- 28 1月, 2011 6 次提交
-
-
由 Dave Chinner 提交于
Failure to commit a transaction into the CIL is not handled correctly. This currently can only happen when racing with a shutdown and requires an explicit shutdown check, so it rare and can be avoided. Remove the shutdown check and make the CIL commit a void function to indicate it will always succeed, thereby removing the incorrectly handled failure case. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
The extent size hint can be set to larger than an AG. This means that the alignment process can push the range to be allocated outside the bounds of the AG, resulting in assert failures or corrupted bmbt records. Similarly, if the extsize is larger than the maximum extent size supported, the alignment process will produce extents that are too large to fit into the bmbt records, resulting in a different type of assert/corruption failure. Fix this by limiting extsize at the time іt is set firstly to be less than MAXEXTLEN, then to be a maximum of half the size of the AGs in the filesystem for non-realtime inodes. Realtime inodes do not allocate out of AGs, so don't have to be restricted by the size of AGs. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
When doing delayed allocation, if the allocation size is for a maximally sized extent, extent size alignment can push it over this limit. This results in an assert failure in xfs_bmbt_set_allf() as the extent length is too large to find in the extent record. Fix this by ensuring that we allow for space that extent size alignment requires (up to 2 * (extsize -1) blocks as we have to handle both head and tail alignment) when limiting the maximum size of the extent. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
Delayed allocation extents can be larger than AGs, so when trying to convert a large range we may scan every AG inside xfs_bmap_alloc_nullfb() trying to find an AG with a size larger than an AG. We should stop when we find the first AG with a maximum possible allocation size. This causes excessive CPU usage when there are lots of AGs. The same problem occurs when doing preallocation of a range larger than an AG. Fix the problem by limiting real allocation lengths to the maximum that an AG can support. This means if we have empty AGs, we'll stop the search at the first of them. If there are no empty AGs, we'll still scan them all, but that is a different problem.... Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
rounddown_power_of_2() returns an undefined result when passed a value of zero. The specualtive delayed allocation code is doing this when the inode is zero length. Hence occasionally the preallocation is much, much larger than is necessary (e.g. 8GB for a 270 _byte_ file). Ensure we don't even pass a zero value to this function so the result of preallocation is always the desired size. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
After test 139, kmemleak shows: unreferenced object 0xffff880078b405d8 (size 400): comm "xfs_io", pid 4904, jiffies 4294909383 (age 1186.728s) hex dump (first 32 bytes): 60 c1 17 79 00 88 ff ff 60 c1 17 79 00 88 ff ff `..y....`..y.... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60 [<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0 [<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0 [<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50 [<ffffffff8147cd6b>] xfs_efi_init+0x4b/0xb0 [<ffffffff814a4ee8>] xfs_trans_get_efi+0x58/0x90 [<ffffffff81455fab>] xfs_bmap_finish+0x8b/0x1d0 [<ffffffff814851b4>] xfs_itruncate_finish+0x2c4/0x5d0 [<ffffffff814a970f>] xfs_setattr+0x8df/0xa70 [<ffffffff814b5c7b>] xfs_vn_setattr+0x1b/0x20 [<ffffffff8117dc00>] notify_change+0x170/0x2e0 [<ffffffff81163bf6>] do_truncate+0x66/0xa0 [<ffffffff81163d0b>] sys_ftruncate+0xdb/0xe0 [<ffffffff8103a002>] system_call_fastpath+0x16/0x1b [<ffffffffffffffff>] 0xffffffffffffffff The cause of the leak is that the "remove" parameter of IOP_UNPIN() is never set when a CIL push is aborted. This means that the EFI item is never freed if it was in the push being cancelled. The problem is specific to delayed logging, but has uncovered a couple of problems with the handling of IOP_UNPIN(remove). Firstly, we cannot safely call xfs_trans_del_item() from IOP_UNPIN() in the CIL commit failure path or the iclog write failure path because for delayed loging we have no transaction context. Hence we must only call xfs_trans_del_item() if the log item being unpinned has an active log item descriptor. Secondly, xfs_trans_uncommit() does not handle log item descriptor freeing during the traversal of log items on a transaction. It can reference a freed log item descriptor when unpinning an EFI item. Hence it needs to use a safe list traversal method to allow items to be removed from the transaction during IOP_UNPIN(). Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
- 27 1月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
