1. 02 8月, 2008 1 次提交
  2. 10 2月, 2008 3 次提交
  3. 09 2月, 2008 1 次提交
    • M
      CONFIG_HIGHPTE vs. sub-page page tables. · 2f569afd
      Martin Schwidefsky 提交于
      Background: I've implemented 1K/2K page tables for s390.  These sub-page
      page tables are required to properly support the s390 virtualization
      instruction with KVM.  The SIE instruction requires that the page tables
      have 256 page table entries (pte) followed by 256 page status table entries
      (pgste).  The pgstes are only required if the process is using the SIE
      instruction.  The pgstes are updated by the hardware and by the hypervisor
      for a number of reasons, one of them is dirty and reference bit tracking.
      To avoid wasting memory the standard pte table allocation should return
      1K/2K (31/64 bit) and 2K/4K if the process is using SIE.
      
      Problem: Page size on s390 is 4K, page table size is 1K or 2K.  That means
      the s390 version for pte_alloc_one cannot return a pointer to a struct
      page.  Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one
      cannot return a pointer to a pte either, since that would require more than
      32 bit for the return value of pte_alloc_one (and the pte * would not be
      accessible since its not kmapped).
      
      Solution: The only solution I found to this dilemma is a new typedef: a
      pgtable_t.  For s390 pgtable_t will be a (pte *) - to be introduced with a
      later patch.  For everybody else it will be a (struct page *).  The
      additional problem with the initialization of the ptl lock and the
      NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and
      a destructor pgtable_page_dtor.  The page table allocation and free
      functions need to call these two whenever a page table page is allocated or
      freed.  pmd_populate will get a pgtable_t instead of a struct page pointer.
       To get the pgtable_t back from a pmd entry that has been installed with
      pmd_populate a new function pmd_pgtable is added.  It replaces the pmd_page
      call in free_pte_range and apply_to_pte_range.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: <linux-arch@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2f569afd
  4. 06 2月, 2008 1 次提交
  5. 22 10月, 2007 3 次提交
    • M
      [S390] 4level-fixup cleanup · 190a1d72
      Martin Schwidefsky 提交于
      Get independent from asm-generic/4level-fixup.h
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      190a1d72
    • M
      [S390] Cleanup page table definitions. · 3610cce8
      Martin Schwidefsky 提交于
      - De-confuse the defines for the address-space-control-elements
        and the segment/region table entries.
      - Create out of line functions for page table allocation / freeing.
      - Simplify get_shadow_xxx functions.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      3610cce8
    • M
      [S390] tlb flush fix. · ba8a9229
      Martin Schwidefsky 提交于
      The current tlb flushing code for page table entries violates the
      s390 architecture in a small detail. The relevant section from the
      principles of operation (SA22-7832-02 page 3-47):
      
         "A valid table entry must not be changed while it is attached
         to any CPU and may be used for translation by that CPU except to
         (1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
         INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
         entry, or (3) make a change by means of a COMPARE AND SWAP AND
         PURGE instruction that purges the TLB."
      
      That means if one thread of a multithreaded applciation uses a vma
      while another thread does an unmap on it, the page table entries of
      that vma needs to get removed with IPTE, IDTE or CSP. In some strange
      and rare situations a cpu could check-stop (die) because a entry has
      been pushed out of the TLB that is still needed to complete a
      (milli-coded) instruction. I've never seen it happen with the current
      code on any of the supported machines, so right now this is a
      theoretical problem. But I want to fix it nevertheless, to avoid
      headaches in the futures.
      
      To get this implemented correctly without changing common code the
      primitives ptep_get_and_clear, ptep_get_and_clear_full and
      ptep_set_wrprotect need to use the IPTE instruction to invalidate the
      pte before the new pte value gets stored. If IPTE is always used for
      the three primitives three important operations will have a performace
      hit: fork, mprotect and exit_mmap. Time for some workarounds:
      
      * 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
      tables entries in a batched tlb gather operation. If the mmu_gather
      context passed to unmap_vmas has been started with full_mm_flush==1
      or if only one cpu is online or if the only user of a mm_struct is the
      current process then the fullmm indication in the mmu_gather context is
      set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
      call. No new TLBs can be created while the unmap is in progress. In
      this case ptep_get_and_clear_full clears the ptes with a simple store.
      
