- 20 9月, 2011 1 次提交
-
-
由 Andiry Xu 提交于
When a xHC host is unable to handle isochronous transfer in the interval, it reports a Missed Service Error event and skips some tds. Currently xhci driver handles MSE event in the following ways: 1. When encounter a MSE event, set ep->skip flag, update event ring dequeue pointer and return. 2. When encounter the next event on this ep, the driver will run the do-while loop, fetch td from ep's td_list to find the td corresponding to this event. All tds missed are marked as short transfer(-EXDEV). The do-while loop will end in two ways: 1. If the td pointed by the event trb is found; 2. If the ep ring's td_list is empty. However, if a buggy HW reports some unpredicted event (for example, an overrun event following a MSE event while the ep ring is actually not empty), the driver will never find the td, and it will loop until the td_list is empty. Unfortunately, the spinlock is dropped when give back a urb in the do-while loop. During the spinlock released period, the class driver may still submit urbs and add tds to the td_list. This may cause disaster, since the td_list will never be empty and the loop never ends, and the system hangs. To fix this, count the number of TDs on the ep ring before skipping TDs, and quit the loop when skipped that number of tds. This guarantees the do-while loop will end after certain number of cycles, and driver will not be trapped in an infinite loop. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 8月, 2011 1 次提交
-
-
由 Sarah Sharp 提交于
For a long time, the xHCI driver has had this note: /* FIXME: Ignoring zero-length packets, can those happen? */ It turns out that, yes, there are drivers that need to queue zero-length transfers for isochronous OUT transfers. Without this patch, users will see kernel hang messages when a driver attempts to enqueue an isochronous URB with a zero length transfer (because count_isoc_trbs_needed will return zero for that TD, xhci_td->last_trb will never be set, and updating the dequeue pointer will cause an infinite loop). Matěj ran into this issue when using an NI Audio4DJ USB soundcard with the snd-usb-caiaq driver. See https://bugzilla.kernel.org/show_bug.cgi?id=40702 Fix count_isoc_trbs_needed() to return 1 for zero-length transfers (thanks Alan on the math help). Update the various TRB field calculations to deal with zero-length transfers. We're still transferring one packet with a zero-length data payload, so the total_packet_count should be 1. The Transfer Burst Count (TBC) and Transfer Last Burst Packet Count (TLBPC) fields should be set to zero. This patch should be backported to kernels as old as 2.6.36. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NMatěj Laitl <matej@laitl.cz> Cc: Daniel Mack <zonque@gmail.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: stable@kernel.org
-
- 10 8月, 2011 3 次提交
-
-
由 Sarah Sharp 提交于
When a driver tries to cancel an URB, and the host controller is dying, xhci_urb_dequeue will giveback the URB without removing the xhci_tds that comprise that URB from the td_list or the cancelled_td_list. This can cause a race condition between the driver calling URB dequeue and the stop endpoint command watchdog timer. If the timer fires on a dying host, and a driver attempts to resubmit while the watchdog timer has dropped the xhci->lock to giveback a cancelled URB, URBs may be given back by the xhci_urb_dequeue() function. At that point, the URB's priv pointer will be freed and set to NULL, but the TDs will remain on the td_list. This will cause an oops in xhci_giveback_urb_in_irq() when the watchdog timer attempts to loop through the endpoints' td_lists, giving back killed URBs. Make sure that xhci_urb_dequeue() removes TDs from the TD lists and canceled TD lists before it gives back the URB. This patch should be backported to kernels as old as 2.6.36. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Andiry Xu <andiry.xu@amd.com> Cc: stable@kernel.org
-
由 Sarah Sharp 提交于
When an isochronous transfer is enqueued, xhci_queue_isoc_tx_prepare() will ensure that there is enough room on the transfer rings for all of the isochronous TDs for that URB. However, when xhci_queue_isoc_tx() is enqueueing individual isoc TDs, the prepare_transfer() function can fail if the endpoint state has changed to disabled, error, or some other unknown state. With the current code, if Nth TD (not the first TD) fails, the ring is left in a sorry state. The partially enqueued TDs are left on the ring, and the first TRB of the TD is not given back to the hardware. The enqueue pointer is left on the TRB after the last successfully enqueued TD. This means the ring is basically useless. Any new transfers will be enqueued after the failed TDs, which the hardware will never read because the cycle bit indicates it does not own them. The ring will fill up with untransferred TDs, and the endpoint will be basically unusable. The untransferred TDs will also remain on the TD list. Since the td_list is a FIFO, this