1. 01 10月, 2015 6 次提交
  2. 28 9月, 2015 1 次提交
  3. 25 9月, 2015 3 次提交
    • P
      KVM: x86: fix off-by-one in reserved bits check · 58c95070
      Paolo Bonzini 提交于
      29ecd660 ("KVM: x86: avoid uninitialized variable warning",
      2015-09-06) introduced a not-so-subtle problem, which probably
      escaped review because it was not part of the patch context.
      
      Before the patch, leaf was always equal to iterator.level.  After,
      it is equal to iterator.level - 1 in the call to is_shadow_zero_bits_set,
      and when is_shadow_zero_bits_set does another "-1" the check on
      reserved bits becomes incorrect.  Using "iterator.level" in the call
      fixes this call trace:
      
      WARNING: CPU: 2 PID: 17000 at arch/x86/kvm/mmu.c:3385 handle_mmio_page_fault.part.93+0x1a/0x20 [kvm]()
      Modules linked in: tun sha256_ssse3 sha256_generic drbg binfmt_misc ipv6 vfat fat fuse dm_crypt dm_mod kvm_amd kvm crc32_pclmul aesni_intel aes_x86_64 lrw gf128mul glue_helper ablk_helper cryptd fam15h_power amd64_edac_mod k10temp edac_core amdkfd amd_iommu_v2 radeon acpi_cpufreq
      [...]
      Call Trace:
        dump_stack+0x4e/0x84
        warn_slowpath_common+0x95/0xe0
        warn_slowpath_null+0x1a/0x20
        handle_mmio_page_fault.part.93+0x1a/0x20 [kvm]
        tdp_page_fault+0x231/0x290 [kvm]
        ? emulator_pio_in_out+0x6e/0xf0 [kvm]
        kvm_mmu_page_fault+0x36/0x240 [kvm]
        ? svm_set_cr0+0x95/0xc0 [kvm_amd]
        pf_interception+0xde/0x1d0 [kvm_amd]
        handle_exit+0x181/0xa70 [kvm_amd]
        ? kvm_arch_vcpu_ioctl_run+0x68b/0x1730 [kvm]
        kvm_arch_vcpu_ioctl_run+0x6f6/0x1730 [kvm]
        ? kvm_arch_vcpu_ioctl_run+0x68b/0x1730 [kvm]
        ? preempt_count_sub+0x9b/0xf0
        ? mutex_lock_killable_nested+0x26f/0x490
        ? preempt_count_sub+0x9b/0xf0
        kvm_vcpu_ioctl+0x358/0x710 [kvm]
        ? __fget+0x5/0x210
        ? __fget+0x101/0x210
        do_vfs_ioctl+0x2f4/0x560
        ? __fget_light+0x29/0x90
        SyS_ioctl+0x4c/0x90
        entry_SYSCALL_64_fastpath+0x16/0x73
      ---[ end trace 37901c8686d84de6 ]---
      Reported-by: NBorislav Petkov <bp@alien8.de>
      Tested-by: NBorislav Petkov <bp@alien8.de>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      58c95070
    • P
      KVM: x86: use correct page table format to check nested page table reserved bits · 6fec2144
      Paolo Bonzini 提交于
      Intel CPUID on AMD host or vice versa is a weird case, but it can
      happen.  Handle it by checking the host CPU vendor instead of the
      guest's in reset_tdp_shadow_zero_bits_mask.  For speed, the
      check uses the fact that Intel EPT has an X (executable) bit while
      AMD NPT has NX.
      Reported-by: NBorislav Petkov <bp@alien8.de>
      Tested-by: NBorislav Petkov <bp@alien8.de>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      6fec2144
    • P
      KVM: svm: do not call kvm_set_cr0 from init_vmcb · 79a8059d
      Paolo Bonzini 提交于
      kvm_set_cr0 may want to call kvm_zap_gfn_range and thus access the
      memslots array (SRCU protected).  Using a mini SRCU critical section
      is ugly, and adding it to kvm_arch_vcpu_create doesn't work because
      the VMX vcpu_create callback calls synchronize_srcu.
      
