the usual dirty
      throttling mechanism in balance_dirty_pages() didn't work for
      processes under memcg limit.  The writeback path didn't know how much
      memory is available or how fast the dirty pages are being written out
      for a given memcg and balance_dirty_pages() didn't have any measure of
      IO back pressure for the memcg.
      
      To work around the issue, memcg implemented an ad-hoc dirty throttling
      mechanism in the direct reclaim path by stalling on pages under
      writeback which are encountered during direct reclaim scan.  This is
      rather ugly and crude - none of the configurability, fairness, or
      bandwidth-proportional distribution of the normal path.
      
      The previous patches implemented proper memcg aware dirty throttling
      when cgroup writeback is in use making the ad-hoc mechanism
      unnecessary.  This patch disables direct reclaim stalling for such
      case.
      
      Note: I disabled the parts which seemed obvious and it behaves fine
            while testing but my understanding of this code path is
            rudimentary and it's quite possible that I got something wrong.
            Please let me know if I got some wrong or more global_reclaim()
            sites should be updated.
      
      v2: The original patch removed the direct stalling mechanism which
          breaks legacy hierarchies.  Conditionalize instead of removing.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      97c9341f
    • T
      writeback: implement and use inode_congested() · 703c2708
      Tejun Heo 提交于
      In several places, bdi_congested() and its wrappers are used to
      determine whether more IOs should be issued.  With cgroup writeback
      support, this question can't be answered solely based on the bdi
      (backing_dev_info).  It's dependent on whether the filesystem and bdi
      support cgroup writeback and the blkcg the inode is associated with.
      
      This patch implements inode_congested() and its wrappers which take
      @inode and determines the congestion state considering cgroup
      writeback.  The new functions replace bdi_*congested() calls in places
      where the query is about specific inode and task.
      
      There are several filesystem users which also fit this criteria but
      they should be updated when each filesystem implements cgroup
      writeback support.
      
      v2: Now that a given inode is associated with only one wb, congestion
          state can be determined independent from the asking task.  Drop
          @task.  Spotted by Vivek.  Also, converted to take @inode instead
          of @mapping and renamed to inode_congested().
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      703c2708
    • G
      memcg: add per cgroup dirty page accounting · c4843a75
      Greg Thelen 提交于
      When modifying PG_Dirty on cached file pages, update the new
      MEM_CGROUP_STAT_DIRTY counter.  This is done in the same places where
      global NR_FILE_DIRTY is managed.  The new memcg stat is visible in the
      per memcg memory.stat cgroupfs file.  The most recent past attempt at
      this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632
      
      The new accounting supports future efforts to add per cgroup dirty
      page throttling and writeback.  It also helps an administrator break
      down a container's memory usage and provides evidence to understand
      memcg oom kills (the new dirty count is included in memcg oom kill
      messages).
      
      The ability to move page accounting between memcg
      (memory.move_charge_at_immigrate) makes this accounting more
      complicated than the global counter.  The existing
      mem_cgroup_{begin,end}_page_stat() lock is used to serialize move
      accounting with stat updates.
      Typical update operation:
      	memcg = mem_cgroup_begin_page_stat(page)
      	if (TestSetPageDirty()) {
      		[...]
      		mem_cgroup_update_page_stat(memcg)
      	}
      	mem_cgroup_end_page_stat(memcg)
      
      Summary of mem_cgroup_end_page_stat() overhead:
      - Without CONFIG_MEMCG it's a no-op
      - With CONFIG_MEMCG and no inter memcg task movement, it's just
        rcu_read_lock()
      - With CONFIG_MEMCG and inter memcg  task movement, it's
        rcu_read_lock() + spin_lock_irqsave()
      
      A memcg parameter is added to several routines because their callers
      now grab mem_cgroup_begin_page_stat() which returns the memcg later
      needed by for mem_cgroup_update_page_stat().
      
      Because mem_cgroup_begin_page_stat() may disable interrupts, some
      adjustments are needed:
      - move __mark_inode_dirty() from __set_page_dirty() to its caller.
        __mark_inode_dirty() locking does not want interrupts disabled.
      - use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in
        __delete_from_page_cache(), replace_page_cache_page(),
        invalidate_complete_page2(), and __remove_mapping().
      
         text    data     bss      dec    hex filename
      8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before
      8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after
                                  +192 text bytes
      8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before
      8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after
                                  +773 text bytes
      
      Performance tests run on v4.0-rc1-36-g4f671fe2.  Lower is better for
      all metrics, they're all wall clock or cycle counts.  The read and write
      fault benchmarks just measure fault time, they do not include I/O time.
      