basically means the ring handler will be waiting on TDs that will never be completed (or worse, dereference memory that doesn't exist any more). Change the code to clean up the isochronous ring after a failed transfer. If the first TD failed, simply return and allow the xhci_urb_enqueue function to free the urb_priv. If the Nth TD failed, first remove the TDs from the td_list. Then convert the TRBs that were enqueued into No-op TRBs. Make sure to flip the cycle bit on all enqueued TRBs (including any link TRBs in the middle or between TDs), but leave the cycle bit of the first TRB (which will show software-owned) intact. Then move the ring enqueue pointer back to the first TRB and make sure to change the xhci_ring's cycle state to what is appropriate for that ring segment. This ensures that the No-op TRBs will be overwritten by subsequent TDs, and the hardware will not start executing random TRBs because the cycle bit was left as hardware-owned. This bug is unlikely to be hit, but it was something I noticed while tracking down the watchdog timer issue. I verified that the fix works by injecting some errors on the 250th isochronous URB queued, although I could not verify that the ring is in the correct state because uvcvideo refused to talk to the device after the first usb_submit_urb() failed. Ring debugging shows that the ring looks correct, however. This patch should be backported to kernels as old as 2.6.36. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Andiry Xu <andiry.xu@amd.com> Cc: stable@kernel.org
-
由 Sarah Sharp 提交于
When the isochronous transfer support was introduced, and the xHCI driver switched to using urb->hcpriv to store an "urb_priv" pointer, a couple of memory leaks were introduced into the URB enqueue function in its error handling paths. xhci_urb_enqueue allocates urb_priv, but it doesn't free it if changing the control endpoint's max packet size fails or the bulk endpoint is in the middle of allocating or deallocating streams. xhci_urb_enqueue also doesn't free urb_priv if any of the four endpoint types' enqueue functions fail. Instead, it expects those functions to free urb_priv if an error occurs. However, the bulk, control, and interrupt enqueue functions do not free urb_priv if the endpoint ring is NULL. It will, however, get freed if prepare_transfer() fails in those enqueue functions. Several of the error paths in the isochronous endpoint enqueue function also fail to free it. xhci_queue_isoc_tx_prepare() doesn't free urb_priv if prepare_ring() indicates there is not enough room for all the isochronous TDs in this URB. If individual isochronous TDs fail to be queued (perhaps due to an endpoint state change), urb_priv is also leaked. This argues that the freeing of urb_priv should be done in the function that allocated it, xhci_urb_enqueue. This patch looks rather ugly, but refactoring the code will have to wait because this patch needs to be backported to stable kernels. This patch should be backported to kernels as old as 2.6.36. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Andiry Xu <andiry.xu@amd.com> Cc: stable@kernel.org
-
- 18 6月, 2011 2 次提交
-
-
由 Sarah Sharp 提交于
When the xHCI driver encounters a Missed Service Interval event for an isochronous endpoint ring, it means the host controller skipped over one or more isochronous TDs. For TD that is skipped, skip_isoc_td() is called. This sets the frame descriptor status to -EXDEV, and also sets the value stored in the int pointed to by status to -EXDEV. If the isochronous TD happens to be the last TD in an URB, handle_tx_event() will use the status variable to give back the URB to the USB core. That means drivers will see urb->status as -EXDEV. It turns out that EHCI, UHCI, and OHCI always set urb->status to zero for an isochronous urb, regardless of what the frame status is. See itd_complete() in ehci-sched.c: } else { /* URB was too late */ desc->status = -EXDEV; } } /* handle completion now? */ if (likely ((urb_index + 1) != urb->number_of_packets)) goto done; /* ASSERT: it's really the last itd for this urb list_for_each_entry (itd, &stream->td_list, itd_list) BUG_ON (itd->urb == urb); */ /* give urb back to the driver; completion often (re)submits */ dev = urb->dev; ehci_urb_done(ehci, urb, 0); ehci_urb_done() completes the URB with the status of the third argument, which is always zero in this case. It turns out that many USB webcam drivers, such as uvcvideo, cannot handle urb->status set to a non-zero value. They will not resubmit their isochronous URBs in that case, and userspace will see a frozen video. Change the xHCI driver to be consistent with the EHCI and UHCI driver, and always set urb->status to 0 for isochronous URBs. This patch should be backported to kernels as old as 2.6.36 Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: "Xu, Andiry" <Andiry.Xu@amd.com> Cc: stable@kernel.org
-
由 Alex He 提交于
