- 09 2月, 2014 3 次提交
-
-
由 Ville Syrjälä 提交于
Print an informative message when reserving the graphics stolen memory region in the early quirk. Signed-off-by: NVille Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-4-git-send-email-ville.syrjala@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ville Syrjälä 提交于
There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: NVille Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ville Syrjälä 提交于
For gen2 devices we're going to need another way to determine the stolen memory base address. Make that into a vfunc as well. Also drop the bogus inline keyword from gen8_stolen_size(). Signed-off-by: NVille Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-2-git-send-email-ville.syrjala@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 2月, 2014 1 次提交
-
-
由 Borislav Petkov 提交于
For additional coverage, BorisO and friends unknowlingly did swap AMD microcode with Intel microcode blobs in order to see what happens. What did happen on 32-bit was [ 5.722656] BUG: unable to handle kernel paging request at be3a6008 [ 5.722693] IP: [<c106d6b4>] load_microcode_amd+0x24/0x3f0 [ 5.722716] *pdpt = 0000000000000000 *pde = 0000000000000000 because there was a valid initrd there but without valid microcode in it and the container check happened *after* the relocated ramdisk handling on 32-bit, which was clearly wrong. While at it, take care of the ramdisk relocation on both 32- and 64-bit as it is done on both. Also, comment what we're doing because this code is a bit tricky. Reported-and-tested-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1391460104-7261-1-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 31 1月, 2014 1 次提交
-
-
由 Prarit Bhargava 提交于
Further discussion here: http://marc.info/?l=linux-kernel&m=139073901101034&w=2 kbuild, 0day kernel build service, outputs the warning: arch/x86/kernel/irq.c:333:1: warning: the frame size of 2056 bytes is larger than 2048 bytes [-Wframe-larger-than=] because check_irq_vectors_for_cpu_disable() allocates two cpumasks on the stack. Fix this by moving the two cpumasks to a global file context. Reported-by: NFengguang Wu <fengguang.wu@intel.com> Tested-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NPrarit Bhargava <prarit@redhat.com> Link: http://lkml.kernel.org/r/1390915331-27375-1-git-send-email-prarit@redhat.com Cc: Andi Kleen <ak@linux.intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Yang Zhang <yang.z.zhang@Intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Janet Morgan <janet.morgan@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Ruiv Wang <ruiv.wang@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 30 1月, 2014 4 次提交
-
-
由 Andi Kleen 提交于
These functions are called from inline assembler stubs, thus need to be global and visible. Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Signed-off-by: NAndi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/1382458079-24450-7-git-send-email-andi@firstfloor.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Andi Kleen 提交于
The paravirt thunks use a hack of using a static reference to a static function to reference that function from the top level statement. This assumes that gcc always generates static function names in a specific format, which is not necessarily true. Simply make these functions global and asmlinkage or __visible. This way the static __used variables are not needed and everything works. Functions with arguments are __visible to keep the register calling convention on 32bit. Changed in paravirt and in all users (Xen and vsmp) v2: Use __visible for functions with arguments Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Ido Yariv <ido@wizery.com> Signed-off-by: NAndi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/1382458079-24450-5-git-send-email-andi@firstfloor.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Paolo Bonzini 提交于
When Hyper-V hypervisor leaves are present, KVM must relocate its own leaves at 0x40000100, because Windows does not look for Hyper-V leaves at indices other than 0x40000000. In this case, the KVM features are at 0x40000101, but the old code would always look at 0x40000001. Fix by using kvm_cpuid_base(). This also requires making the function non-inline, since kvm_cpuid_base() is static. Fixes: 1085ba7f Cc: stable@vger.kernel.org Cc: mtosatti@redhat.com Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
It is unnecessary to go through hypervisor_cpuid_base every time a leaf is found (which will be every time a feature is requested after the next patch). Fixes: 1085ba7f Cc: stable@vger.kernel.org Cc: mtosatti@redhat.com Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 28 1月, 2014 1 次提交