      * CONFIG_MEMCG not set:
                                  baseline                              patched
        kbuild                 1m25.030000(+-0.088% 3 samples)       1m25.426667(+-0.120% 3 samples)
        dd write 100 MiB          0.859211561 +-15.10%                  0.874162885 +-15.03%
        dd write 200 MiB          1.670653105 +-17.87%                  1.669384764 +-11.99%
        dd write 1000 MiB         8.434691190 +-14.15%                  8.474733215 +-14.77%
        read fault cycles       254.0(+-0.000% 10 samples)            253.0(+-0.000% 10 samples)
        write fault cycles     2021.2(+-3.070% 10 samples)           1984.5(+-1.036% 10 samples)
      
      * CONFIG_MEMCG=y root_memcg:
                                  baseline                              patched
        kbuild                 1m25.716667(+-0.105% 3 samples)       1m25.686667(+-0.153% 3 samples)
        dd write 100 MiB          0.855650830 +-14.90%                  0.887557919 +-14.90%
        dd write 200 MiB          1.688322953 +-12.72%                  1.667682724 +-13.33%
        dd write 1000 MiB         8.418601605 +-14.30%                  8.673532299 +-15.00%
        read fault cycles       266.0(+-0.000% 10 samples)            266.0(+-0.000% 10 samples)
        write fault cycles     2051.7(+-1.349% 10 samples)           2049.6(+-1.686% 10 samples)
      
      * CONFIG_MEMCG=y non-root_memcg:
                                  baseline                              patched
        kbuild                 1m26.120000(+-0.273% 3 samples)       1m25.763333(+-0.127% 3 samples)
        dd write 100 MiB          0.861723964 +-15.25%                  0.818129350 +-14.82%
        dd write 200 MiB          1.669887569 +-13.30%                  1.698645885 +-13.27%
        dd write 1000 MiB         8.383191730 +-14.65%                  8.351742280 +-14.52%
        read fault cycles       265.7(+-0.172% 10 samples)            267.0(+-0.000% 10 samples)
        write fault cycles     2070.6(+-1.512% 10 samples)           2084.4(+-2.148% 10 samples)
      
      As expected anon page faults are not affected by this patch.
      
      tj: Updated to apply on top of the recent cancel_dirty_page() changes.
      Signed-off-by: NSha Zhengju <handai.szj@gmail.com>
      Signed-off-by: NGreg Thelen <gthelen@google.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      c4843a75
  16. 13 2月, 2015 1 次提交
    • V
      vmscan: per memory cgroup slab shrinkers · cb731d6c
      Vladimir Davydov 提交于
      This patch adds SHRINKER_MEMCG_AWARE flag.  If a shrinker has this flag
      set, it will be called per memory cgroup.  The memory cgroup to scan
      objects from is passed in shrink_control->memcg.  If the memory cgroup
      is NULL, a memcg aware shrinker is supposed to scan objects from the
      global list.  Unaware shrinkers are only called on global pressure with
      memcg=NULL.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Glauber Costa <glommer@gmail.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cb731d6c
  17. 12 2月, 2015 2 次提交
    • J
      mm: memcontrol: default hierarchy interface for memory · 241994ed
      Johannes Weiner 提交于
      Introduce the basic control files to account, partition, and limit
      memory using cgroups in default hierarchy mode.
      
      This interface versioning allows us to address fundamental design
      issues in the existing memory cgroup interface, further explained
      below.  The old interface will be maintained indefinitely, but a
      clearer model and improved workload performance should encourage
      existing users to switch over to the new one eventually.
      
      The control files are thus:
      
        - memory.current shows the current consumption of the cgroup and its
          descendants, in bytes.
      
        - memory.low configures the lower end of the cgroup's expected
          memory consumption range.  The kernel considers memory below that
          boundary to be a reserve - the minimum that the workload needs in
          order to make forward progress - and generally avoids reclaiming
          it, unless there is an imminent risk of entering an OOM situation.
      
        - memory.high configures the upper end of the cgroup's expected
          memory consumption range.  A cgroup whose consumption grows beyond
          this threshold is forced into direct reclaim, to work off the
          excess and to throttle new allocations heavily, but is generally
          allowed to continue and the OOM killer is not invoked.
      
        - memory.max configures the hard maximum amount of memory that the
          cgroup is allowed to consume before the OOM killer is invoked.
      
        - memory.events shows event counters that indicate how often the
          cgroup was reclaimed while below memory.low, how often it was
          forced to reclaim excess beyond memory.high, how often it hit
          memory.max, and how often it entered OOM due to memory.max.  This
          allows users to identify configuration problems when observing a
          degradation in workload performance.  An overcommitted system will
          have an increased rate of low boundary breaches, whereas increased
          rates of high limit breaches, maximum hits, or even OOM situations
          will indicate internally overcommitted cgroups.
      