The kmemleak detector shows this after test 139: unreferenced object 0xffff880079b88bb0 (size 264): comm "xfs_io", pid 4904, jiffies 4294909382 (age 276.824s) hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff 48 7b c9 82 ff ff ff ff ........H{...... backtrace: [<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60 [<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0 [<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0 [<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50 [<ffffffff8148f394>] xlog_ticket_alloc+0x34/0x170 [<ffffffff81494444>] xlog_cil_push+0xa4/0x3f0 [<ffffffff81494eca>] xlog_cil_force_lsn+0x15a/0x160 [<ffffffff814933a5>] _xfs_log_force_lsn+0x75/0x2d0 [<ffffffff814a264d>] _xfs_trans_commit+0x2bd/0x2f0 [<ffffffff8148bfdd>] xfs_iomap_write_allocate+0x1ad/0x350 [<ffffffff814ac17f>] xfs_map_blocks+0x21f/0x370 [<ffffffff814ad1b7>] xfs_vm_writepage+0x1c7/0x550 [<ffffffff8112200a>] __writepage+0x1a/0x50 [<ffffffff81122df2>] write_cache_pages+0x1c2/0x4c0 [<ffffffff81123117>] generic_writepages+0x27/0x30 [<ffffffff814aba5d>] xfs_vm_writepages+0x5d/0x80 By inspection, the leak occurs when xlog_write() returns and error and we jump to the abort path without dropping the reference on the active ticket. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
- 18 1月, 2011 1 次提交
-
-
由 Geert Uytterhoeven 提交于
On platforms that call panic() inside their BUG() macro (m68k/sun3, and all platforms that don't set HAVE_ARCH_BUG), compilation fails with: | fs/xfs/support/debug.c: In function ‘xfs_cmn_err’: | fs/xfs/support/debug.c:92: error: called object ‘panic’ is not a function as the local variable "panic" conflicts with the "panic()" function. Rename the local variable to resolve this. Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 1月, 2011 2 次提交
-
-
由 Christoph Hellwig 提交于
Currently all filesystems except XFS implement fallocate asynchronously, while XFS forced a commit. Both of these are suboptimal - in case of O_SYNC I/O we really want our allocation on disk, especially for the !KEEP_SIZE case where we actually grow the file with user-visible zeroes. On the other hand always commiting the transaction is a bad idea for fast-path uses of fallocate like for example in recent Samba versions. Given that block allocation is a data plane operation anyway change it from an inode operation to a file operation so that we have the file structure available that lets us check for O_SYNC. This also includes moving the code around for a few of the filesystems, and remove the already unnedded S_ISDIR checks given that we only wire up fallocate for regular files. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Instead of various home grown checks that might need updates for new flags just check for any bit outside the mask of the features supported by the filesystem. This makes the check future proof for any newly added flag. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 13 1月, 2011 1 次提交
-
-
由 Josef Bacik 提交于
This patch simply allows XFS to handle the hole punching flag in fallocate properly. I've tested this with a little program that does a bunch of random hole punching with FL_KEEP_SIZE and without it to make sure it does the right thing. Thanks, Signed-off-by: NJosef Bacik <josef@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 12 1月, 2011 6 次提交
-
-
由 Dave Chinner 提交于
We currently have a global error message buffer in cmn_err that is protected by a spin lock that disables interrupts. Recently there have been reports of NMI timeouts occurring when the console is being flooded by SCSI error reports due to cmn_err() getting stuck trying to print to the console while holding this lock (i.e. with interrupts disabled). The NMI watchdog is seeing this CPU as non-responding and so is triggering a panic. While the trigger for the reported case is SCSI errors, pretty much anything that spams the kernel log could cause this to occur. Realistically the only reason that we have the intemediate message buffer is to prepend the correct kernel log level prefix to the log message. The only reason we have the lock is to protect the global message buffer and the only reason the message buffer is global is to keep it off the stack. Hence if we can avoid needing a global message buffer we avoid needing the lock, and we can do this with a small amount of cleanup and some preprocessor tricks: 1. clean up xfs_cmn_err() panic mask functionality to avoid needing debug code in xfs_cmn_err() 2. remove the couple of "!" message prefixes that still exist that the existing cmn_err() code steps over. 3. redefine CE_* levels directly to KERN_* 4. redefine cmn_err() and friends to use printk() directly via variable argument length macros. By doing this, we can completely remove the cmn_err() code and the lock that is causing the problems, and rely solely on printk() serialisation to ensure that we don't get garbled messages. A series of followup patches is really needed to clean up all the cmn_err() calls and related messages properly, but that results in a series that is not easily back portable to enterprise kernels. Hence this initial fix is only to address the direct problem in the lowest impact way possible. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Anton Blanchard 提交于
I received a ppc64 bug report involving xfs but the assertion was filtered out by the console log level. Use KERN_CRIT to ensure it makes it out. Signed-off-by: NAnton Blanchard <anton@samba.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Jesper Juhl 提交于