It is one new TRB Completion Code for the xHCI spec v1.0. Asserted if the xHC detects a problem with a device that does not allow it to be successfully accessed, e.g. due to a device compliance or compatibility problem. This error may be returned by any command or transfer, and is fatal as far as the Slot is concerned. Return -EPROTO by urb->status or frame->status of ISOC for transfer case. And return -ENODEV for configure endpoint command, evaluate context command and address device command if there is an incompatible Device Error. The error codes will be sent back to the USB core to decide how to do. It's unnecessary for other commands because after the three commands run successfully means that the device has been accepted. Signed-off-by: NAlex He <alex.he@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 16 6月, 2011 1 次提交
-
-
由 Alex He 提交于
FSE shall occur on the TD natural boundary. The software ep_ring dequeue pointer exceed the hardware ep_ring dequeue pointer in these cases of Table-3. As a result, the event_trb(pointed by hardware dequeue pointer) of the FSE can't be found in the current TD(pointed by software dequeue pointer). What should we do is to figured out the FSE case and skip over it. Signed-off-by: NAlex He <alex.he@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 03 6月, 2011 1 次提交
-
-
由 Matt Evans 提交于
Some of the recently-added cpu_to_leXX and leXX_to_cpu made things somewhat messy; this patch neatens some of these areas, removing unnecessary casts in those parts also. In some places (where Y & Z are constants) a comparison of (leXX_to_cpu(X) & Y) == Z has been replaced with (X & cpu_to_leXX(Y)) == cpu_to_leXX(Z). The endian reversal of the constants should wash out at compile time. Signed-off-by: NMatt Evans <matt@ozlabs.org> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 02 6月, 2011 1 次提交
-
-
由 Matt Evans 提交于
Commit 926008c9 "USB: xhci: simplify logic of skipping missed isoc TDs" added a small endian bug. This patch fixes skip_isoc_td() to read the DMA pointer correctly. Signed-off-by: NMatt Evans <matt@ozlabs.org> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 28 5月, 2011 2 次提交
-
-
由 Sarah Sharp 提交于
The Panther Point chipset has an xHCI host controller that has a limit to the number of active endpoints it can handle. Ideally, it would signal that it can't handle anymore endpoints by returning a Resource Error for the Configure Endpoint command, but they don't. Instead it needs software to keep track of the number of active endpoints, across configure endpoint commands, reset device commands, disable slot commands, and address device commands. Add a new endpoint context counter, xhci_hcd->num_active_eps, and use it to track the number of endpoints the xHC has active. This gets a little tricky, because commands to change the number of active endpoints can fail. This patch adds a new xHCI quirk for these Intel hosts, and the new code should not have any effect on other xHCI host controllers. Fail a new device allocation if we don't have room for the new default control endpoint. Use the endpoint ring pointers to determine what endpoints were active before a Reset Device command or a Disable Slot command, and drop those once the command completes. Fail a configure endpoint command if it would add too many new endpoints. We have to be a bit over zealous here, and only count the number of new endpoints to be added, without subtracting the number of dropped endpoints. That's because a second configure endpoint command for a different device could sneak in before we know if the first command is completed. If the first command dropped resources, the host controller fails the command for some reason, and we're nearing the limit of endpoints, we could end up oversubscribing the host. To fix this race condition, when evaluating whether a configure endpoint command will fix in our bandwidth budget, only add the new endpoints to xhci->num_active_eps, and don't subtract the dropped endpoints. Ignore changed endpoints (ones that are dropped and then re-added), as that shouldn't effect the host's endpoint resources. When the configure endpoint command completes, subtract off the dropped endpoints. This may mean some configuration changes may temporarily fail, but it's always better to under-subscribe than over-subscribe resources. (Originally my plan had been to push the resource allocation down into the ring allocation functions. However, that would cause us to allocate unnecessary resources when endpoints were changed, because the xHCI driver allocates a new ring for the changed endpoint, and only deletes the old ring once the Configure Endpoint command succeeds. A further complication would have been dealing with the per-device endpoint ring cache.) Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