      * 2: ptep_get_and_clear is used in change_protection to clear the
      ptes from the page tables before they are reentered with the new
      access flags. At the end of the update flush_tlb_range clears the
      remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
      for each pte and flush_tlb_range is a nop. But if there is only one
      user of the mm_struct then ptep_get_and_clear uses simple stores
      to do the update and flush_tlb_range will flush the TLBs.
      
      * 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
      for a fork to make all ptes of a cow mapping read-only. At the end of
      of copy_page_range dup_mmap will flush the TLBs with a call to
      flush_tlb_mm.  Check for mm->mm_users and if there is only one user
      avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
      TLBs.
      
      Overall for single threaded programs the tlb flush code now performs
      better, for multi threaded programs it is slightly worse. In particular
      exit_mmap() now does a single IDTE for the mm and then just frees every
      page cache reference and every page table page directly without a delay
      over the mmu_gather structure.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      ba8a9229
  6. 22 8月, 2007 1 次提交
  7. 06 2月, 2007 1 次提交
    • G
      [S390] noexec protection · c1821c2e
      Gerald Schaefer 提交于
      This provides a noexec protection on s390 hardware. Our hardware does
      not have any bits left in the pte for a hw noexec bit, so this is a
      different approach using shadow page tables and a special addressing
      mode that allows separate address spaces for code and data.
      
      As a special feature of our "secondary-space" addressing mode, separate
      page tables can be specified for the translation of data addresses
      (storage operands) and instruction addresses. The shadow page table is
      used for the instruction addresses and the standard page table for the
      data addresses.
      The shadow page table is linked to the standard page table by a pointer
      in page->lru.next of the struct page corresponding to the page that
      contains the standard page table (since page->private is not really
      private with the pte_lock and the page table pages are not in the LRU
      list).
      Depending on the software bits of a pte, it is either inserted into
      both page tables or just into the standard (data) page table. Pages of
      a vma that does not have the VM_EXEC bit set get mapped only in the
      data address space. Any try to execute code on such a page will cause a
      page translation exception. The standard reaction to this is a SIGSEGV
      with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn)
      and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the
      kernel to the signal stack frame. Unfortunately, the signal return
      mechanism cannot be modified to use an SA_RESTORER because the
      exception unwinding code depends on the system call opcode stored
      behind the signal stack frame.
      
      This feature requires that user space is executed in secondary-space
      mode and the kernel in home-space mode, which means that the addressing
      modes need to be switched and that the noexec protection only works
      for user space.
      After switching the addressing modes, we cannot use the mvcp/mvcs
      instructions anymore to copy between kernel and user space. A new
      mvcos instruction has been added to the z9 EC/BC hardware which allows
      to copy between arbitrary address spaces, but on older hardware the
      page tables need to be walked manually.
      Signed-off-by: NGerald Schaefer <geraldsc@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      c1821c2e
  8. 08 12月, 2006 1 次提交
    • H
      [S390] Virtual memmap for s390. · f4eb07c1
      Heiko Carstens 提交于
      Virtual memmap support for s390. Inspired by the ia64 implementation.
      
      Unlike ia64 we need a mechanism which allows us to dynamically attach
      shared memory regions.
      These memory regions are accessed via the dcss device driver. dcss
      implements the 'direct_access' operation, which requires struct pages
      for every single shared page.
      Therefore this implementation provides an interface to attach/detach
      shared memory:
      
      int add_shared_memory(unsigned long start, unsigned long size);
      int remove_shared_memory(unsigned long start, unsigned long size);
      
      The purpose of the add_shared_memory function is to add the given
      memory range to the 1:1 mapping and to make sure that the
      corresponding range in the vmemmap is backed with physical pages.
      It also initialises the new struct pages.
      
      remove_shared_memory in turn only invalidates the page table
      entries in the 1:1 mapping. The page tables and the memory used for
      struct pages in the vmemmap are currently not freed. They will be
      reused when the next segment will be attached.
      Given that the maximum size of a shared memory region is 2GB and
      in addition all regions must reside below 2GB this is not too much of
      a restriction, but there is room for improvement.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      f4eb07c1
  9. 05 10月, 2006 1 次提交
  10. 20 9月, 2006 1 次提交
  11. 12 7月, 2006 1 次提交
  12. 26 4月, 2006 1 次提交
  13. 22 3月, 2006 1 次提交
  14. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4