- 03 11月, 2017 10 次提交
-
-
由 Jan Kara 提交于
Add a flag to iomap interface informing the caller that inode needs fdstasync(2) for returned extent to become persistent and use it in DAX fault code so that we don't map such extents into page tables immediately. Instead we propagate the information that fdatasync(2) is necessary from dax_iomap_fault() with a new VM_FAULT_NEEDDSYNC flag. Filesystem fault handler is then responsible for calling fdatasync(2) and inserting pfn into page tables. Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
Currently we dirty radix tree entry whenever dax_insert_mapping_entry() gets called for a write fault. With synchronous page faults we would like to insert clean radix tree entry and dirty it only once we call fdatasync() and update page tables to save some unnecessary cache flushing. Add 'dirty' argument to dax_insert_mapping_entry() for that. Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
For synchronous page fault dax_iomap_fault() will need to return PFN which will then need to be inserted into page tables after fsync() completes. Add necessary parameter to dax_iomap_fault(). Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
Add missing argument description. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
dax_pmd_insert_mapping() has only one callsite and we will need to further fine tune what it does for synchronous faults. Just inline it into the callsite so that we don't have to pass awkward bools around. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
dax_insert_mapping() has only one callsite and we will need to further fine tune what it does for synchronous faults. Just inline it into the callsite so that we don't have to pass awkward bools around. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
There are already two users and more are coming. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
There are already two users and more are coming. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
Factor out code to get pfn out of iomap that is shared between PTE and PMD fault path. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
dax_insert_mapping() has lots of arguments and a lot of them is actuall duplicated by passing vm_fault structure as well. Change the function to take the same arguments as dax_pmd_insert_mapping(). Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 11 9月, 2017 1 次提交
-
-
由 Mikulas Patocka 提交于
Commit abebfbe2 ("dm: add ->flush() dax operation support") is buggy. A DM device may be composed of multiple underlying devices and all of them need to be flushed. That commit just routes the flush request to the first device and ignores the other devices. It could be fixed by adding more complex logic to the device mapper. But there is only one implementation of the method pmem_dax_ops->flush - that is pmem_dax_flush() - and it calls arch_wb_cache_pmem(). Consequently, we don't need the pmem_dax_ops->flush abstraction at all, we can call arch_wb_cache_pmem() directly from dax_flush() because dax_dev->ops->flush can't ever reach anything different from arch_wb_cache_pmem(). It should be also pointed out that for some uses of persistent memory it is needed to flush only a very small amount of data (such as 1 cacheline), and it would be overkill if we go through that device mapper machinery for a single flushed cache line. Fix this by removing the pmem_dax_ops->flush abstraction and call arch_wb_cache_pmem() directly from dax_flush(). Also, remove the device mapper code that forwards the flushes. Fixes: abebfbe2 ("dm: add ->flush() dax operation support") Cc: stable@vger.kernel.org Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com>
-
- 07 9月, 2017 7 次提交
-
-
由 Nicolas Iooss 提交于
dax_pmd_insert_mapping() contains the following code: pfn_t pfn; if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0) goto fallback; /* ... */ fallback: trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret); When the condition in the if statement fails, the function calls trace_dax_pmd_insert_mapping_fallback() with an uninitialized pfn value. This issue has been found while building the kernel with clang. The compiler reported: fs/dax.c:1280:6: error: variable 'pfn' is used uninitialized whenever 'if' condition is true [-Werror,-Wsometimes-uninitialized] if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fs/dax.c:1310:60: note: uninitialized use occurs here trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret); ^~~ Link: http://lkml.kernel.org/r/20170903083000.587-1-nicolas.iooss_linux@m4x.orgSigned-off-by: NNicolas Iooss <nicolas.iooss_linux@m4x.org> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Use ~PG_PMD_COLOUR in dax_entry_waitqueue() instead of open coding an equivalent page