In fs/xfs/xfs_trans.c::xfs_trans_unreserve_and_mod_sb() at the out: label we have this: ASSERT(error = 0); I believe a comparison was intended, not an assignment. If I'm right, the patch below fixes that up. Signed-off-by: NJesper Juhl <jj@chaosbits.net> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
If we get an IO error on a synchronous superblock write, we attach an error release function to it so that when the last reference goes away the release function is called and the buffer is invalidated and unlocked. The buffer is left locked until the release function is called so that other concurrent users of the buffer will be locked out until the buffer error is fully processed. Unfortunately, for the superblock buffer the filesyetm itself holds a reference to the buffer which prevents the reference count from dropping to zero and the release function being called. As a result, once an IO error occurs on a sync write, the buffer will never be unlocked and all future attempts to lock the buffer will hang. To make matters worse, this problems is not unique to such buffers; if there is a concurrent _xfs_buf_find() running, the lookup will grab a reference to the buffer and then wait on the buffer lock, preventing the reference count from ever falling to zero and hence unlocking the buffer. As such, the whole b_relse function implementation is broken because it cannot rely on the buffer reference count falling to zero to unlock the errored buffer. The synchronous write error path is the only path that uses this callback - it is used to ensure that the synchronous waiter gets the buffer error before the error state is cleared from the buffer by the release function. Given that the only sychronous buffer writes now go through xfs_bwrite and the error path in question can only occur for a write of a dirty, logged buffer, we can move most of the b_relse processing to happen inline in xfs_buf_iodone_callbacks, just like a normal I/O completion. In addition to that we make sure the error is not cleared in xfs_buf_iodone_callbacks, so that xfs_bwrite can reliably check it. Given that xfs_bwrite keeps the buffer locked until it has waited for it and checked the error this allows to reliably propagate the error to the caller, and make sure that the buffer is reliably unlocked. Given that xfs_buf_iodone_callbacks was the only instance of the b_relse callback we can remove it entirely. Based on earlier patches by Dave Chinner and Ajeet Yadav. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reported-by: NAjeet Yadav <ajeet.yadav.77@gmail.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Allow manual discards from userspace using the FITRIM ioctl. This is not intended to be run during normal workloads, as the freepsace btree walks can cause large performance degradation. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
To ensure the log is covered and the filesystem idles correctly, we need to ensure that dummy transactions hit the disk and do not stay pinned in memory. If the superblock is pinned in memory, it can't be flushed so the log covering cannot make progress. The result is dependent on timing - more oftent han not we continue to issues a log covering transaction every 36s rather than idling after ~90s. Fix this by making the log covering transaction synchronous. To avoid additional log force from xfssyncd, make the log covering transaction take the place of the existing log force in the xfssyncd background sync process. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 11 1月, 2011 4 次提交
-
-
由 Dave Chinner 提交于
When two concurrent unaligned, non-overlapping direct IOs are issued to the same block, the direct Io layer will race to zero the block. The result is that one of the concurrent IOs will overwrite data written by the other IO with zeros. This is demonstrated by the xfsqa test 240. To avoid this problem, serialise all unaligned direct IOs to an inode with a big hammer. We need a big hammer approach as we need to serialise AIO as well, so we can't just block writes on locks. Hence, the big hammer is calling xfs_ioend_wait() while holding out other unaligned direct IOs from starting. We don't bother trying to serialised aligned vs unaligned IOs as they are overlapping IO and the result of concurrent overlapping IOs is undefined - the result of either IO is a valid result so we let them race. Hence we only penalise unaligned IO, which already has a major overhead compared to aligned IO so this isn't a major problem. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The buffered IO and direct IO write paths share a common set of checks and limiting code prior to issuing the write. Factor that into a common helper function. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Complete the split of the different write IO paths by splitting the buffered IO write path out of xfs_file_aio_write(). This makes the different mechanisms of the write patchs easier to follow. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The current xfs_file_aio_write code is a mess of locking shenanigans to handle the different locking requirements of buffered and direct IO. Start to clean this up by disentangling the direct IO path from the mess. This also removes the failed direct IO fallback path to buffered IO. XFS handles all direct IO cases without needing to fall back to buffered IO, so we can safely remove this unused path. This greatly simplifies the logic and locking needed in the write path. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 12 1月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
