- 18 3月, 2014 1 次提交
-
-
由 Matt Fleming 提交于
Dan reported that phys_efi_get_time() is doing kmalloc(..., GFP_KERNEL) under a spinlock which is very clearly a bug. Since phys_efi_get_time() has no users let's just delete it instead of trying to fix it. Note that since there are no users of phys_efi_get_time(), it is not possible to actually trigger a GFP_KERNEL alloc under the spinlock. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nathan Zimmer <nzimmer@sgi.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Jan Beulich <JBeulich@suse.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 05 3月, 2014 11 次提交
-
-
由 Borislav Petkov 提交于
Alex reported hitting the following BUG after the EFI 1:1 virtual mapping work was merged, kernel BUG at arch/x86/mm/init_64.c:351! invalid opcode: 0000 [#1] SMP Call Trace: [<ffffffff818aa71d>] init_extra_mapping_uc+0x13/0x15 [<ffffffff818a5e20>] uv_system_init+0x22b/0x124b [<ffffffff8108b886>] ? clockevents_register_device+0x138/0x13d [<ffffffff81028dbb>] ? setup_APIC_timer+0xc5/0xc7 [<ffffffff8108b620>] ? clockevent_delta2ns+0xb/0xd [<ffffffff818a3a92>] ? setup_boot_APIC_clock+0x4a8/0x4b7 [<ffffffff8153d955>] ? printk+0x72/0x74 [<ffffffff818a1757>] native_smp_prepare_cpus+0x389/0x3d6 [<ffffffff818957bc>] kernel_init_freeable+0xb7/0x1fb [<ffffffff81535530>] ? rest_init+0x74/0x74 [<ffffffff81535539>] kernel_init+0x9/0xff [<ffffffff81541dfc>] ret_from_fork+0x7c/0xb0 [<ffffffff81535530>] ? rest_init+0x74/0x74 Getting this thing to work with the new mapping scheme would need more work, so automatically switch to the old memmap layout for SGI UV. Acked-by: NRuss Anderson <rja@sgi.com> Cc: Alex Thorlton <athorlton@sgi.com Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
Add the Kconfig option and bump the kernel header version so that boot loaders can check whether the handover code is available if they want. The xloadflags field in the bzImage header is also updated to reflect that the kernel supports both entry points by setting both of XLF_EFI_HANDOVER_32 and XLF_EFI_HANDOVER_64 when CONFIG_EFI_MIXED=y. XLF_CAN_BE_LOADED_ABOVE_4G is disabled so that the kernel text is guaranteed to be addressable with 32-bits. Note that no boot loaders should be using the bits set in xloadflags to decide which entry point to jump to. The entire scheme is based on the concept that 32-bit bootloaders always jump to ->handover_offset and 64-bit loaders always jump to ->handover_offset + 512. We set both bits merely to inform the boot loader that it's safe to use the native handover offset even if the machine type in the PE/COFF header claims otherwise. Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
Setup the runtime services based on whether we're booting in EFI native mode or not. For non-native mode we need to thunk from 64-bit into 32-bit mode before invoking the EFI runtime services. Using the runtime services after SetVirtualAddressMap() is slightly more complicated because we need to ensure that all the addresses we pass to the firmware are below the 4GB boundary so that they can be addressed with 32-bit pointers, see efi_setup_page_tables(). Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
Both efi_free_boot_services() and efi_enter_virtual_mode() are invoked from init/main.c, but only if the EFI runtime services are available. This is not the case for non-native boots, e.g. where a 64-bit kernel is booted with 32-bit EFI firmware. Delete the dead code. Acked-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
... into a kexec flavor for better code readability and simplicity. The original one was getting ugly with ifdeffery. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
Currently, running SetVirtualAddressMap() and passing the physical address of the virtual map array was working only by a lucky coincidence because the memory was present in the EFI page table too. Until Toshi went and booted this on a big HP box - the krealloc() manner of resizing the memmap we're doing did allocate from such physical addresses which were not mapped anymore and boom: http://lkml.kernel.org/r/1386806463.1791.295.camel@misato.fc.hp.com One way to take care of that issue is to reimplement the krealloc thing but with pages. We start with contiguous pages of order 1, i.e. 2 pages, and when we deplete that memory (shouldn't happen all that often but you know firmware) we realloc the next power-of-two pages. Having the pages, it is much more handy and easy to map them into the EFI page table with the already existing mapping code which we're using for building the virtual mappings. Thanks to Toshi Kani and Matt for the great debugging help. Reported-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