offset mask. Link: http://lkml.kernel.org/r/20170822222436.18926-2-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "Slusarz, Marcin" <marcin.slusarz@intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add a comment explaining how the user addresses provided to read(2) and write(2) are validated in the DAX I/O path. We call dax_copy_from_iter() or copy_to_iter() on these without calling access_ok() first in the DAX code, and there was a concern that the user might be able to read/write to arbitrary kernel addresses with this path. Link: http://lkml.kernel.org/r/20170816173615.10098-1-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Now that we no longer insert struct page pointers in DAX radix trees the page cache code no longer needs to know anything about DAX exceptional entries. Move all the DAX exceptional entry definitions from dax.h to fs/dax.c. Link: http://lkml.kernel.org/r/20170724170616.25810-6-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Suggested-by: NJan Kara <jack@suse.cz> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Now that we no longer insert struct page pointers in DAX radix trees we can remove the special casing for DAX in page_cache_tree_insert(). This also allows us to make dax_wake_mapping_entry_waiter() local to fs/dax.c, removing it from dax.h. Link: http://lkml.kernel.org/r/20170724170616.25810-5-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Suggested-by: NJan Kara <jack@suse.cz> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
When servicing mmap() reads from file holes the current DAX code allocates a page cache page of all zeroes and places the struct page pointer in the mapping->page_tree radix tree. This has three major drawbacks: 1) It consumes memory unnecessarily. For every 4k page that is read via a DAX mmap() over a hole, we allocate a new page cache page. This means that if you read 1GiB worth of pages, you end up using 1GiB of zeroed memory. This is easily visible by looking at the overall memory consumption of the system or by looking at /proc/[pid]/smaps: 7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data Size: 1048576 kB Rss: 1048576 kB Pss: 1048576 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 1048576 kB Private_Dirty: 0 kB Referenced: 1048576 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB 2) It is slower than using a common zero page because each page fault has more work to do. Instead of just inserting a common zero page we have to allocate a page cache page, zero it, and then insert it. Here are the average latencies of dax_load_hole() as measured by ftrace on a random test box: Old method, using zeroed page cache pages: 3.4 us New method, using the common 4k zero page: 0.8 us This was the average latency over 1 GiB of sequential reads done by this simple fio script: [global] size=1G filename=/root/dax/data fallocate=none [io] rw=read ioengine=mmap 3) The fact that we had to check for both DAX exceptional entries and for page cache pages in the radix tree made the DAX code more complex. Solve these issues by following the lead of the DAX PMD code and using a common 4k zero page instead. As with the PMD code we will now insert a DAX exceptional entry into the radix tree instead of a struct page pointer which allows us to remove all the special casing in the DAX code. Note that we do still pretty aggressively check for regular pages in the DAX radix tree, especially where we take action based on the bits set in the page. If we ever find a regular page in our radix tree now that most likely means that someone besides DAX is inserting pages (which has happened lots of times in the past), and we want to find that out early and fail loudly. This solution also removes the extra memory consumption. Here is that same /proc/[pid]/smaps after 1GiB of reading from a hole with the new code: 7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data Size: 1048576 kB Rss: 0 kB Pss: 0 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 0 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB Overall system memory consumption is similarly improved. Another major change is that we remove dax_pfn_mkwrite() from our fault flow, and instead rely on the page fault itself to make the PTE dirty and writeable. The following description from the patch adding the vm_insert_mixed_mkwrite() call explains this a little more: "To be able to use the common 4k zero page in DAX we need to have our PTE fault path look more like our PMD fault path where a PTE entry can be marked as dirty and writeable as it is first inserted rather than waiting for a follow-up dax_pfn_mkwrite() => finish_mkwrite_fault() call. Right now we can rely on having a dax_pfn_mkwrite() call because we can distinguish between