We need to obtain the i_mutex, i_iolock and i_ilock during the read and write paths. Add a set of wrapper functions to neatly encapsulate the lock ordering and shared/exclusive semantics to make the locking easier to follow and get right. Note that this changes some of the exclusive locking serialisation in that serialisation will occur against the i_mutex instead of the XFS_IOLOCK_EXCL. This does not change any behaviour, and it is arguably more efficient to use the mutex for such serialisation than the rw_sem. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 11 1月, 2011 3 次提交
-
-
由 Dave Chinner 提交于
Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
xfs_file_aio_write() only returns the error from synchronous flushing of the data and inode if error == 0. At the point where error is being checked, it is guaranteed to be > 0. Therefore any errors returned by the data or fsync flush will never be returned. Fix the checks so we overwrite the current error once and only if an error really occurred. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 07 1月, 2011 3 次提交
-
-
由 Nick Piggin 提交于
This simple implementation just checks for no ACLs on the inode, and if so, then the rcu-walk may proceed, otherwise fail it. Signed-off-by: NNick Piggin <npiggin@kernel.dk>
-
由 Nick Piggin 提交于
Signed-off-by: NNick Piggin <npiggin@kernel.dk>
-
由 Nick Piggin 提交于
RCU free the struct inode. This will allow: - Subsequent store-free path walking patch. The inode must be consulted for permissions when walking, so an RCU inode reference is a must. - sb_inode_list_lock to be moved inside i_lock because sb list walkers who want to take i_lock no longer need to take sb_inode_list_lock to walk the list in the first place. This will simplify and optimize locking. - Could remove some nested trylock loops in dcache code - Could potentially simplify things a bit in VM land. Do not need to take the page lock to follow page->mapping. The downsides of this is the performance cost of using RCU. In a simple creat/unlink microbenchmark, performance drops by about 10% due to inability to reuse cache-hot slab objects. As iterations increase and RCU freeing starts kicking over, this increases to about 20%. In cases where inode lifetimes are longer (ie. many inodes may be allocated during the average life span of a single inode), a lot of this cache reuse is not applicable, so the regression caused by this patch is smaller. The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU, however this adds some complexity to list walking and store-free path walking, so I prefer to implement this at a later date, if it is shown to be a win in real situations. I haven't found a regression in any non-micro benchmark so I doubt it will be a problem. Signed-off-by: NNick Piggin <npiggin@kernel.dk>
-
- 21 12月, 2010 2 次提交
-
-
由 Dave Chinner 提交于
The only thing that the grant lock remains to protect is the grant head manipulations when adding or removing space from the log. These calculations are already based on atomic variables, so we can already update them safely without locks. However, the grant head manpulations require atomic multi-step calculations to be executed, which the algorithms currently don't allow. To make these multi-step calculations atomic, convert the algorithms to compare-and-exchange loops on the atomic variables. That is, we sample the old value, perform the calculation and use atomic64_cmpxchg() to attempt to update the head with the new value. If the head has not changed since we sampled it, it will succeed and we are done. Otherwise, we rerun the calculation again from a new sample of the head. This allows us to remove the grant lock from around all the grant head space manipulations, and that effectively removes the grant lock from the log completely. Hence we can remove the grant lock completely from the log at this point. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant ticket wait queues are currently protected by the log grant lock. However, the queues are functionally independent from each other, and operations on them only require serialisation against other queue operations now that all of the other log variables they use are atomic values. Hence, we can make them independent of the grant lock by introducing new locks just to protect the lists operations. because the lists are independent, we can use a lock per list and ensure that reserve and write head queuing do not contend. To ensure forced shutdowns work correctly in conjunction with the new fast paths, ensure that we check whether the log has been shut down in the grant functions once we hold the relevant spin locks but before we go to sleep. This is needed to co-ordinate correctly with the wakeups that are issued on the ticket queues so we don't leave any processes sleeping on the queues during a shutdown. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 15 12月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