This is very useful for debugging issues with the recently added pagetable switching code for EFI virtual mode. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Joe Perches 提交于
Coalesce formats and remove spaces before tabs. Move __initdata after the variable declaration. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Madper Xie 提交于
For now we only ensure about 5kb free space for avoiding our board refusing boot. But the comment lies that we retain 50% space. Signed-off-by: NMadper Xie <cxie@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
It makes more sense to set the feature flag in the success path of the detection function than it does to rely on the caller doing it. Apart from it being more logical to group the code and data together, it sets a much better example for new EFI architectures. Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
As we grow support for more EFI architectures they're going to want the ability to query which EFI features are available on the running system. Instead of storing this information in an architecture-specific place, stick it in the global 'struct efi', which is already the central location for EFI state. While we're at it, let's change the return value of efi_enabled() to be bool and replace all references to 'facility' with 'feature', which is the usual word used to describe the attributes of the running system. Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 14 2月, 2014 1 次提交
-
-
由 Borislav Petkov 提交于
We do not enable the new efi memmap on 32-bit and thus we need to run runtime_code_page_mkexec() unconditionally there. Fix that. Reported-and-tested-by: NLejun Zhu <lejun.zhu@intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 29 12月, 2013 2 次提交
-
-
由 Matt Fleming 提交于
There's no need to save the runtime map details in global variables, the values are only required to pass to efi_runtime_map_setup(). And because 'nr_efi_runtime_map' isn't needed, get_nr_runtime_map() can be deleted along with 'efi_data_len'. Cc: Dave Young <dyoung@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
Add a new setup_data type SETUP_EFI for kexec use. Passing the saved fw_vendor, runtime, config tables and EFI runtime mappings. When entering virtual mode, directly mapping the EFI runtime regions which we passed in previously. And skip the step to call SetVirtualAddressMap(). Specially for HP z420 workstation we need save the smbios physical address. The kernel boot sequence proceeds in the following order. Step 2 requires efi.smbios to be the physical address. However, I found that on HP z420 EFI system table has a virtual address of SMBIOS in step 1. Hence, we need set it back to the physical address with the smbios in efi_setup_data. (When it is still the physical address, it simply sets the same value.) 1. efi_init() - Set efi.smbios from EFI system table 2. dmi_scan_machine() - Temporary map efi.smbios to access SMBIOS table 3. efi_enter_virtual_mode() - Map EFI ranges Tested on ovmf+qemu, lenovo thinkpad, a dell laptop and an HP z420 workstation. Signed-off-by: NDave Young <dyoung@redhat.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 21 12月, 2013 4 次提交
-
-
由 Dave Young 提交于
kexec kernel will need exactly same mapping for EFI runtime memory ranges. Thus here export the runtime ranges mapping to sysfs, kexec-tools will assemble them and pass to 2nd kernel via setup_data. Introducing a new directory /sys/firmware/efi/runtime-map just like /sys/firmware/memmap. Containing below attribute in each file of that directory: attribute num_pages phys_addr type virt_addr Signed-off-by: NDave Young <dyoung@redhat.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
Export fw_vendor, runtime and config table physical addresses to /sys/firmware/efi/{fw_vendor,runtime,config_table} because kexec kernels need them. From EFI spec these 3 variables will be updated to virtual address after entering virtual mode. But kernel startup code will need the physical address. Signed-off-by: NDave Young <dyoung@redhat.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
Add two small functions: efi_merge_regions() and efi_map_regions(), efi_enter_virtual_mode() calls them instead of embedding two long for loop. Signed-off-by: NDave Young <dyoung@redhat.com> Acked-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
Current code check boot service region with kernel text region by: start+size >= __pa_symbol(_text) The end of the above region should be start + size - 1 instead. I see this problem in ovmf + Fedora 19 grub boot: text start: 1000000 md start: 800000 md size: 800000 Signed-off-by: NDave Young <dyoung@redhat.com> Acked-by: NBorislav Petkov <bp@suse.de> Acked-by: NToshi Kani <toshi.kani@hp.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Cc: stable@vger.kernel.org Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 11 12月, 2013 1 次提交