these two cases in do_wp_page(): case 1: 4k zero page => writable DAX storage case 2: read-only DAX storage => writeable DAX storage This distinction is made by via vm_normal_page(). vm_normal_page() returns false for the common 4k zero page, though, just as it does for DAX ptes. Instead of special casing the DAX + 4k zero page case we will simplify our DAX PTE page fault sequence so that it matches our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper. We will instead use dax_iomap_fault() to handle write-protection faults. This means that insert_pfn() needs to follow the lead of insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If 'mkwrite' is set insert_pfn() will do the work that was previously done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path" Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
dax_load_hole() will soon need to call dax_insert_mapping_entry(), so it needs to be moved lower in dax.c so the definition exists. dax_wake_mapping_entry_waiter() will soon be removed from dax.h and be made static to dax.c, so we need to move its definition above all its callers. Link: http://lkml.kernel.org/r/20170724170616.25810-3-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 9月, 2017 1 次提交
-
-
由 Jérôme Glisse 提交于
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range() and make sure it is bracketed by calls to *_invalidate_range_start()/end(). Note that because we can not presume the pmd value or pte value we have to assume the worst and unconditionaly report an invalidation as happening. Signed-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Bernhard Held <berny156@gmx.de> Cc: Adam Borowski <kilobyte@angband.pl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: axie <axie@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 8月, 2017 1 次提交
-
-
由 Ross Zwisler 提交于
In DAX there are two separate places where the 2MiB range of a PMD is defined. The first is in the page tables, where a PMD mapping inserted for a given address spans from (vmf->address & PMD_MASK) to ((vmf->address & PMD_MASK) + PMD_SIZE - 1). That is, from the 2MiB boundary below the address to the 2MiB boundary above the address. So, for example, a fault at address 3MiB (0x30 0000) falls within the PMD that ranges from 2MiB (0x20 0000) to 4MiB (0x40 0000). The second PMD range is in the mapping->page_tree, where a given file offset is covered by a radix tree entry that spans from one 2MiB aligned file offset to another 2MiB aligned file offset. So, for example, the file offset for 3MiB (pgoff 768) falls within the PMD range for the order 9 radix tree entry that ranges from 2MiB (pgoff 512) to 4MiB (pgoff 1024). This system works so long as the addresses and file offsets for a given mapping both have the same offsets relative to the start of each PMD. Consider the case where the starting address for a given file isn't 2MiB aligned - say our faulting address is 3 MiB (0x30 0000), but that corresponds to the beginning of our file (pgoff 0). Now all the PMDs in the mapping are misaligned so that the 2MiB range defined in the page tables never matches up with the 2MiB range defined in the radix tree. The current code notices this case for DAX faults to storage with the following test in dax_pmd_insert_mapping(): if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR) goto unlock_fallback; This test makes sure that the pfn we get from the driver is 2MiB aligned, and relies on the assumption that the 2MiB alignment of the pfn we get back from the driver matches the 2MiB alignment of the faulting address. However, faults to holes were not checked and we could hit the problem described above. This was reported in response to the NVML nvml/src/test/pmempool_sync TEST5: $ cd nvml/src/test/pmempool_sync $ make TEST5 You can grab NVML here: https://github.com/pmem/nvml/ The dmesg warning you see when you hit this error is: WARNING: CPU: 13 PID: 2900 at fs/dax.c:641 dax_insert_mapping_entry+0x2df/0x310 Where we notice in dax_insert_mapping_entry() that the radix tree entry we are about to replace doesn't match the locked entry that we had previously inserted into the tree. This happens because the initial insertion was done in grab_mapping_entry() using a pgoff calculated from the faulting address (vmf->address), and the replacement in dax_pmd_load_hole() => dax_insert_mapping_entry() is done using vmf->pgoff. In our failure case those two page offsets (one calculated from vmf->address, one using vmf->pgoff) point to different order 9 radix tree entries. This failure case can result in a deadlock because the radix tree unlock also happens on the pgoff calculated from vmf->address. This means that the locked radix tree entry that we swapped in to the tree in