-
-
由 Yinghai Lu 提交于
Dave reported big numa system booting is broken. It turns out that commit 5b6e5295 ("x86: memblock: set current limit to max low memory address") sets the limit to low wrongly. max_low_pfn_mapped is different from max_pfn_mapped. max_low_pfn_mapped is always under 4G. That will memblock_alloc_nid all go under 4G. Revert 5b6e5295 to fix a no-boot regression which was triggered by 457ff1de ("lib/swiotlb.c: use memblock apis for early memory allocations"). Signed-off-by: NYinghai Lu <yinghai@kernel.org> Reported-by: NDave Hansen <dave.hansen@intel.com> Acked-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 1月, 2014 6 次提交
-
-
由 Mel Gorman 提交于
There was a large ebizzy performance regression that was bisected to commit 611ae8e3 (x86/tlb: enable tlb flush range support for x86). The problem was related to the tlb_flushall_shift tuning for IvyBridge which was altered. The problem is that it is not clear if the tuning values for each CPU family is correct as the methodology used to tune the values is unclear. This patch uses a conservative tlb_flushall_shift value for all CPU families except IvyBridge so the decision can be revisited if any regression is found as a result of this change. IvyBridge is an exception as testing with one methodology determined that the value of 2 is acceptable. Details are in the changelog for the patch "x86: mm: Change tlb_flushall_shift for IvyBridge". One important aspect of this to watch out for is Xen. The original commit log mentioned large performance gains on Xen. It's possible Xen is more sensitive to this value if it flushes small ranges of pages more frequently than workloads on bare metal typically do. Signed-off-by: NMel Gorman <mgorman@suse.de> Tested-by: NDavidlohr Bueso <davidlohr@hp.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Alex Shi <alex.shi@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-dyzMww3fqugnhbhgo6Gxmtkw@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
There was a large performance regression that was bisected to commit 611ae8e3 ("x86/tlb: enable tlb flush range support for x86"). This patch simply changes the default balance point between a local and global flush for IvyBridge. In the interest of allowing the tests to be reproduced, this patch was tested using mmtests 0.15 with the following configurations configs/config-global-dhp__tlbflush-performance configs/config-global-dhp__scheduler-performance configs/config-global-dhp__network-performance Results are from two machines Ivybridge 4 threads: Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz Ivybridge 8 threads: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz Page fault microbenchmark showed nothing interesting. Ebizzy was configured to run multiple iterations and threads. Thread counts ranged from 1 to NR_CPUS*2. For each thread count, it ran 100 iterations and each iteration lasted 10 seconds. Ivybridge 4 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 6395.44 ( 0.00%) 6789.09 ( 6.16%) Mean 2 7012.85 ( 0.00%) 8052.16 ( 14.82%) Mean 3 6403.04 ( 0.00%) 6973.74 ( 8.91%) Mean 4 6135.32 ( 0.00%) 6582.33 ( 7.29%) Mean 5 6095.69 ( 0.00%) 6526.68 ( 7.07%) Mean 6 6114.33 ( 0.00%) 6416.64 ( 4.94%) Mean 7 6085.10 ( 0.00%) 6448.51 ( 5.97%) Mean 8 6120.62 ( 0.00%) 6462.97 ( 5.59%) Ivybridge 8 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 7336.65 ( 0.00%) 7787.02 ( 6.14%) Mean 2 8218.41 ( 0.00%) 9484.13 ( 15.40%) Mean 3 7973.62 ( 0.00%) 8922.01 ( 11.89%) Mean 4 7798.33 ( 0.00%) 8567.03 ( 9.86%) Mean 5 7158.72 ( 0.00%) 8214.23 ( 14.74%) Mean 6 6852.27 ( 0.00%) 7952.45 ( 16.06%) Mean 7 6774.65 ( 0.00%) 7536.35 ( 11.24%) Mean 8 6510.50 ( 0.00%) 6894.05 ( 5.89%) Mean 12 6182.90 ( 0.00%) 6661.29 ( 7.74%) Mean 16 6100.09 ( 0.00%) 6608.69 ( 8.34%) Ebizzy hits the worst case scenario for TLB range flushing every time and it shows for these Ivybridge CPUs at least that the default choice is a poor on. The patch addresses the problem. Next was a tlbflush microbenchmark written by Alex Shi at http://marc.info/?l=linux-kernel&m=133727348217113 . It measures access costs while the TLB is being flushed. The expectation is that if there are always full TLB flushes that the benchmark would suffer and it benefits from range flushing There are 320 iterations of the test per thread count. The number of entries is randomly selected with a min of 1 and max of 512. To ensure a reasonably even spread of entries, the full range is broken up into 8 sections and a random number selected within that section. iteration 1, random number between 0-64 iteration 2, random number between 64-128 etc This