-
-
由 Matthew Garrett 提交于
UEFI time services are often broken once we're in virtual mode. We were already refusing to use them on 64-bit systems, but it turns out that they're also broken on some 32-bit firmware, including the Dell Venue. Disable them for now, we can revisit once we have the 1:1 mappings code incorporated. Signed-off-by: NMatthew Garrett <matthew.garrett@nebula.com> Link: http://lkml.kernel.org/r/1385754283-2464-1-git-send-email-matthew.garrett@nebula.com Cc: <stable@vger.kernel.org> Cc: Matt Fleming <matt.fleming@intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 02 11月, 2013 3 次提交
-
-
由 Borislav Petkov 提交于
Check it just in case. We might just as well panic there because runtime won't be functioning anyway. Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
We map the EFI regions needed for runtime services non-contiguously, with preserved alignment on virtual addresses starting from -4G down for a total max space of 64G. This way, we provide for stable runtime services addresses across kernels so that a kexec'd kernel can still use them. Thus, they're mapped in a separate pagetable so that we don't pollute the kernel namespace. Add an efi= kernel command line parameter for passing miscellaneous options and chicken bits from the command line. While at it, add a chicken bit called "efi=old_map" which can be used as a fallback to the old runtime services mapping method in case there's some b0rkage with a particular EFI implementation (haha, it is hard to hold up the sarcasm here...). Also, add the UEFI RT VA space to Documentation/x86/x86_64/mm.txt. Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
... and lose one #ifdef .. #endif sandwich. Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 05 10月, 2013 1 次提交
-
-
由 Leif Lindholm 提交于
Incorrect use of 0 in terminating entry of arch_tables[] causes the following sparse warning, arch/x86/platform/efi/efi.c:74:27: sparse: Using plain integer as NULL pointer Replace with NULL. Signed-off-by: NLeif Lindholm <leif.lindholm@linaro.org> [ Included sparse warning in commit message. ] Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 18 9月, 2013 1 次提交
-
-
由 Josh Boyer 提交于
Add patch to fix 32bit EFI service mapping (rhbz 726701) Multiple people are reporting hitting the following WARNING on i386, WARNING: at arch/x86/mm/ioremap.c:102 __ioremap_caller+0x3d3/0x440() Modules linked in: Pid: 0, comm: swapper Not tainted 3.9.0-rc7+ #95 Call Trace: [<c102b6af>] warn_slowpath_common+0x5f/0x80 [<c1023fb3>] ? __ioremap_caller+0x3d3/0x440 [<c1023fb3>] ? __ioremap_caller+0x3d3/0x440 [<c102b6ed>] warn_slowpath_null+0x1d/0x20 [<c1023fb3>] __ioremap_caller+0x3d3/0x440 [<c106007b>] ? get_usage_chars+0xfb/0x110 [<c102d937>] ? vprintk_emit+0x147/0x480 [<c1418593>] ? efi_enter_virtual_mode+0x1e4/0x3de [<c102406a>] ioremap_cache+0x1a/0x20 [<c1418593>] ? efi_enter_virtual_mode+0x1e4/0x3de [<c1418593>] efi_enter_virtual_mode+0x1e4/0x3de [<c1407984>] start_kernel+0x286/0x2f4 [<c1407535>] ? repair_env_string+0x51/0x51 [<c1407362>] i386_start_kernel+0x12c/0x12f Due to the workaround described in commit 916f676f ("x86, efi: Retain boot service code until after switching to virtual mode") EFI Boot Service regions are mapped for a period during boot. Unfortunately, with the limited size of the i386 direct kernel map it's possible that some of the Boot Service regions will not be directly accessible, which causes them to be ioremap()'d, triggering the above warning as the regions are marked as E820_RAM in the e820 memmap. There are currently only two situations where we need to map EFI Boot Service regions, 1. To workaround the firmware bug described in 916f676f 2. To access the ACPI BGRT image but since we haven't seen an i386 implementation that requires either, this simple fix should suffice for now. [ Added to changelog - Matt ] Reported-by: NBryan O'Donoghue <bryan.odonoghue.lkml@nexus-software.ie> Acked-by: NTom Zanussi <tom.zanussi@intel.com> Acked-by: NDarren Hart <dvhart@linux.intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> Signed-off-by: NJosh Boyer <jwboyer@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 05 9月, 2013 2 次提交
-
-
由 Leif Lindholm 提交于
efi_lookup_mapped_addr() is a handy utility for other platforms than x86. Move it from arch/x86 to drivers/firmware. Add memmap pointer to global efi structure, and initialise it on x86. Signed-off-by: NLeif Lindholm <leif.lindholm@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Leif Lindholm 提交于