cancel_rearming_delayed_work[queue]() has been superceded by cancel_delayed_work_sync() quite some time ago. Convert all the in-kernel users. The conversions are completely equivalent and trivial. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: N"David S. Miller" <davem@davemloft.net> Acked-by: NGreg Kroah-Hartman <gregkh@suse.de> Acked-by: NEvgeniy Polyakov <zbr@ioremap.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: netdev@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Neil Brown <neilb@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: xfs-masters@oss.sgi.com Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: netfilter-devel@vger.kernel.org Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: linux-nfs@vger.kernel.org
-
- 10 12月, 2010 1 次提交
-
-
由 Christoph Hellwig 提交于
Now that we don't mark VFS inodes dirty anymore for internal timestamp changes, but rely on the transaction subsystem to push them out, we need to explicitly log the source inode in rename after updating it's timestamps to make sure the changes actually get forced out by sync/fsync or an AIL push. We already account for the fourth inode in the log reservation, as a rename of directories needs to update the nlink field, so just adding the xfs_trans_log_inode call is enough. This fixes the xfsqa 065 regression introduced by: "xfs: don't use vfs writeback for pure metadata modifications" Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 03 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
Convert the log grant heads to atomic64_t types in preparation for converting the accounting algorithms to atomic operations. his patch just converts the variables; the algorithmic changes are in a separate patch for clarity. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
log->l_tail_lsn is currently protected by the log grant lock. The lock is only needed for serialising readers against writers, so we don't really need the lock if we make the l_tail_lsn variable an atomic. Converting the l_tail_lsn variable to an atomic64_t means we can start to peel back the grant lock from various operations. Also, provide functions to safely crack an atomic LSN variable into it's component pieces and to recombined the components into an atomic variable. Use them where appropriate. This also removes the need for explicitly holding a spinlock to read the l_tail_lsn on 32 bit platforms. Signed-off-by: NDave Chinner <dchinner@redhat.com>
-
- 03 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
log->l_last_sync_lsn is updated in only one critical spot - log buffer Io completion - and is protected by the grant lock here. This requires the grant lock to be taken for every log buffer IO completion. Converting the l_last_sync_lsn variable to an atomic64_t means that we do not need to take the grant lock in log buffer IO completion to update it. This also removes the need for explicitly holding a spinlock to read the l_last_sync_lsn on 32 bit platforms. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 5 次提交
-
-
由 Dave Chinner 提交于
The xlog_grant_push_ail() currently takes the grant lock internally to sample the tail lsn, last sync lsn and the reserve grant head. Most of the callers already hold the grant lock but have to drop it before calling xlog_grant_push_ail(). This is a left over from when the AIL tail pushing was done in line and hence xlog_grant_push_ail had to drop the grant lock. AIL push is now done in another thread and hence we can safely hold the grant lock over the entire xlog_grant_push_ail call. Push the grant lock outside of xlog_grant_push_ail() to simplify the locking and synchronisation needed for tail pushing. This will reduce traffic on the grant lock by itself, but this is only one step in preparing for the complete removal of the grant lock. While there, clean up the formatting of xlog_grant_push_ail() to match the rest of the XFS code. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant queues are one of the few places left using sv_t constructs for waiting. Given we are touching this code, we should convert them to plain wait queues. While there, convert all the other sv_t users in the log code as well. Seeing as this removes the last users of the sv_t type, remove the header file defining the wrapper and the fragments that still reference it. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Prepare for switching the grant heads to atomic variables by combining the two 32 bit values that make up the grant head into a single 64 bit variable. Provide wrapper functions to combine and split the grant heads appropriately for calculations and use them as necessary. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant space calculations are repeated for both write and reserve grant heads. To make it simpler to convert the calculations toa different algorithm, factor them so both the gratn heads use the same calculation functions. Once this is done we can drop the wrappers that are used in only a couple of place to update both grant heads at once as they don't provide any particular value. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Factor repeated debug code out of grant head manipulation functions into a separate function. This removes ifdef DEBUG spagetti from the code and makes the code easier to follow. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-