is still a very weak methodology. When you do not know what are typical ranges, random is a reasonable choice but it can be easily argued that the opimisation was for smaller ranges and an even spread is not representative of any workload that matters. To improve this, we'd need to know the probability distribution of TLB flush range sizes for a set of workloads that are considered "common", build a synthetic trace and feed that into this benchmark. Even that is not perfect because it would not account for the time between flushes but there are limits of what can be reasonably done and still be doing something useful. If a representative synthetic trace is provided then this benchmark could be revisited and the shift values retuned. Ivybridge 4 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 10.50 ( 0.00%) 10.50 ( 0.03%) Mean 2 17.59 ( 0.00%) 17.18 ( 2.34%) Mean 3 22.98 ( 0.00%) 21.74 ( 5.41%) Mean 5 47.13 ( 0.00%) 46.23 ( 1.92%) Mean 8 43.30 ( 0.00%) 42.56 ( 1.72%) Ivybridge 8 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 9.45 ( 0.00%) 9.36 ( 0.93%) Mean 2 9.37 ( 0.00%) 9.70 ( -3.54%) Mean 3 9.36 ( 0.00%) 9.29 ( 0.70%) Mean 5 14.49 ( 0.00%) 15.04 ( -3.75%) Mean 8 41.08 ( 0.00%) 38.73 ( 5.71%) Mean 13 32.04 ( 0.00%) 31.24 ( 2.49%) Mean 16 40.05 ( 0.00%) 39.04 ( 2.51%) For both CPUs, average access time is reduced which is good as this is the benchmark that was used to tune the shift values in the first place albeit it is now known *how* the benchmark was used. The scheduler benchmarks were somewhat inconclusive. They showed gains and losses and makes me reconsider how stable those benchmarks really are or if something else might be interfering with the test results recently. Network benchmarks were inconclusive. Almost all results were flat except for netperf-udp tests on the 4 thread machine. These results were unstable and showed large variations between reboots. It is unknown if this is a recent problems but I've noticed before that netperf-udp results tend to vary. Based on these results, changing the default for Ivybridge seems like a logical choice. Signed-off-by: NMel Gorman <mgorman@suse.de> Tested-by: NDavidlohr Bueso <davidlohr@hp.com> Reviewed-by: NAlex Shi <alex.shi@linaro.org> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-cqnadffh1tiqrshthRj3Esge@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Bisection between 3.11 and 3.12 fingered commit 9824cf97 ("mm: vmstats: tlb flush counters") to cause overhead problems. The counters are undeniably useful but how often do we really need to debug TLB flush related issues? It does not justify taking the penalty everywhere so make it a debugging option. Signed-off-by: NMel Gorman <mgorman@suse.de> Tested-by: NDavidlohr Bueso <davidlohr@hp.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Alex Shi <alex.shi@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-XzxjntugxuwpxXhcrxqqh53b@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mike Travis 提交于
Make uv_register_nmi_notifier() and uv_handle_nmi_ping() static to address sparse warnings. Fix problem where uv_nmi_kexec_failed is unused when CONFIG_KEXEC is not defined. Signed-off-by: NMike Travis <travis@sgi.com> Reviewed-by: NHedi Berriche <hedi@sgi.com> Cc: Russ Anderson <rja@sgi.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Link: http://lkml.kernel.org/r/20140114162551.480872353@asylum.americas.sgi.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dan Carpenter 提交于
This is under CAP_SYS_ADMIN, but Smatch complains that mask comes from the user and the test for "mask > 0xf" can underflow. The fix is simple: amd_set_subcaches() should hand down not an 'int' but an 'unsigned long' like it was originally indended to do. Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Acked-by: NBorislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Daniel J Blueman <daniel@numascale-asia.com> Link: http://lkml.kernel.org/r/20140121072209.GA22095@elgon.mountainSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Aravind Gopalakrishnan 提交于
The workaround for this Erratum is included in AGESA. But BIOSes spun only after Jan2014 will have the fix (atleast server versions of the chip). The erratum affects both embedded and server platforms and since we cannot say with certainity that ALL BIOSes on systems out in the field will have the fix, we should probably insulate ourselves in case BIOS does not do the right thing or someone is using old BIOSes. Refer to Revision Guide for AMD F16h models 00h-0fh, document 51810 Rev. 3.04, November2013 for details on the Erratum. Tested the patch on Fam16h server platform and it works fine. Signed-off-by: NAravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Cc: <hmh@hmh.eng.br> Cc: <Kim.Naru@amd.com> Cc: <Suravee.Suthikulpanit@amd.com> Cc: <bp@suse.de> Cc: <sherry.hurwitz@amd.com> Link: http://lkml.kernel.org/r/1390515212-1824-1-git-send-email-Aravind.Gopalakrishnan@amd.com [ Minor edits. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 1月, 2014 1 次提交