dax_insert_mapping_entry() using vmf->pgoff is never unlocked, so all future faults to that 2MiB range will block forever. Fix this by validating that the faulting address's PMD offset matches the PMD offset from the start of the file. This check is done at the very beginning of the fault and covers faults that would have mapped to storage as well as faults to holes. I left the COLOUR check in dax_pmd_insert_mapping() in place in case we ever hit the insanity condition where the alignment of the pfn we get from the driver doesn't match the alignment of the userspace address. Link: http://lkml.kernel.org/r/20170822222436.18926-1-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reported-by: N"Slusarz, Marcin" <marcin.slusarz@intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 7月, 2017 1 次提交
-
-
由 Roman Gushchin 提交于
Track the following reclaim counters for every memory cgroup: PGREFILL, PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED. These values are exposed using the memory.stats interface of cgroup v2. The meaning of each value is the same as for global counters, available using /proc/vmstat. Also, for consistency, rename mem_cgroup_count_vm_event() to count_memcg_event_mm(). Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Suggested-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 7月, 2017 1 次提交
-
-
由 Jeff Layton 提交于
Jan Kara's description for this patch is much better than mine, so I'm quoting it verbatim here: DAX currently doesn't set errors in the mapping when cache flushing fails in dax_writeback_mapping_range(). Since this function can get called only from fsync(2) or sync(2), this is actually as good as it can currently get since we correctly propagate the error up from dax_writeback_mapping_range() to filemap_fdatawrite() However, in the future better writeback error handling will enable us to properly report these errors on fsync(2) even if there are multiple file descriptors open against the file or if sync(2) gets called before fsync(2). So convert DAX to using standard error reporting through the mapping. Signed-off-by: NJeff Layton <jlayton@redhat.com> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-and-tested-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
-
- 28 6月, 2017 1 次提交
-
-
由 Dan Williams 提交于
Now that all callers of the pmem api have been converted to dax helpers that call back to the pmem driver, we can remove include/linux/pmem.h and asm/pmem.h. Cc: <x86@kernel.org> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Oliver O'Halloran <oohall@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 24 6月, 2017 1 次提交
-
-
由 Jan Kara 提交于
dax_writeback_mapping_range() fails to update iteration index when searching radix tree for entries needing cache flushing. Thus each pagevec worth of entries is searched starting from the start which is inefficient and prone to livelocks. Update index properly. Link: http://lkml.kernel.org/r/20170619124531.21491-1-jack@suse.cz Fixes: 9973c98e ("dax: add support for fsync/sync") Signed-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 6月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
Rename: wait_queue_t => wait_queue_entry_t 'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue", but in reality it's a queue *entry*. The 'real' queue is the wait queue head, which had to carry the name. Start sorting this out by renaming it to 'wait_queue_entry_t'. This also allows the real structure name 'struct __wait_queue' to lose its double underscore and become 'struct wait_queue_entry', which is the more canonical nomenclature for such data types. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 6月, 2017 3 次提交
-
-
由 Dan Williams 提交于
The clear_pmem() helper simply combines a memset() plus a cache flush. Now that the flush routine is optionally provided by the dax device driver we can avoid unnecessary cache management on dax devices fronting volatile memory. With clear_pmem() gone we can follow on with a patch to make pmem cache management completely defined within the pmem driver. Cc: <x86@kernel.org> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Filesystem-DAX flushes caches whenever it writes to the address returned through dax_direct_access() and when writing back dirty radix entries. That flushing is only required in the pmem case, so the dax_flush() helper skips cache management work when the underlying driver does not specify a flush method. We still do all the dirty tracking since the radix entry will already be there for locking purposes. However, the work to clean the entry will be a nop for some dax drivers. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Now that all possible providers of the dax_operations copy_from_iter method are implemented, switch filesytem-dax to call the driver rather than copy_to_iter_pmem. Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 03 6月, 2017 1 次提交