The xHCI host controller in the Panther Point chipset sometimes produces spurious events on the event ring. If it receives a short packet, it first puts a Transfer Event with a short transfer completion code on the event ring. Then it puts a Transfer Event with a successful completion code on the ring for the same TD. The xHCI driver correctly processes the short transfer completion code, gives the URB back to the driver, and then prints a warning in dmesg about the spurious event. These warning messages really fill up dmesg when an HD webcam is plugged into xHCI. This spurious successful event behavior isn't technically disallowed by the xHCI specification, so make the xHCI driver just ignore the spurious completion event. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 26 5月, 2011 4 次提交
-
-
由 Sarah Sharp 提交于
Unsurprisingly, URBs get submitted and completed a lot in the xHCI driver. If we have to print 10 lines of debug for every URB submitted or completed, then that can cause the whole system to stay in the interrupt handler too long, and can cause Missed Service completion codes for isochronous transfers. Cut down the debugging in the URB submission and completion paths: - Don't squawk about successful transfers, only unsuccessful ones. - Only print the number of bytes transferred if this was a short transfer. - Don't print the endpoint index for successful transfers (will add more debug to failed transfers to show endpoint index there later). - Stop printing MMIO writes. This debugging shows up when the endpoint doorbell is rung a to start a transfer (basically for every URB). - Don't print out the ring enqueue and dequeue pointers - Stop printing when we're pointing to a link TRB. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
Stop printing out the event ring dequeue pointer and status register in the operational register set. The host will report an OK status 99% of the time the interrupt handler is called, and usually when it's really hosed, a host controller won't even call the interrupt handler. So the line is really useless. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
Remove unnecessary debugging from the xHCI driver. We don't need to know what function we're calling or returning from. Now I know how to use markup-oops.pl to de-mystify stack dumps of crashes. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
When an URB is cancelled, the xHCI driver issues a Stop Endpoint command so that it can manipulate the ring and remove the transfer. The xHC hardware then places a transfer event with the completion code "Stopped" or "Stopped Invalid" to let the driver know what TD it was in the middle of processing. This TD and TRB is stored in ep->stopped_td and ep->stopped_trb. These pointers are also used in handling stalled endpoints. By design, the Stop Endpoint command can race with URB completion. By the time the Stop Endpoint command is handled, the URBs to be cancelled may have been given back to the driver. Unfortunately, the stopped_td and stopped_trb pointers were not getting cleared in this case. The USB core unconditionally tries to reset the toggle bits on any endpoints when a new alternate interface setting is installed. When the xHCI driver saw that ep->stopped_td was still set from the Stop Endpoint command, xhci_reset_endpoint assumed the endpoint was actually stalled, and attempted to clean up the endpoint rings. This would manifest itself in a failed Reset Endpoint command and failed Set TR dequeue Pointer command after a successful Configure Endpoint command. It may have also been causing driver oops when the stopped_td was accessed. This patch should be backported to stable kernels since 2.6.31. Before 2.6.33, stopped_td was found in the xhci_endpoint_ring, not the xhci_virt_ep. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 12 5月, 2011 1 次提交
-
-
由 Sarah Sharp 提交于
When the xHCI driver attempts to cancel a transfer, it issues a Stop Endpoint command and waits for the host controller to indicate which TRB it was in the middle of processing. The host will put an event TRB with completion code COMP_STOP on the event ring if it stops on a control transfer TRB (or other types of transfer TRBs). The ring handling code is supposed to set ep->stopped_trb to the TRB that the host stopped on when this happens. Unfortunately, there is a long-standing bug in the control transfer completion code. It doesn't actually check to see if COMP_STOP is set before attempting to process the transfer based on which part of the control TD completed. So when we get an event on the data phase of the control TRB with COMP_STOP set, it thinks it's a normal completion of the transfer and doesn't set ep->stopped_td or ep->stopped_trb. When the ring handling code goes on to process the completion of the Stop Endpoint command, it sees that ep->stopped_trb is not a part of the TD it's trying to cancel. It thinks the hardware has its enqueue pointer somewhere further up in the ring, and thinks it's safe to turn the control TRBs into no-op TRBs. Since the hardware was in the middle of the control TRBs to be cancelled, the proper software behavior is to issue a Set TR dequeue pointer command. It turns out that the NEC host controllers can handle active TRBs being set to no-op TRBs after a stop endpoint command, but other host controllers have issues with this out-of-spec software behavior. Fix this behavior. This patch should be backported to kernels as far back as 2.6.31, but it may be a bit challenging, since process_ctrl_td() was introduced in some refactoring done in 2.6.36, and some endian-safe patches added in 2.6.40 that touch the same lines. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: stable@kernel.org