-
-
由 Peter Zijlstra 提交于
Since we keep the clock value linearly continuous on frequency change, make sure the initial multiplier is 0, such that our initial value is 0. Without this we compute the initial value at whatever the TSC has managed to reach since power-on. Reported-and-Tested-by: NMarkus Trippelsdorf <markus@trippelsdorf.de> Fixes: 20d1c86a ("sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs") Cc: lenb@kernel.org Cc: rjw@rjwysocki.net Cc: Eliezer Tamir <eliezer.tamir@linux.intel.com> Cc: rui.zhang@intel.com Cc: jacob.jun.pan@linux.intel.com Cc: Mike Galbraith <bitbucket@online.de> Cc: hpa@zytor.com Cc: paulmck@linux.vnet.ibm.com Cc: John Stultz <john.stultz@linaro.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: dyoung@redhat.com Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140123094804.GP30183@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 22 1月, 2014 2 次提交
-
-
由 Grygorii Strashko 提交于
Update X86 code to use NUMA_NO_NODE instead of MAX_NUMNODES while calling memblock APIs, because memblock API will be changed to use NUMA_NO_NODE and will produce warning during boot otherwise. See: https://lkml.org/lkml/2013/12/9/898Signed-off-by: NGrygorii Strashko <grygorii.strashko@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Santosh Shilimkar 提交于
The memblock current limit value is used to limit early boot memory allocations below max low memory address by default, as the kernel can access only to the low memory. Hence, set memblock current limit value to the max mapped low memory address instead of max mapped memory address. Signed-off-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Cc: Tejun Heo <tj@kernel.org> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Walmsley <paul@pwsan.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tony Lindgren <tony@atomide.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 1月, 2014 1 次提交
-
-
由 H. Peter Anvin 提交于
If we aren't going to use the local APIC anyway, we obviously don't care about its timer frequency. Link: http://lkml.kernel.org/r/tip-rgm7xmg7k6qnjlw3ynkcjsmh@git.kernel.orgReported-by: NFengguang Wu <fengguang.wu@intel.com> Cc: Bin Gao <bin.gao@intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 16 1月, 2014 5 次提交
-
-
由 Robert Richter 提交于
On AMD family 10h we see following error messages while waking up from S3 for all non-boot CPUs leading to a failed IBS initialization: Enabling non-boot CPUs ... smpboot: Booting Node 0 Processor 1 APIC 0x1 [Firmware Bug]: cpu 1, try to use APIC500 (LVT offset 0) for vector 0x400, but the register is already in use for vector 0xf9 on another cpu perf: IBS APIC setup failed on cpu #1 process: Switch to broadcast mode on CPU1 CPU1 is up ... ACPI: Waking up from system sleep state S3 Reason for this is that during suspend the LVT offset for the IBS vector gets lost and needs to be reinialized while resuming. The offset is read from the IBSCTL msr. On family 10h the offset needs to be 1 as offset 0 is used for the MCE threshold interrupt, but firmware assings it for IBS to 0 too. The kernel needs to reprogram the vector. The msr is a readonly node msr, but a new value can be written via pci config space access. The reinitialization is implemented for family 10h in setup_ibs_ctl() which is forced during IBS setup. This patch fixes IBS setup after waking up from S3 by adding resume/supend hooks for the boot cpu which does the offset reinitialization. Marking it as stable to let distros pick up this fix. Signed-off-by: NRobert Richter <rric@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> v3.2.. Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1389797849-5565-1-git-send-email-rric.net@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Bin Gao 提交于
On SoCs that have the calibration MSRs available, either there is no PIT, HPET or PMTIMER to calibrate against, or the PIT/HPET/PMTIMER is driven from the same clock as the TSC, so calibration is redundant and just slows down the boot. TSC rate is caculated by this formula: <maximum core-clock to bus-clock ratio> * <maximum resolved frequency> The ratio and the resolved frequency ID can be obtained from MSR. See Intel 64 and IA-32 System Programming Guid section 16.12 and 30.11.5 for details. Signed-off-by: NBin Gao <bin.gao@intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/n/tip-rgm7xmg7k6qnjlw3ynkcjsmh@git.kernel.org