-
-
由 Ross Zwisler 提交于
We currently have two related PMD vs PTE races in the DAX code. These can both be easily triggered by having two threads reading and writing simultaneously to the same private mapping, with the key being that private mapping reads can be handled with PMDs but private mapping writes are always handled with PTEs so that we can COW. Here is the first race: CPU 0 CPU 1 (private mapping write) __handle_mm_fault() create_huge_pmd() - FALLBACK handle_pte_fault() passes check for pmd_devmap() (private mapping read) __handle_mm_fault() create_huge_pmd() dax_iomap_pmd_fault() inserts PMD dax_iomap_pte_fault() does a PTE fault, but we already have a DAX PMD installed in our page tables at this spot. Here's the second race: CPU 0 CPU 1 (private mapping read) __handle_mm_fault() passes check for pmd_none() create_huge_pmd() dax_iomap_pmd_fault() inserts PMD (private mapping write) __handle_mm_fault() create_huge_pmd() - FALLBACK (private mapping read) __handle_mm_fault() passes check for pmd_none() create_huge_pmd() handle_pte_fault() dax_iomap_pte_fault() inserts PTE dax_iomap_pmd_fault() inserts PMD, but we already have a PTE at this spot. The core of the issue is that while there is isolation between faults to the same range in the DAX fault handlers via our DAX entry locking, there is no isolation between faults in the code in mm/memory.c. This means for instance that this code in __handle_mm_fault() can run: if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); But by the time we actually get to run the fault handler called by create_huge_pmd(), the PMD is no longer pmd_none() because a racing PTE fault has installed a normal PMD here as a parent. This is the cause of the 2nd race. The first race is similar - there is the following check in handle_pte_fault(): } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap(*vmf->pmd) || pmd_trans_unstable(vmf->pmd)) return 0; So if a pmd_devmap() PMD (a DAX PMD) has been installed at vmf->pmd, we will bail and retry the fault. This is correct, but there is nothing preventing the PMD from being installed after this check but before we actually get to the DAX PTE fault handlers. In my testing these races result in the following types of errors: BUG: Bad rss-counter state mm:ffff8800a817d280 idx:1 val:1 BUG: non-zero nr_ptes on freeing mm: 15 Fix this issue by having the DAX fault handlers verify that it is safe to continue their fault after they have taken an entry lock to block other racing faults. [ross.zwisler@linux.intel.com: improve fix for colliding PMD & PTE entries] Link: http://lkml.kernel.org/r/20170526195932.32178-1-ross.zwisler@linux.intel.com Link: http://lkml.kernel.org/r/20170522215749.23516-2-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reported-by: NPawel Lebioda <pawel.lebioda@intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Pawel Lebioda <pawel.lebioda@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Xiong Zhou <xzhou@redhat.com> Cc: Eryu Guan <eguan@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 5月, 2017 4 次提交
-
-
由 Ross Zwisler 提交于
This is based on a patch from Jan Kara that fixed the equivalent race in the DAX PTE fault path. Currently DAX PMD read fault can race with write(2) in the following way: CPU1 - write(2) CPU2 - read fault dax_iomap_pmd_fault() ->iomap_begin() - sees hole dax_iomap_rw() iomap_apply() ->iomap_begin - allocates blocks dax_iomap_actor() invalidate_inode_pages2_range() - there's nothing to invalidate grab_mapping_entry() - we add huge zero page to the radix tree and map it to page tables The result is that hole page is mapped into page tables (and thus zeros are seen in mmap) while file has data written in that place. Fix the problem by locking exception entry before mapping blocks for the fault. That way we are sure invalidate_inode_pages2_range() call for racing write will either block on entry lock waiting for the fault to finish (and unmap stale page tables after that) or read fault will see already allocated blocks by write(2). Fixes: 9f141d6e ("dax: Call ->iomap_begin without entry lock during dax fault") Link: http://lkml.kernel.org/r/20170510172700.18991-1-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Currently DAX read fault can race with write(2) in the following way: CPU1 - write(2) CPU2 - read fault dax_iomap_pte_fault() ->iomap_begin() - sees hole dax_iomap_rw() iomap_apply() ->iomap_begin - allocates blocks dax_iomap_actor() invalidate_inode_pages2_range() - there's nothing to invalidate grab_mapping_entry() - we add zero page in the radix tree and map it to page tables The result is that hole page is