Common to (U)EFI support on all platforms is the global "efi" data structure, and the code that parses the System Table to locate addresses to populate that structure with. This patch adds both of these to the global EFI driver code and removes the local definition of the global "efi" data structure from the x86 and ia64 code. Squashed into one big patch to avoid breaking bisection. Signed-off-by: NLeif Lindholm <leif.lindholm@linaro.org> Acked-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 11 7月, 2013 1 次提交
-
-
由 Matt Fleming 提交于
This reverts commit 1acba98f. The firmware on both Dave's Thinkpad and Maarten's Macbook Pro appear to rely on the old behaviour, and their machines fail to boot with the above commit. Reported-by: NDave Young <dyoung@redhat.com> Reported-by: NMaarten Lankhorst <maarten.lankhorst@canonical.com> Cc: Seth Forshee <seth.forshee@canonical.com> Cc: Matthew Garrett <matthew.garrett@nebula.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 21 6月, 2013 1 次提交
-
-
由 Ben Hutchings 提交于
1. Check for allocation failure 2. Clear the buffer contents, as they may actually be written to flash 3. Don't leak the buffer Compile-tested only. [ Tested successfully on my buggy ASUS machine - Matt ] Signed-off-by: NBen Hutchings <ben@decadent.org.uk> Cc: stable@vger.kernel.org Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 11 6月, 2013 1 次提交
-
-
由 Matthew Garrett 提交于
This patch reworks the UEFI anti-bricking code, including an effective reversion of cc5a080c and 31ff2f20. It turns out that calling QueryVariableInfo() from boot services results in some firmware implementations jumping to physical addresses even after entering virtual mode, so until we have 1:1 mappings for UEFI runtime space this isn't going to work so well. Reverting these gets us back to the situation where we'd refuse to create variables on some systems because they classify deleted variables as "used" until the firmware triggers a garbage collection run, which they won't do until they reach a lower threshold. This results in it being impossible to install a bootloader, which is unhelpful. Feedback from Samsung indicates that the firmware doesn't need more than 5KB of storage space for its own purposes, so that seems like a reasonable threshold. However, there's still no guarantee that a platform will attempt garbage collection merely because it drops below this threshold. It seems that this is often only triggered if an attempt to write generates a genuine EFI_OUT_OF_RESOURCES error. We can force that by attempting to create a variable larger than the remaining space. This should fail, but if it somehow succeeds we can then immediately delete it. I've tested this on the UEFI machines I have available, but I don't have a Samsung and so can't verify that it avoids the bricking problem. Signed-off-by: NMatthew Garrett <matthew.garrett@nebula.com> Signed-off-by: Lee, Chun-Y <jlee@suse.com> [ dummy variable cleanup ] Cc: <stable@vger.kernel.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 06 6月, 2013 1 次提交
-
-
由 Matthew Garrett 提交于
We need to map boot services regions during startup in order to avoid firmware bugs, but we shouldn't be passing those regions to SetVirtualAddressMap(). Ensure that we're only passing regions that are marked as being mapped at runtime. Signed-off-by: NMatthew Garrett <matthew.garrett@nebula.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 29 5月, 2013 1 次提交
-
-
由 David Vrabel 提交于
All the virtualized platforms (KVM, lguest and Xen) have persistent wallclocks that have more than one second of precision. read_persistent_wallclock() and update_persistent_wallclock() allow for nanosecond precision but their implementation on x86 with x86_platform.get/set_wallclock() only allows for one second precision. This means guests may see a wallclock time that is off by up to 1 second. Make set_wallclock() and get_wallclock() take a struct timespec parameter (which allows for nanosecond precision) so KVM and Xen guests may start with a more accurate wallclock time and a Xen dom0 can maintain a more accurate wallclock for guests. Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 14 5月, 2013 1 次提交
-
-
由 Lee, Chun-Yi 提交于