-
由 Prarit Bhargava 提交于
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=64791 When a cpu is downed on a system, the irqs on the cpu are assigned to other cpus. It is possible, however, that when a cpu is downed there aren't enough free vectors on the remaining cpus to account for the vectors from the cpu that is being downed. This results in an interesting "overflow" condition where irqs are "assigned" to a CPU but are not handled. For example, when downing cpus on a 1-64 logical processor system: <snip> [ 232.021745] smpboot: CPU 61 is now offline [ 238.480275] smpboot: CPU 62 is now offline [ 245.991080] ------------[ cut here ]------------ [ 245.996270] WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:264 dev_watchdog+0x246/0x250() [ 246.005688] NETDEV WATCHDOG: p786p1 (ixgbe): transmit queue 0 timed out [ 246.013070] Modules linked in: lockd sunrpc iTCO_wdt iTCO_vendor_support sb_edac ixgbe microcode e1000e pcspkr joydev edac_core lpc_ich ioatdma ptp mdio mfd_core i2c_i801 dca pps_core i2c_core wmi acpi_cpufreq isci libsas scsi_transport_sas [ 246.037633] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.12.0+ #14 [ 246.044451] Hardware name: Intel Corporation S4600LH ........../SVRBD-ROW_T, BIOS SE5C600.86B.01.08.0003.022620131521 02/26/2013 [ 246.057371] 0000000000000009 ffff88081fa03d40 ffffffff8164fbf6 ffff88081fa0ee48 [ 246.065728] ffff88081fa03d90 ffff88081fa03d80 ffffffff81054ecc ffff88081fa13040 [ 246.074073] 0000000000000000 ffff88200cce0000 0000000000000040 0000000000000000 [ 246.082430] Call Trace: [ 246.085174] <IRQ> [<ffffffff8164fbf6>] dump_stack+0x46/0x58 [ 246.091633] [<ffffffff81054ecc>] warn_slowpath_common+0x8c/0xc0 [ 246.098352] [<ffffffff81054fb6>] warn_slowpath_fmt+0x46/0x50 [ 246.104786] [<ffffffff815710d6>] dev_watchdog+0x246/0x250 [ 246.110923] [<ffffffff81570e90>] ? dev_deactivate_queue.constprop.31+0x80/0x80 [ 246.119097] [<ffffffff8106092a>] call_timer_fn+0x3a/0x110 [ 246.125224] [<ffffffff8106280f>] ? update_process_times+0x6f/0x80 [ 246.132137] [<ffffffff81570e90>] ? dev_deactivate_queue.constprop.31+0x80/0x80 [ 246.140308] [<ffffffff81061db0>] run_timer_softirq+0x1f0/0x2a0 [ 246.146933] [<ffffffff81059a80>] __do_softirq+0xe0/0x220 [ 246.152976] [<ffffffff8165fedc>] call_softirq+0x1c/0x30 [ 246.158920] [<ffffffff810045f5>] do_softirq+0x55/0x90 [ 246.164670] [<ffffffff81059d35>] irq_exit+0xa5/0xb0 [ 246.170227] [<ffffffff8166062a>] smp_apic_timer_interrupt+0x4a/0x60 [ 246.177324] [<ffffffff8165f40a>] apic_timer_interrupt+0x6a/0x70 [ 246.184041] <EOI> [<ffffffff81505a1b>] ? cpuidle_enter_state+0x5b/0xe0 [ 246.191559] [<ffffffff81505a17>] ? cpuidle_enter_state+0x57/0xe0 [ 246.198374] [<ffffffff81505b5d>] cpuidle_idle_call+0xbd/0x200 [ 246.204900] [<ffffffff8100b7ae>] arch_cpu_idle+0xe/0x30 [ 246.210846] [<ffffffff810a47b0>] cpu_startup_entry+0xd0/0x250 [ 246.217371] [<ffffffff81646b47>] rest_init+0x77/0x80 [ 246.223028] [<ffffffff81d09e8e>] start_kernel+0x3ee/0x3fb [ 246.229165] [<ffffffff81d0989f>] ? repair_env_string+0x5e/0x5e [ 246.235787] [<ffffffff81d095a5>] x86_64_start_reservations+0x2a/0x2c [ 246.242990] [<ffffffff81d0969f>] x86_64_start_kernel+0xf8/0xfc [ 246.249610] ---[ end trace fb74fdef54d79039 ]--- [ 246.254807] ixgbe 0000:c2:00.0 p786p1: initiating reset due to tx timeout [ 246.262489] ixgbe 0000:c2:00.0 p786p1: Reset adapter Last login: Mon Nov 11 08:35:14 from 10.18.17.119 [root@(none) ~]# [ 246.792676] ixgbe 0000:c2:00.0 p786p1: detected SFP+: 5 [ 249.231598] ixgbe 0000:c2:00.0 p786p1: NIC Link is Up 10 Gbps, Flow Control: RX/TX [ 246.792676] ixgbe 0000:c2:00.0 p786p1: detected SFP+: 5 [ 249.231598] ixgbe 0000:c2:00.0 p786p1: NIC Link is Up 10 Gbps, Flow Control: RX/TX (last lines keep repeating. ixgbe driver is dead until module reload.) If the downed cpu has more vectors than are free on the remaining cpus on the system, it is possible that some vectors are "orphaned" even though they are assigned to a cpu. In this case, since the ixgbe driver had a watchdog, the watchdog fired and notified that something was wrong. This patch adds a function, check_vectors(), to compare the number of vectors on the CPU going down and compares it to the number of vectors available on the system. If there aren't enough vectors for the CPU to go down, an error is returned and propogated back to userspace. v2: Do not need to look at percpu irqs v3: Need to check affinity to prevent counting of MSIs in IOAPIC Lowest Priority Mode v4: Additional changes suggested by Gong Chen. v5/v6/v7/v8: Updated comment text Signed-off-by: NPrarit Bhargava <prarit@redhat.com> Link: http://lkml.kernel.org/r/1389613861-3853-1-git-send-email-prarit@redhat.comReviewed-by: NGong Chen <gong.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Yang Zhang <yang.z.zhang@Intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Janet Morgan <janet.morgan@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Ruiv Wang <ruiv.wang@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: <stable@vger.kernel.org>