      Fixes this lockdep splat:
      
      ===============================
      [ INFO: suspicious RCU usage. ]
      4.3.0-rc1+ #1 Not tainted
      -------------------------------
      include/linux/kvm_host.h:488 suspicious rcu_dereference_check() usage!
      
      other info that might help us debug this:
      rcu_scheduler_active = 1, debug_locks = 0
      1 lock held by qemu-system-i38/17000:
       #0:  (&(&kvm->mmu_lock)->rlock){+.+...}, at: kvm_zap_gfn_range+0x24/0x1a0 [kvm]
      
      [...]
      Call Trace:
       dump_stack+0x4e/0x84
       lockdep_rcu_suspicious+0xfd/0x130
       kvm_zap_gfn_range+0x188/0x1a0 [kvm]
       kvm_set_cr0+0xde/0x1e0 [kvm]
       init_vmcb+0x760/0xad0 [kvm_amd]
       svm_create_vcpu+0x197/0x250 [kvm_amd]
       kvm_arch_vcpu_create+0x47/0x70 [kvm]
       kvm_vm_ioctl+0x302/0x7e0 [kvm]
       ? __lock_is_held+0x51/0x70
       ? __fget+0x101/0x210
       do_vfs_ioctl+0x2f4/0x560
       ? __fget_light+0x29/0x90
       SyS_ioctl+0x4c/0x90
       entry_SYSCALL_64_fastpath+0x16/0x73
      Reported-by: NBorislav Petkov <bp@alien8.de>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      79a8059d
  4. 21 9月, 2015 1 次提交
  5. 18 9月, 2015 1 次提交
    • I
      kvm: svm: reset mmu on VCPU reset · ebae871a
      Igor Mammedov 提交于
      When INIT/SIPI sequence is sent to VCPU which before that
      was in use by OS, VMRUN might fail with:
      
       KVM: entry failed, hardware error 0xffffffff
       EAX=00000000 EBX=00000000 ECX=00000000 EDX=000006d3
       ESI=00000000 EDI=00000000 EBP=00000000 ESP=00000000
       EIP=00000000 EFL=00000002 [-------] CPL=0 II=0 A20=1 SMM=0 HLT=0
       ES =0000 00000000 0000ffff 00009300
       CS =9a00 0009a000 0000ffff 00009a00
       [...]
       CR0=60000010 CR2=b6f3e000 CR3=01942000 CR4=000007e0
       [...]
       EFER=0000000000000000
      
      with corresponding SVM error:
       KVM: FAILED VMRUN WITH VMCB:
       [...]
       cpl:            0                efer:         0000000000001000
       cr0:            0000000080010010 cr2:          00007fd7fe85bf90
       cr3:            0000000187d0c000 cr4:          0000000000000020
       [...]
      
      What happens is that VCPU state right after offlinig:
      CR0: 0x80050033  EFER: 0xd01  CR4: 0x7e0
        -> long mode with CR3 pointing to longmode page tables
      
      and when VCPU gets INIT/SIPI following transition happens
      CR0: 0 -> 0x60000010 EFER: 0x0  CR4: 0x7e0
        -> paging disabled with stale CR3
      
      However SVM under the hood puts VCPU in Paged Real Mode*
      which effectively translates CR0 0x60000010 -> 80010010 after
      
         svm_vcpu_reset()
             -> init_vmcb()
                 -> kvm_set_cr0()
                     -> svm_set_cr0()
      
      but from  kvm_set_cr0() perspective CR0: 0 -> 0x60000010
      only caching bits are changed and
      commit d81135a5
       ("KVM: x86: do not reset mmu if CR0.CD and CR0.NW are changed")'
      regressed svm_vcpu_reset() which relied on MMU being reset.
      
      As result VMRUN after svm_vcpu_reset() tries to run
      VCPU in Paged Real Mode with stale MMU context (longmode page tables),
      which causes some AMD CPUs** to bail out with VMEXIT_INVALID.
      
      Fix issue by unconditionally resetting MMU context
      at init_vmcb() time.
      