mapped into page tables (and thus zeros are seen in mmap) while file has data written in that place. Fix the problem by locking exception entry before mapping blocks for the fault. That way we are sure invalidate_inode_pages2_range() call for racing write will either block on entry lock waiting for the fault to finish (and unmap stale page tables after that) or read fault will see already allocated blocks by write(2). Fixes: 9f141d6e Link: http://lkml.kernel.org/r/20170510085419.27601-5-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Currently, we didn't invalidate page tables during invalidate_inode_pages2() for DAX. That could result in e.g. 2MiB zero page being mapped into page tables while there were already underlying blocks allocated and thus data seen through mmap were different from data seen by read(2). The following sequence reproduces the problem: - open an mmap over a 2MiB hole - read from a 2MiB hole, faulting in a 2MiB zero page - write to the hole with write(3p). The write succeeds but we incorrectly leave the 2MiB zero page mapping intact. - via the mmap, read the data that was just written. Since the zero page mapping is still intact we read back zeroes instead of the new data. Fix the problem by unconditionally calling invalidate_inode_pages2_range() in dax_iomap_actor() for new block allocations and by properly invalidating page tables in invalidate_inode_pages2_range() for DAX mappings. Fixes: c6dcf52c Link: http://lkml.kernel.org/r/20170510085419.27601-3-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Patch series "mm,dax: Fix data corruption due to mmap inconsistency", v4. This series fixes data corruption that can happen for DAX mounts when page faults race with write(2) and as a result page tables get out of sync with block mappings in the filesystem and thus data seen through mmap is different from data seen through read(2). The series passes testing with t_mmap_stale test program from Ross and also other mmap related tests on DAX filesystem. This patch (of 4): dax_invalidate_mapping_entry() currently removes DAX exceptional entries only if they are clean and unlocked. This is done via: invalidate_mapping_pages() invalidate_exceptional_entry() dax_invalidate_mapping_entry() However, for page cache pages removed in invalidate_mapping_pages() there is an additional criteria which is that the page must not be mapped. This is noted in the comments above invalidate_mapping_pages() and is checked in invalidate_inode_page(). For DAX entries this means that we can can end up in a situation where a DAX exceptional entry, either a huge zero page or a regular DAX entry, could end up mapped but without an associated radix tree entry. This is inconsistent with the rest of the DAX code and with what happens in the page cache case. We aren't able to unmap the DAX exceptional entry because according to its comments invalidate_mapping_pages() isn't allowed to block, and unmap_mapping_range() takes a write lock on the mapping->i_mmap_rwsem. Since we essentially never have unmapped DAX entries to evict from the radix tree, just remove dax_invalidate_mapping_entry(). Fixes: c6dcf52c ("mm: Invalidate DAX radix tree entries only if appropriate") Link: http://lkml.kernel.org/r/20170510085419.27601-2-jack@suse.czSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Reported-by: NJan Kara <jack@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.10+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 5月, 2017 1 次提交
-
-
由 Dan Williams 提交于
The conversion of __dax_zero_page_range() to 'struct dax_operations' caused it to frequently fail. The mistake was treating the @size parameter as a dax mapping length rather than just a length of the clear_pmem() operation. The dax mapping length is assumed to be hard coded as PAGE_SIZE. Without this fix any page unaligned zeroing request will trigger a -EINVAL return from bdev_dax_pgoff(). Cc: Jan Kara <jack@suse.com> Cc: Christoph Hellwig <hch@lst.de> Reported-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Tested-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Fixes: cccbce67 ("filesystem-dax: convert to dax_direct_access()") Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 09 5月, 2017 6 次提交
-
-
由 Ross Zwisler 提交于