-
由 H. Peter Anvin 提交于
Make disabled_cpu_apicid static and read_mostly, and fix a couple of typos. Reported-by: NIngo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/20140115182511.GA22737@gmail.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
-
由 HATAYAMA Daisuke 提交于
Add disable_cpu_apicid kernel parameter. To use this kernel parameter, specify an initial APIC ID of the corresponding CPU you want to disable. This is mostly used for the kdump 2nd kernel to disable BSP to wake up multiple CPUs without causing system reset or hang due to sending INIT from AP to BSP. Kdump users first figure out initial APIC ID of the BSP, CPU0 in the 1st kernel, for example from /proc/cpuinfo and then set up this kernel parameter for the 2nd kernel using the obtained APIC ID. However, doing this procedure at each boot time manually is awkward, which should be automatically done by user-land service scripts, for example, kexec-tools on fedora/RHEL distributions. This design is more flexible than disabling BSP in kernel boot time automatically in that in kernel boot time we have no choice but referring to ACPI/MP table to obtain initial APIC ID for BSP, meaning that the method is not applicable to the systems without such BIOS tables. One assumption behind this design is that users get initial APIC ID of the BSP in still healthy state and so BSP is uniquely kept in CPU0. Thus, through the kernel parameter, only one initial APIC ID can be specified. In a comparison with disabled_cpu_apicid, we use read_apic_id(), not boot_cpu_physical_apicid, because on some platforms, the variable is modified to the apicid reported as BSP through MP table and this function is executed with the temporarily modified boot_cpu_physical_apicid. As a result, disabled_cpu_apicid kernel parameter doesn't work well for apicids of APs. Fixing the wrong handling of boot_cpu_physical_apicid requires some reviews and tests beyond some platforms and it could take some time. The fix here is a kind of workaround to focus on the main topic of this patch. Signed-off-by: NHATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Link: http://lkml.kernel.org/r/20140115064458.1545.38775.stgit@localhost6.localdomain6Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 15 1月, 2014 2 次提交
-
-
由 Borislav Petkov 提交于
Having u32 and struct cpuinfo_x86 * by the same name is not very smart, although it was ok in this case due to the limited scope of u32 c and it being used only once in there. Fix this. Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1389786735-16751-1-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 Borislav Petkov 提交于
This adds the workaround for erratum 793 as a precaution in case not every BIOS implements it. This addresses CVE-2013-6885. Erratum text: [Revision Guide for AMD Family 16h Models 00h-0Fh Processors, document 51810 Rev. 3.04 November 2013] 793 Specific Combination of Writes to Write Combined Memory Types and Locked Instructions May Cause Core Hang Description Under a highly specific and detailed set of internal timing conditions, a locked instruction may trigger a timing sequence whereby the write to a write combined memory type is not flushed, causing the locked instruction to stall indefinitely. Potential Effect on System Processor core hang. Suggested Workaround BIOS should set MSR C001_1020[15] = 1b. Fix Planned No fix planned [ hpa: updated description, fixed typo in MSR name ] Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/20140114230711.GS29865@pd.tnicTested-by: NAravind Gopalakrishnan <aravind.gopalakrishnan@amd.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 14 1月, 2014 5 次提交
-
-
由 Richard Weinberger 提交于
Currently we do a read, a dummy write and a final read to fetch the error code. The value from the final read is taken. This is not the recommended way and leads to corrupted/lost ESR values. Intel(c) 64 and IA-32 Architectures Software Developer's Manual, Combined Volumes 1, 2ABC, 3ABC, Section 10.5.3 states: Before attempt to read from the ESR, software should first write to it. (The value written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This write also rearms the APIC error interrupt triggering mechanism. This patch removes the first read such that we are conform with the manual. On my (very old) Pentium MMX SMP system this patch fixes the issue that APIC errors: a) are not always reported and b) are reported with false error numbers. Signed-off-by: NRichard Weinberger <richard@nod.at> Cc: seiji.aguchi@hds.com Cc: rientjes@google.com Cc: konrad.wilk@oracle.com Cc: bp@alien8.de Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1389685487-20872-1-git-send-email-richard@nod.atSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Borislav Petkov 提交于