That will be better initial the value of DataSize to zero for the input of GetVariable(), otherwise we will feed a random value. The debug log of input DataSize like this: ... [ 195.915612] EFI Variables Facility v0.08 2004-May-17 [ 195.915819] efi: size: 18446744071581821342 [ 195.915969] efi: size': 18446744071581821342 [ 195.916324] efi: size: 18446612150714306560 [ 195.916632] efi: size': 18446612150714306560 [ 195.917159] efi: size: 18446612150714306560 [ 195.917453] efi: size': 18446612150714306560 ... The size' is value that was returned by BIOS. After applied this patch: [ 82.442042] EFI Variables Facility v0.08 2004-May-17 [ 82.442202] efi: size: 0 [ 82.442360] efi: size': 1039 [ 82.443828] efi: size: 0 [ 82.444127] efi: size': 2616 [ 82.447057] efi: size: 0 [ 82.447356] efi: size': 5832 ... Found on Acer Aspire V3 BIOS, it will not return the size of data if we input a non-zero DataSize. Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: H. Peter Anvin <hpa@zytor.com> Signed-off-by: NLee, Chun-Yi <jlee@suse.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 30 4月, 2013 1 次提交
-
-
由 David Howells 提交于
Include missing linux/slab.h inclusions where the source file is currently expecting to get kmalloc() and co. through linux/proc_fs.h. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> cc: linux-s390@vger.kernel.org cc: sparclinux@vger.kernel.org cc: linux-efi@vger.kernel.org cc: linux-mtd@lists.infradead.org cc: devel@driverdev.osuosl.org cc: x86@kernel.org Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 17 4月, 2013 2 次提交
-
-
由 Richard Weinberger 提交于
Using this parameter one can disable the storage_size/2 check if he is really sure that the UEFI does sane gc and fulfills the spec. This parameter is useful if a devices uses more than 50% of the storage by default. The Intel DQSW67 desktop board is such a sucker for exmaple. Signed-off-by: NRichard Weinberger <richard@nod.at> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Sergey Vlasov 提交于
Fixes build with CONFIG_EFI_VARS=m which was broken after the commit "x86, efivars: firmware bug workarounds should be in platform code". Signed-off-by: NSergey Vlasov <vsu@altlinux.ru> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 16 4月, 2013 2 次提交
-
-
由 Matthew Garrett 提交于
EFI implementations distinguish between space that is actively used by a variable and space that merely hasn't been garbage collected yet. Space that hasn't yet been garbage collected isn't available for use and so isn't counted in the remaining_space field returned by QueryVariableInfo(). Combined with commit 68d92986 this can cause problems. Some implementations don't garbage collect until the remaining space is smaller than the maximum variable size, and as a result check_var_size() will always fail once more than 50% of the variable store has been used even if most of that space is marked as available for garbage collection. The user is unable to create new variables, and deleting variables doesn't increase the remaining space. The problem that 68d92986 was attempting to avoid was one where certain platforms fail if the actively used space is greater than 50% of the available storage space. We should be able to calculate that by simply summing the size of each available variable and subtracting that from the total storage space. With luck this will fix the problem described in https://bugzilla.kernel.org/show_bug.cgi?id=55471 without permitting damage to occur to the machines 68d92986 was attempting to fix. Signed-off-by: NMatthew Garrett <matthew.garrett@nebula.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matthew Garrett 提交于
EFI variables can be flagged as being accessible only within boot services. This makes it awkward for us to figure out how much space they use at runtime. In theory we could figure this out by simply comparing the results from QueryVariableInfo() to the space used by all of our variables, but that fails if the platform doesn't garbage collect on every boot. Thankfully, calling QueryVariableInfo() while still inside boot services gives a more reliable answer. This patch passes that information from the EFI boot stub up to the efi platform code. Signed-off-by: NMatthew Garrett <matthew.garrett@nebula.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 11 4月, 2013 1 次提交
-
-
由 Richard Weinberger 提交于
Some EFI implementations return always a MaximumVariableSize of 0, check against max_size only if it is non-zero. My Intel DQ67SW desktop board has such an implementation. Signed-off-by: NRichard Weinberger <richard@nod.at> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 09 4月, 2013 1 次提交
-
-
由 Matt Fleming 提交于
Let's not burden ia64 with checks in the common efivars code that we're not writing too much data to the variable store. That kind of thing is an x86 firmware bug, plain and simple. efi_query_variable_store() provides platforms with a wrapper in which they can perform checks and workarounds for EFI variable storage bugs. Cc: H. Peter Anvin <hpa@zytor.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-