Add a tracepoint to dax_insert_mapping(), following the same logging conventions as the rest of DAX. This tracepoint, along with the one in dax_load_hole(), lets us know how a DAX PTE fault was serviced. Here is an example DAX fault that inserts a PTE mapping: small-1126 [007] .... 145.451604: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 small-1126 [007] .... 145.452317: dax_insert_mapping: dev 259:0 ino 0x1003 shared write address 0x10420000 radix_entry 0x100006 small-1126 [007] .... 145.452399: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 MAJOR|NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-7-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add a tracepoint to dax_writeback_one(), following the same logging conventions as the rest of DAX. Here is an example range writeback which ends up flushing one PMD and one PTE: test-1265 [003] .... 496.615250: dax_writeback_range: dev 259:0 ino 0x1003 pgoff 0x0-0x7ffffffffffff test-1265 [003] .... 496.616263: dax_writeback_one: dev 259:0 ino 0x1003 pgoff 0x0 pglen 0x200 test-1265 [003] .... 496.616270: dax_writeback_one: dev 259:0 ino 0x1003 pgoff 0x305 pglen 0x1 test-1265 [003] .... 496.616272: dax_writeback_range_done: dev 259:0 ino 0x1003 pgoff 0x0-0x7ffffffffffff [akpm@linux-foundation.org: struct blk_dax_ctl has disappeared] Link: http://lkml.kernel.org/r/20170221195116.13278-6-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add tracepoints to dax_writeback_mapping_range(), following the same logging conventions as the rest of DAX. Here is an example writeback call: msync-1085 [006] .... 200.902565: dax_writeback_range: dev 259:0 ino 0x1003 pgoff 0x200-0x2ff msync-1085 [006] .... 200.902579: dax_writeback_range_done: dev 259:0 ino 0x1003 pgoff 0x200-0x2ff [ross.zwisler@linux.intel.com: fix regression in dax_writeback_mapping_range()] Link: http://lkml.kernel.org/r/20170314215358.31451-1-ross.zwisler@linux.intel.com Link: http://lkml.kernel.org/r/20170221195116.13278-5-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add tracepoints to dax_load_hole(), following the same logging conventions as the rest of DAX. Here is the logging generated by a PTE read from a hole: read-1075 [002] .... 62.362108: dax_pte_fault: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 read-1075 [002] .... 62.362140: dax_load_hole: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 NOPAGE read-1075 [002] .... 62.362141: dax_pte_fault_done: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-4-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add tracepoints to dax_pfn_mkwrite(), following the same logging conventions as the rest of DAX. Here is an example PTE fault followed by a pfn_mkwrite: small_aligned-1094 [002] .... 374.084998: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 small_aligned-1094 [002] .... 374.085145: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 MAJOR|NOPAGE small_aligned-1094 [002] .... 374.085165: dax_pfn_mkwrite: dev 259:0 ino 0x1003 shared WRITE|MKWRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-3-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Patch series "second round of tracepoints for DAX". This second round of DAX tracepoint patches adds tracing to the PTE fault path (dax_iomap_pte_fault(), dax_pfn_mkwrite(), dax_load_hole(), dax_insert_mapping()) and to the writeback path (dax_writeback_mapping_range(), dax_writeback_one()). The purpose of this tracing is to give us a high level view of what DAX is doing, whether faults are being serviced by PMDs or PTEs, and by real storage or by zero pages covering holes. I do have some patches nearly ready which also add tracing to grab_mapping_entry() and dax_insert_mapping_entry(). These are more targeted at logging how we are interacting with the radix tree, how we use empty entries for locking, whether we "downgrade" huge zero pages to 4k PTE sized allocations, etc. In the end it seemed to me that this might be too detailed to have as constantly present tracepoints, but if anyone sees value in having tracepoints like this in the DAX code permanently (Jan?), please let me know and I'll add those last two patches. All these tracepoints were done to be consistent with the style of the XFS tracepoints and with the existing DAX PMD tracepoints. This patch (of 6): Add tracepoints to dax_iomap_pte_fault(), following the same logging conventions as the rest of DAX. Here is an example fault that initially tries to be serviced by the PMD fault handler but which falls back to PTEs because the VMA isn't large enough to hold a PMD: small-1086 [005] .... 71.140014: xfs_filemap_huge_fault: dev 259:0 ino 0x1003 small-1086 [005] .... 71.140027: dax_pmd_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 vm_start 0x10200000 vm_end 0x10500000 pgoff 0x220 max_pgoff 0x1400 small-1086 [005] .... 71.140028: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 vm_start 0x10200000 vm_end 0x10500000 pgoff 0x220 max_pgoff 0x1400 FALLBACK small-1086 [005] .... 71.140035: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 small-1086 [005] .... 71.140396: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 MAJOR|NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-2-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-