-
- 10 5月, 2011 2 次提交
-
-
由 Andiry Xu 提交于
Currently an isoc URB is divided into multiple TDs, and every TD will trigger an interrupt when it's processed. However, software can schedule multiple TDs at a time, and it only needs an interrupt every URB. xHCI 1.0 introduces the Block Event Interrupt(BEI) flag which allows Normal and Isoch Transfer TRBs to place an Event TRB on an Event Ring but not assert an intrrupt to the host, and the interrupt rate is significantly reduced and the system performance is improved. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Andiry Xu 提交于
Setup Stage Transfer Type field is added to indicate the presence and the direction of the Data Stage TD, and determines the direction of the Status Stage TD so the wLength length field should be ignored by the xHC. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 03 5月, 2011 7 次提交
-
-
由 Sarah Sharp 提交于
The xHCI 1.0 specification defines a new isochronous TRB field, called transfer burst last packet count (TBLPC). This field defines the number of packets in the last "burst" of packets in a TD. Only SuperSpeed endpoints can handle more than one burst, so this is set to the number for packets in a TD for all non-SuperSpeed devices (minus one, since the field is zero based). This patch should have no effect on host controllers that don't advertise the xHCI 1.0 (0x100) version number in their hci_version field. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
The xHCI 1.0 specification adds a new field to the fourth dword in an isochronous TRB: the transfer burst count (TBC). This field is only non-zero for SuperSpeed devices. Each SS endpoint sets the bMaxBurst field in the SuperSpeed endpoint companion descriptor, which indicates how many max-packet-sized "bursts" it can handle in one service interval. The device driver may choose to burst less max packet sized chunks each service interval (which is defined by one TD). The xHCI driver indicates to the host controller how many bursts it needs to schedule through the transfer burst count field. This patch will only effect xHCI hosts that advertise 1.0 support (0x100) in the HCI version field of their capabilities register. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
The xHCI 1.0 specification changes the format of the TD size field in Normal and Isochronous TRBs. The field in control TRBs is still set to reserved zero. Instead of representing the number of bytes left to transfer in the TD (including the current TRB's buffer), it now represents the number of packets left to transfer (*not* including this TRB). See section 4.11.2.4 of the xHCI 1.0 specification for details. The math is basically copied straight from there. Create a new function, xhci_v1_0_td_remainder(), that should be called for all xHCI 1.0 host controllers. The field location and maximum value is still the same, so reuse the old function, xhci_td_remainder(), to handle the bit shifting. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
It doesn't make sense to set the interrupt on short packet (TRB_ISP) flag for TRBs queued to endpoints that only receive packets from the host controller (i.e. OUT endpoints). Packets can only be short when they are sent from a USB device. Plus, the xHCI 1.0 specification forbids setting the flag for anything but IN endpoints. While we're at it, remove some of my snide remarks about the inefficiency of event data TRBs. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Matt Evans 提交于
Make the caller loop while there are events to handle, instead. Signed-off-by: NMatt Evans <matt@ozlabs.org> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Matt Evans 提交于
On weakly-ordered systems, the reading of an event's content must occur after reading the event's validity. Signed-off-by: NMatt Evans <matt@ozlabs.org> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Matt Evans 提交于
This patch changes the struct members defining access to xHCI device-visible memory to use __le32/__le64 where appropriate, and then adds swaps where required. Checked with sparse that all accesses are correct. MMIO accesses use readl/writel so already are performed LE, but prototypes now reflect this with __le*. There were a couple of (debug) instances of DMA pointers being truncated to 32bits which have been fixed too. Signed-off-by: NMatt Evans <matt@ozlabs.org> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 14 4月, 2011 5 次提交
-
-
由 Andiry Xu 提交于