We've grown a bunch of microcode loader files all prefixed with "microcode_". They should be under cpu/ because this is strictly CPU-related functionality so do that and drop the prefix since they're in their own directory now which gives that prefix. :) While at it, drop MICROCODE_INTEL_LIB config item and stash the functionality under CONFIG_MICROCODE_INTEL as it was its only user. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NAravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
-
由 Borislav Petkov 提交于
The original idea to use the microcode cache for the APs doesn't pan out because we do memory allocation there very early and with IRQs disabled and we don't want to involve GFP_ATOMIC allocations. Not if it can be helped. Thus, extend the caching of the BSP patch approach to the APs and iterate over the ucode in the initrd instead of using the cache. We still save the relevant patches to it but later, right before we jettison the initrd. While at it, fix early ucode loading on 32-bit too. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NAravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
-
由 Borislav Petkov 提交于
We want to use those in AMD's early loading path too. Also, add a native_wrmsrl variant. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NAravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
-
由 Borislav Petkov 提交于
The ramdisk can possibly get relocated if the whole image is not mapped. And since we're going over it in the microcode loader and fishing out the relevant microcode patches, we want access it at its new location. Thus, export it. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NAravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
-
- 13 1月, 2014 5 次提交
-
-
由 Peter Zijlstra 提交于
Use a static_key to avoid touching tsc_disabled and a runtime condition in native_sched_clock() -- less cachelines touched is always better. MAINLINE PRE POST sched_clock_stable: 1 1 1 (cold) sched_clock: 329841 215295 213039 (cold) local_clock: 301773 220773 216084 (warm) sched_clock: 38375 25659 25231 (warm) local_clock: 100371 27242 27601 (warm) rdtsc: 27340 24208 24203 sched_clock_stable: 0 0 0 (cold) sched_clock: 382634 237019 240055 (cold) local_clock: 396890 294819 299942 (warm) sched_clock: 38194 25609 25276 (warm) local_clock: 143452 71232 73232 (warm) rdtsc: 27345 24243 24244 Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-hrz87bo37qke25bty6pnfy4b@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
In order to avoid the runtime condition and variable load turn sched_clock_stable into a static_key. Also provide a shorter implementation of local_clock() and cpu_clock(int) when sched_clock_stable==1. MAINLINE PRE POST sched_clock_stable: 1 1 1 (cold) sched_clock: 329841 221876 215295 (cold) local_clock: 301773 234692 220773 (warm) sched_clock: 38375 25602 25659 (warm) local_clock: 100371 33265 27242 (warm) rdtsc: 27340 24214 24208 sched_clock_stable: 0 0 0 (cold) sched_clock: 382634 235941 237019 (cold) local_clock: 396890 297017 294819 (warm) sched_clock: 38194 25233 25609 (warm) local_clock: 143452 71234 71232 (warm) rdtsc: 27345 24245 24243 Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-eummbdechzz37mwmpags1gjr@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Use a ring-buffer like multi-version object structure which allows always having a coherent object; we use this to avoid having to disable IRQs while reading sched_clock() and avoids a problem when getting an NMI while changing the cyc2ns data. MAINLINE PRE POST sched_clock_stable: 1 1 1 (cold) sched_clock: 329841 331312 257223 (cold) local_clock: 301773 310296 309889 (warm) sched_clock: 38375 38247 25280 (warm) local_clock: 100371 102713 85268 (warm) rdtsc: 27340 27289 24247 sched_clock_stable: 0 0 0 (cold) sched_clock: 382634 372706 301224 (cold) local_clock: 396890 399275 399870 (warm) sched_clock: 38194 38124 25630 (warm) local_clock: 143452 148698 129629 (warm) rdtsc: 27345 27365 24307 Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-s567in1e5ekq2nlyhn8f987r@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Prarit Bhargava 提交于