      For existing users of memory cgroups, the following deviations from
      the current interface are worth pointing out and explaining:
      
        - The original lower boundary, the soft limit, is defined as a limit
          that is per default unset.  As a result, the set of cgroups that
          global reclaim prefers is opt-in, rather than opt-out.  The costs
          for optimizing these mostly negative lookups are so high that the
          implementation, despite its enormous size, does not even provide
          the basic desirable behavior.  First off, the soft limit has no
          hierarchical meaning.  All configured groups are organized in a
          global rbtree and treated like equal peers, regardless where they
          are located in the hierarchy.  This makes subtree delegation
          impossible.  Second, the soft limit reclaim pass is so aggressive
          that it not just introduces high allocation latencies into the
          system, but also impacts system performance due to overreclaim, to
          the point where the feature becomes self-defeating.
      
          The memory.low boundary on the other hand is a top-down allocated
          reserve.  A cgroup enjoys reclaim protection when it and all its
          ancestors are below their low boundaries, which makes delegation
          of subtrees possible.  Secondly, new cgroups have no reserve per
          default and in the common case most cgroups are eligible for the
          preferred reclaim pass.  This allows the new low boundary to be
          efficiently implemented with just a minor addition to the generic
          reclaim code, without the need for out-of-band data structures and
          reclaim passes.  Because the generic reclaim code considers all
          cgroups except for the ones running low in the preferred first
          reclaim pass, overreclaim of individual groups is eliminated as
          well, resulting in much better overall workload performance.
      
        - The original high boundary, the hard limit, is defined as a strict
          limit that can not budge, even if the OOM killer has to be called.
          But this generally goes against the goal of making the most out of
          the available memory.  The memory consumption of workloads varies
          during runtime, and that requires users to overcommit.  But doing
          that with a strict upper limit requires either a fairly accurate
          prediction of the working set size or adding slack to the limit.
          Since working set size estimation is hard and error prone, and
          getting it wrong results in OOM kills, most users tend to err on
          the side of a looser limit and end up wasting precious resources.
      
          The memory.high boundary on the other hand can be set much more
          conservatively.  When hit, it throttles allocations by forcing
          them into direct reclaim to work off the excess, but it never
          invokes the OOM killer.  As a result, a high boundary that is
          chosen too aggressively will not terminate the processes, but
          instead it will lead to gradual performance degradation.  The user
          can monitor this and make corrections until the minimal memory
          footprint that still gives acceptable performance is found.
      
          In extreme cases, with many concurrent allocations and a complete
          breakdown of reclaim progress within the group, the high boundary
          can be exceeded.  But even then it's mostly better to satisfy the
          allocation from the slack available in other groups or the rest of
          the system than killing the group.  Otherwise, memory.max is there
          to limit this type of spillover and ultimately contain buggy or
          even malicious applications.
      
        - The original control file names are unwieldy and inconsistent in
          many different ways.  For example, the upper boundary hit count is
          exported in the memory.failcnt file, but an OOM event count has to
          be manually counted by listening to memory.oom_control events, and
          lower boundary / soft limit events have to be counted by first
          setting a threshold for that value and then counting those events.
          Also, usage and limit files encode their units in the filename.
          That makes the filenames very long, even though this is not
          information that a user needs to be reminded of every time they
          type out those names.
      
          To address these naming issues, as well as to signal clearly that
          the new interface carries a new configuration model, the naming
          conventions in it necessarily differ from the old interface.
      
        - The original limit files indicate the state of an unset limit with
          a very high number, and a configured limit can be unset by echoing
          -1 into those files.  But that very high number is implementation
          and architecture dependent and not very descriptive.  And while -1
          can be understood as an underflow into the highest possible value,
          -2 or -10M etc. do not work, so it's not inconsistent.
      
          memory.low, memory.high, and memory.max will use the string
          "infinity" to indicate and set the highest possible value.
      
      [akpm@linux-foundation.org: use seq_puts() for basic strings]
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Cc: Greg Thelen <gthelen@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      241994ed
    • V
      vmscan: force scan offline memory cgroups · 90cbc250
      Vladimir Davydov 提交于
      Since commit b2052564 ("mm: memcontrol: continue cache reclaim from
      offlined groups") pages charged to a memory cgroup are not reparented when
      the cgroup is removed.  Instead, they are supposed to be reclaimed in a
      regular way, along with pages accounted to online memory cgroups.
      
      However, an lruvec of an offline memory cgroup will sooner or later get so
      small that it will be scanned only at low scan priorities (see
      get_scan_count()).  Therefore, if there are enough reclaimable pages in
      big lruvecs, pages accounted to offline memory cgroups will never be
      scanned at all, wasting memory.
      
      Fix this by unconditionally forcing scanning dead lruvecs from kswapd.
      
      [akpm@linux-foundation.org: fix build]
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      90cbc250