This patch disable the optional PM feature inside the Hudson3 platform under the following conditions: 1. If an isochronous device is connected to xHCI port and is active; 2. Optional PM feature that powers down the internal Bus PLL when the link is in low power state is enabled. The PM feature needs to be disabled to eliminate PLL startup delays when the link comes out of low power state. The performance of DMA data transfer could be impacted if system delay were encountered and in addition to the PLL start up delays. Disabling the PM would leave room for unpredictable system delays in order to guarantee uninterrupted data transfer to isochronous audio or video stream devices that require time sensitive information. If data in an audio/video stream was interrupted then erratic audio or video performance may be encountered. AMD PLL quirk is already implemented in OHCI/EHCI driver. After moving the quirk code to pci-quirks.c and export them, xHCI driver can call it directly without having the quirk implementation in itself. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
When we get a port status change event, we need to figure out what type of port it came from: a USB 3.0 port, or a USB 2.0/1.1 port. We can't know which usb_hcd to use until that point, so hcd will be NULL for part of the function. Unfortunately, if any of the sanity checks fail, we'll jump to the cleanup label before hcd is set to a valid pointer, and then we'll attempt to tell the USB core to kick the hcd, which is NULL. Skip kicking the roothub if the sanity checks fail. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Dmitry Torokhov 提交于
The logic of the handling Missed Service Error Events was pretty confusing as we were checking the same condition several times. In addition, it caused compiler warning since the compiler could not figure out that event_trb is actually unused in case we are skipping current TD. Fix that by rearranging "skip" condition checks, and factor out skip_isoc_td() so that it is called explicitly. Signed-off-by: NDmitry Torokhov <dtor@vmware.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Dmitry Torokhov 提交于
Remove 'inline' markings from file-local functions and let compiler do its job and inline what makes sense for given architecture. Signed-off-by: NDmitry Torokhov <dtor@vmware.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Dan Carpenter 提交于
There were some places that compared port_speed == -1 where port_speed is a u8. This doesn't work unless we cast the -1 to u8. Some places did it correctly. Instead of using -1 directly, I've created a DUPLICATE_ENTRY define which does the cast and is more descriptive as well. Signed-off-by: NDan Carpenter <error27@gmail.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 14 3月, 2011 9 次提交
-
-
由 Sarah Sharp 提交于
Use XOR to invert the cycle bit, instead of a more complicated calculation. Eliminate a check for the link TRB type in find_trb_seg(). We know that there will always be a link TRB at the end of a segment, so xhci_segment->trbs[TRBS_PER_SEGMENT - 1] will always have a link TRB type. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NTakashi Iwai <tiwai@suse.de>
-
由 Sarah Sharp 提交于
When an endpoint stalls, we need to update the xHCI host's internal dequeue pointer to move it past the stalled transfer. This includes updating the cycle bit (TRB ownership bit) if we have moved the dequeue pointer past a link TRB with the toggle cycle bit set. When we're trying to find the new dequeue segment, find_trb_seg() is supposed to keep track of whether we've passed any link TRBs with the toggle cycle bit set. However, this while loop's body while (cur_seg->trbs > trb || &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { Will never get executed if the ring only contains one segment. find_trb_seg() will return immediately, without updating the new cycle bit. Since find_trb_seg() has no idea where in the segment the TD that stalled was, make the caller, xhci_find_new_dequeue_state(), check for this special case and update the cycle bit accordingly. This patch should be queued to kernels all the way back to 2.6.31. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NTakashi Iwai <tiwai@suse.de> Cc: stable@kernel.org
-
由 Sarah Sharp 提交于
When an endpoint stalls, the xHCI driver must move the endpoint ring's dequeue pointer past the stalled transfer. To do that, the driver issues a Set TR Dequeue Pointer command, which will complete some time later. Takashi was having issues with USB 1.1 audio devices that stalled, and his analysis of the code was that the old code would not update the xHCI driver's ring dequeue pointer after the command completes. However, the dequeue pointer is set in xhci_find_new_dequeue_state(), just before the set command is issued to the hardware. Setting the dequeue pointer before the Set TR Dequeue Pointer command completes is a dangerous thing to do, since the xHCI hardware can fail the command. Instead, store the new dequeue pointer in the xhci_virt_ep structure, and update the ring's dequeue pointer when the Set TR dequeue pointer command completes. While we're at it, make sure we can't queue another Set TR Dequeue Command while the first one is still being processed. This just won't work with the internal xHCI state code. I'm still not sure if this is the right thing to do, since we might have a case where a driver queues multiple URBs to a control ring, one of the URBs Stalls, and then the driver tries to cancel the second URB. There may be a race condition there where the xHCI driver might try to issue multiple Set TR Dequeue Pointer commands, but I would have to think very hard about how the Stop Endpoint and cancellation code works. Keep the fix simple until when/if we run into that case. This patch should be queued to kernels all the way back to 2.6.31. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NTakashi Iwai <tiwai@suse.de> Cc: stable@kernel.org
-
由 Sarah Sharp 提交于
Make sure the HCD_FLAG_HW_ACCESSIBLE flag is mirrored by both roothubs, since it refers to whether the shared hardware is accessible. Make sure each bus is marked as suspended by setting usb_hcd->state to HC_STATE_SUSPENDED when the PCI host controller is resumed. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
xhci_find_slot_id_by_port() tries to map the port index to the slot ID for the USB device. In the future, there will be two xHCI roothubs, and their port indices will overlap. Therefore, xhci_find_slot_id_by_port() will need to use information in the roothub's usb_hcd structure to map the port index and roothub speed to the right slot ID. Add a new parameter to xhci_find_slot_id_by_port(), in order to pass in the roothub's usb_hcd structure. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
There are several variables in the xhci_hcd structure that are related to bus suspend and resume state. There are a couple different port status arrays that are accessed by port index. Move those variables into a separate structure, xhci_bus_state. Stash that structure in xhci_hcd. When we have two roothhubs that can be suspended and resumed separately, we can have two xhci_bus_states, and index into the port arrays in each structure with the fake roothub port index (not the real hardware port index). Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
In the upcoming patches, the roothub emulation code will need to return port status and port change buffers based on whether they are called with the xHCI USB 2.0 or USB 3.0 roothub. To facilitate that, make the roothub code index into an array of port addresses with wIndex, rather than calculating the address using the offset and the address of the PORTSC registers. Later we can set the port array to be the array of USB 3.0 port addresses, or the USB 2.0 port addresses, depending on the roothub passed in. Create a temporary (statically sized) port array and fill it in with both USB 3.0 and USB 2.0 port addresses. This is inefficient to do for every roothub call, but this is needed for git bisect compatibility. The temporary port array will be deleted in a subsequent patch. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
The hcd->flags are in a sorry state. Some of them are clearly specific to the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and HCD_WAKEUP_PENDING), but some flags are related to PCI device state (HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device can have two roothubs that share the same IRQ line and hardware. Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is serviced, or an URB is unlinked without an interrupt. (We can't tell if the host actually serviced an interrupt for a particular bus, but we can tell it serviced some interrupt.) HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both roothubs as they are added, so it doesn't need to be modified. HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and they are never set by the xHCI driver, since the roothub never needs to be polled. The usb_hcd's state field is a similar mess. Sometimes the state applies to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and HC_STATE_QUIESCING. But sometimes the state refers to the roothub state: HC_STATE_RESUMING and HC_STATE_SUSPENDED. Alan Stern recently made the USB core not rely on the hcd->state variable. Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave that code in. Remove all references to HC_STATE_HALT, since the xHCI driver only sets and doesn't test those variables. We still have to set HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub won't get registered if we don't set that. Alan's patch made the USB core check a different variable when trying to determine whether to suspend a roothub. The xHCI host has a split roothub, where two buses are registered for one PCI device. Each bus in the xHCI split roothub can be suspended separately, but both buses must be suspended before the PCI device can be suspended. Therefore, make sure that the USB core checks HCD_RH_RUNNING() for both roothubs before suspending the PCI host. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-