Fengguang Wu's 0day kernel build service reported the following build warning: arch/x86/kernel/apic/io_apic.c:2211 smp_irq_move_cleanup_interrupt() warn: always true condition '(irq <= -1) => (0-u32max <= (-1))' because irq is defined as an unsigned int instead of an int. Fix this trivial error by redefining irq as a signed int. The remaining consumers of the int are okay. Signed-off-by: NPrarit Bhargava <prarit@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Joerg Roedel <joro@8bytes.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/1389620420-7110-1-git-send-email-prarit@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
There are no __cycles_2_ns() users outside of arch/x86/kernel/tsc.c, so move it there. There are no cycles_2_ns() users. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-01lslnavfgo3kmbo4532zlcj@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 12 1月, 2014 3 次提交
-
-
由 Borislav Petkov 提交于
So mce_start_timer() has a 'cpu' argument which is supposed to mean to start a timer on that cpu. However, the code currently starts a timer on the *current* cpu the function runs on and causes the sanity-check in mce_timer_fn to fire: WARNING: CPU: 0 PID: 0 at arch/x86/kernel/cpu/mcheck/mce.c:1286 mce_timer_fn because it is running on the wrong cpu. This was triggered by Prarit Bhargava <prarit@redhat.com> by offlining all the cpus in succession. Then, we were fiddling with the CMCI storm settings when starting the timer whereas there's no need for that - if there's storm happening on this newly restarted cpu, we're going to be in normal CMCI mode initially and then when the CMCI interrupt starts firing, we're going to go to the polling mode with the timer real soon. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NPrarit Bhargava <prarit@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Reviewed-by: NChen, Gong <gong.chen@linux.intel.com> Link: http://lkml.kernel.org/r/1387722156-5511-1-git-send-email-prarit@redhat.com
-
由 Prarit Bhargava 提交于
During heavy CPU-hotplug operations the following spurious kernel warnings can trigger: do_IRQ: No ... irq handler for vector (irq -1) [ See: https://bugzilla.kernel.org/show_bug.cgi?id=64831 ] When downing a cpu it is possible that there are unhandled irqs left in the APIC IRR register. The following code path shows how the problem can occur: 1. CPU 5 is to go down. 2. cpu_disable() on CPU 5 executes with interrupt flag cleared by local_irq_save() via stop_machine(). 3. IRQ 12 asserts on CPU 5, setting IRR but not ISR because interrupt flag is cleared (CPU unabled to handle the irq) 4. IRQs are migrated off of CPU 5, and the vectors' irqs are set to -1. 5. stop_machine() finishes cpu_disable() 6. cpu_die() for CPU 5 executes in normal context. 7. CPU 5 attempts to handle IRQ 12 because the IRR is set for IRQ 12. The code attempts to find the vector's IRQ and cannot because it has been set to -1. 8. do_IRQ() warning displays warning about CPU 5 IRQ 12. I added a debug printk to output which CPU & vector was retriggered and discovered that that we are getting bogus events. I see a 100% correlation between this debug printk in fixup_irqs() and the do_IRQ() warning. This patchset resolves this by adding definitions for VECTOR_UNDEFINED(-1) and VECTOR_RETRIGGERED(-2) and modifying the code to use them. Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=64831Signed-off-by: NPrarit Bhargava <prarit@redhat.com> Reviewed-by: NRui Wang <rui.y.wang@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Yang Zhang <yang.z.zhang@Intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: janet.morgan@Intel.com Cc: tony.luck@Intel.com Cc: ruiv.wang@gmail.com Link: http://lkml.kernel.org/r/1388938252-16627-1-git-send-email-prarit@redhat.com [ Cleaned up the code a bit. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Stephane Eranian 提交于
This patch adds support for the Intel RAPL energy counter PP1 (Power Plane 1). On client processors, it usually corresponds to the energy consumption of the builtin graphic card. That is why the sysfs event is called energy-gpu. New event: - name: power/energy-gpu/ - code: event=0x4 - unit: 2^-32 Joules On processors without graphics, this should count 0. The patch only enables this event on client processors. Reviewed-by: NMaria Dimakopoulou <maria.n.dimakopoulou@gmail.com> Signed-off-by: NStephane Eranian <eranian@google.com> Cc: ak@linux.intel.com Cc: acme@redhat.com Cc: jolsa@redhat.com Cc: zheng.z.yan@intel.com Cc: bp@alien8.de Cc: vincent.weaver@maine.edu Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1389176153-3128-3-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-