      	* AMD64 Architecture Programmer’s Manual,
      	    Volume 2: System Programming, rev: 3.25
      	      15.19 Paged Real Mode
      	** Opteron 1216
      Signed-off-by: NIgor Mammedov <imammedo@redhat.com>
      Fixes: d81135a5
      Cc: stable@vger.kernel.org
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      ebae871a
  6. 16 9月, 2015 2 次提交
    • W
      KVM: vmx: fix VPID is 0000H in non-root operation · 04bb92e4
      Wanpeng Li 提交于
      Reference SDM 28.1:
      
      The current VPID is 0000H in the following situations:
      - Outside VMX operation. (This includes operation in system-management
        mode under the default treatment of SMIs and SMM with VMX operation;
        see Section 34.14.)
      - In VMX root operation.
      - In VMX non-root operation when the “enable VPID” VM-execution control
        is 0.
      
      The VPID should never be 0000H in non-root operation when "enable VPID"
      VM-execution control is 1. However, commit 34a1cd60 ("kvm: x86: vmx:
      move some vmx setting from vmx_init() to hardware_setup()") remove the
      codes which reserve 0000H for VMX root operation.
      
      This patch fix it by again reserving 0000H for VMX root operation.
      
      Cc: stable@vger.kernel.org # 3.19+
      Fixes: 34a1cd60Reported-by: NWincy Van <fanwenyi0529@gmail.com>
      Signed-off-by: NWanpeng Li <wanpeng.li@hotmail.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      04bb92e4
    • P
      KVM: add halt_attempted_poll to VCPU stats · 62bea5bf
      Paolo Bonzini 提交于
      This new statistic can help diagnosing VCPUs that, for any reason,
      trigger bad behavior of halt_poll_ns autotuning.
      
      For example, say halt_poll_ns = 480000, and wakeups are spaced exactly
      like 479us, 481us, 479us, 481us. Then KVM always fails polling and wastes
      10+20+40+80+160+320+480 = 1110 microseconds out of every
      479+481+479+481+479+481+479 = 3359 microseconds. The VCPU then
      is consuming about 30% more CPU than it would use without
      polling.  This would show as an abnormally high number of
      attempted polling compared to the successful polls.
      
      Acked-by: Christian Borntraeger <borntraeger@de.ibm.com<
      Reviewed-by: NDavid Matlack <dmatlack@google.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      62bea5bf
  7. 11 9月, 2015 1 次提交
    • D
      kexec: split kexec_load syscall from kexec core code · 2965faa5
      Dave Young 提交于
      There are two kexec load syscalls, kexec_load another and kexec_file_load.
       kexec_file_load has been splited as kernel/kexec_file.c.  In this patch I
      split kexec_load syscall code to kernel/kexec.c.
      
      And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
      use kexec_file_load only, or vice verse.
      
      The original requirement is from Ted Ts'o, he want kexec kernel signature
      being checked with CONFIG_KEXEC_VERIFY_SIG enabled.  But kexec-tools use
      kexec_load syscall can bypass the checking.
      
      Vivek Goyal proposed to create a common kconfig option so user can compile
      in only one syscall for loading kexec kernel.  KEXEC/KEXEC_FILE selects
      KEXEC_CORE so that old config files still work.
      
      Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
      architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
      KEXEC_CORE in arch Kconfig.  Also updated general kernel code with to
      kexec_load syscall.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      Cc: Petr Tesarik <ptesarik@suse.cz>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Cc: Josh Boyer <jwboyer@fedoraproject.org>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2965faa5
  8. 09 9月, 2015 1 次提交
    • V
      mm: rename alloc_pages_exact_node() to __alloc_pages_node() · 96db800f
      Vlastimil Babka 提交于
      alloc_pages_exact_node() was introduced in commit 6484eb3e ("page
      allocator: do not check NUMA node ID when the caller knows the node is
      valid") as an optimized variant of alloc_pages_node(), that doesn't
      fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
      name of the function can easily suggest that the allocation is
      restricted to the given node and fails otherwise.  In truth, the node is
      only preferred, unless __GFP_THISNODE is passed among the gfp flags.
      
      The misleading name has lead to mistakes in the past, see for example
      commits 5265047a ("mm, thp: really limit transparent hugepage
      allocation to local node") and b360edb4 ("mm, mempolicy:
      migrate_to_node should only migrate to node").
      
      Another issue with the name is that there's a family of
      alloc_pages_exact*() functions where 'exact' means exact size (instead
      of page order), which leads to more confusion.
      
      To prevent further mistakes, this patch effectively renames
      alloc_pages_exact_node() to __alloc_pages_node() to better convey that
      it's an optimized variant of alloc_pages_node() not intended for general
      usage.  Both functions get described in comments.
      
      It has been also considered to really provide a convenience function for
      allocations restricted to a node, but the major opinion seems to be that
      __GFP_THISNODE already provides that functionality and we shouldn't
      duplicate the API needlessly.  The number of users would be small
      anyway.
      
      Existing callers of alloc_pages_exact_node() are simply converted to
      call __alloc_pages_node(), with the exception of sba_alloc_coherent()
      which open-codes the check for NUMA_NO_NODE, so it is converted to use
      alloc_pages_node() instead.  This means it no longer performs some
      VM_BUG_ON checks, and since the current check for nid in
      alloc_pages_node() uses a 'nid < 0' comparison (which includes
      NUMA_NO_NODE), it may hide wrong values which would be previously
      exposed.
      
      Both differences will be rectified by the next patch.
      
      To sum up, this patch makes no functional changes, except temporarily
      hiding potentially buggy callers.  Restricting the checks in
      alloc_pages_node() is left for the next patch which can in turn expose
      more existing buggy callers.
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NRobin Holt <robinmholt@gmail.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Acked-by: NMichael Ellerman <mpe@ellerman.id.au>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Gleb Natapov <gleb@kernel.org>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Cliff Whickman <cpw@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      96db800f
  9. 06 9月, 2015 3 次提交
  10. 15 8月, 2015 1 次提交
  11. 11 8月, 2015 2 次提交
  12. 07 8月, 2015 2 次提交
    • H
      KVM: x86: Use adjustment in guest cycles when handling MSR_IA32_TSC_ADJUST · d7add054
      Haozhong Zhang 提交于
      When kvm_set_msr_common() handles a guest's write to
      MSR_IA32_TSC_ADJUST, it will calcuate an adjustment based on the data
      written by guest and then use it to adjust TSC offset by calling a
      call-back adjust_tsc_offset(). The 3rd parameter of adjust_tsc_offset()
      indicates whether the adjustment is in host TSC cycles or in guest TSC
      cycles. If SVM TSC scaling is enabled, adjust_tsc_offset()
      [i.e. svm_adjust_tsc_offset()] will first scale the adjustment;
      otherwise, it will just use the unscaled one. As the MSR write here
      comes from the guest, the adjustment is in guest TSC cycles. However,
      the current kvm_set_msr_common() uses it as a value in host TSC
      cycles (by using true as the 3rd parameter of adjust_tsc_offset()),
      which can result in an incorrect adjustment of TSC offset if SVM TSC
      scaling is enabled. This patch fixes this problem.
      Signed-off-by: NHaozhong Zhang <haozhong.zhang@intel.com>
      Cc: stable@vger.linux.org
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      d7add054
    • P
      KVM: x86: zero IDT limit on entry to SMM · 18c3626e
      Paolo Bonzini 提交于
      The recent BlackHat 2015 presentation "The Memory Sinkhole"
      mentions that the IDT limit is zeroed on entry to SMM.
      
      This is not documented, and must have changed some time after 2010
      (see http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf).
      KVM was not doing it, but the fix is easy.
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      18c3626e
  13. 05 8月, 2015 11 次提交
  14. 30 7月, 2015 1 次提交
    • P
      KVM: x86: clean/fix memory barriers in irqchip_in_kernel · 71ba994c
      Paolo Bonzini 提交于
      The memory barriers are trying to protect against concurrent RCU-based
      interrupt injection, but the IRQ routing table is not valid at the time
      kvm->arch.vpic is written.  Fix this by writing kvm->arch.vpic last.
      kvm_destroy_pic then need not set kvm->arch.vpic to NULL; modify it
      to take a struct kvm_pic* and reuse it if the IOAPIC creation fails.
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      71ba994c
  15. 29 7月, 2015 2 次提交
  16. 23 7月, 2015 2 次提交