- 06 3月, 2015 13 次提交
-
-
由 Eric Farman 提交于
Store additional status in the machine check handler, in order to collect status (such as vector registers) that is not defined by store status. Signed-off-by: NEric Farman <farman@linux.vnet.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Eric Farman 提交于
The new SIGP order Store Additional Status at Address is totally handled by user space, but we should still record the occurrence of this order in the kernel code. Signed-off-by: NEric Farman <farman@linux.vnet.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Eric Farman 提交于
A new exception type for vector instructions is introduced with the new processor, but is handled exactly like a Data Exception which is already handled by the system. Signed-off-by: NEric Farman <farman@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Eric Farman 提交于
Define and allocate space for both the host and guest views of the vector registers for a given vcpu. The 32 vector registers occupy 128 bits each (512 bytes total), but architecturally are paired with 512 additional bytes of reserved space for future expansion. The kvm_sync_regs structs containing the registers are union'ed with 1024 bytes of padding in the common kvm_run struct. The addition of 1024 bytes of new register information clearly exceeds the existing union, so an expansion of that padding is required. When changing environments, we need to appropriately save and restore the vector registers viewed by both the host and guest, into and out of the sync_regs space. The floating point registers overlay the upper half of vector registers 0-15, so there's a bit of data duplication here that needs to be carefully avoided. Signed-off-by: NEric Farman <farman@linux.vnet.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Alexander Yarygin 提交于
The guest debug functions work on absolute addresses and should use the read_guest_abs() function rather than general read_guest() that works with logical addresses. Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NAlexander Yarygin <yarygin@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Yannick Guerrini 提交于
Change 'architecuture' to 'architecture' Signed-off-by: NYannick Guerrini <yguerrini@tomshardware.fr> Message-Id: <1424989004-14412-1-git-send-email-yguerrini@tomshardware.fr> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Michael Mueller 提交于
The function kvm_s390_vcpu_setup_model() now performs all cpu model realated setup tasks for a vcpu. Besides cpuid and ibc initialization, facility list assignment takes place during the setup step as well. The model setup has been pulled to the begin of vcpu setup to allow kvm facility tests. There is no need to protect the cpu model setup with a lock since the attributes can't be changed anymore as soon the first vcpu is online. Signed-off-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Thomas Huth 提交于
The common s390 function insn_length() results in slightly smaller (and thus hopefully faster) code than the calculation of the instruction length via a lookup-table. So let's use that function in the interrupt delivery code, too. Signed-off-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Thomas Huth 提交于
When the SIE exited by a DAT access exceptions which we can not resolve, the guest tried to access a page which is out of bounds and can not be paged-in. In this case we have to signal the bad access by injecting an address exception. However, address exceptions are either suppressing or terminating, i.e. the PSW has to point to the next instruction when the exception is delivered. Since the originating DAT access exception is nullifying, the PSW still points to the offending instruction instead, so we've got to forward the PSW to the next instruction. Having fixed this issue, we can now also enable the TPROT interpretation facility again which had been disabled because of this problem. Signed-off-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Thomas Huth 提交于
When certain program exceptions (e.g. DAT access exceptions) occur, the current instruction has to be nullified, i.e. the old PSW that gets written into the low-core has to point to the beginning of the instruction again, and not to the beginning of the next instruction. Thus we have to rewind the PSW before writing it into the low-core. The list of nullifying exceptions can be found in the POP, chapter 6, figure 6-1 ("Interruption Action"). Signed-off-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
The reinjection of an I/O interrupt can fail if the list is at the limit and between the dequeue and the reinjection, another I/O interrupt is injected (e.g. if user space floods kvm with I/O interrupts). This patch avoids this memory leak and returns -EFAULT in this special case. This error is not recoverable, so let's fail hard. This can later be avoided by not dequeuing the interrupt but working directly on the locked list. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # 3.16+ Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
If the I/O interrupt could not be written to the guest provided area (e.g. access exception), a program exception was injected into the guest but "inti" wasn't freed, therefore resulting in a memory leak. In addition, the I/O interrupt wasn't reinjected. Therefore the dequeued interrupt is lost. This patch fixes the problem while cleaning up the function and making the cc and rc logic easier to handle. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # 3.16+ Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Ekaterina Tumanova 提交于
s390 documentation requires words 0 and 10-15 to be reserved and stored as zeros. As we fill out all other fields, we can memset the full structure. Signed-off-by: NEkaterina Tumanova <tumanova@linux.vnet.ibm.com> Cc: stable@vger.kernel.org Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 04 3月, 2015 4 次提交
-
-
由 Michael Mueller 提交于
With patch "include guest facilities in kvm facility test" it is no longer necessary to have special handling for the non-LPAR case. Signed-off-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Michael Mueller 提交于
Most facility related decisions in KVM have to take into account: - the facilities offered by the underlying run container (LPAR/VM) - the facilities supported by the KVM code itself - the facilities requested by a guest VM This patch adds the KVM driver requested facilities to the test routine. It additionally renames struct s390_model_fac to kvm_s390_fac and its field names to be more meaningful. The semantics of the facilities stored in the KVM architecture structure is changed. The address arch.model.fac->list now points to the guest facility list and arch.model.fac->mask points to the KVM facility mask. This patch fixes the behaviour of KVM for some facilities for guests that ignore the guest visible facility bits, e.g. guests could use transactional memory intructions on hosts supporting them even if the chosen cpu model would not offer them. The userspace interface is not affected by this change. Signed-off-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Michael Mueller 提交于
The facility lists were not fully copied. Signed-off-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Christian Borntraeger 提交于
Under z/VM PQAP might trigger an operation exception if no crypto cards are defined via APVIRTUAL or APDEDICATED. [ 386.098666] Kernel BUG at 0000000000135c56 [verbose debug info unavailable] [ 386.098693] illegal operation: 0001 ilc:2 [#1] SMP [...] [ 386.098751] Krnl PSW : 0704c00180000000 0000000000135c56 (kvm_s390_apxa_installed+0x46/0x98) [...] [ 386.098804] [<000000000013627c>] kvm_arch_init_vm+0x29c/0x358 [ 386.098806] [<000000000012d008>] kvm_dev_ioctl+0xc0/0x460 [ 386.098809] [<00000000002c639a>] do_vfs_ioctl+0x332/0x508 [ 386.098811] [<00000000002c660e>] SyS_ioctl+0x9e/0xb0 [ 386.098814] [<000000000070476a>] system_call+0xd6/0x258 [ 386.098815] [<000003fffc7400a2>] 0x3fffc7400a2 Lets add an extable entry and provide a zeroed config in that case. Reported-by: NStefan Zimmermann <stzi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Tested-by: NStefan Zimmermann <stzi@linux.vnet.ibm.com>
-
- 03 3月, 2015 1 次提交
-
-
由 Tony Krowiak 提交于
z/VM and LPAR enable key wrapping by default, lets do the same on KVM. Signed-off-by: NTony Krowiak <akrowiak@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 09 2月, 2015 5 次提交
-
-
由 Michael Mueller 提交于
This patch enables cpu model support in kvm/s390 via the vm attribute interface. During KVM initialization, the host properties cpuid, IBC value and the facility list are stored in the architecture specific cpu model structure. During vcpu setup, these properties are taken to initialize the related SIE state. This mechanism allows to adjust the properties from user space and thus to implement different selectable cpu models. This patch uses the IBC functionality to block instructions that have not been implemented at the requested CPU type and GA level compared to the full host capability. Userspace has to initialize the cpu model before vcpu creation. A cpu model change of running vcpus is not possible. Signed-off-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Michael Mueller 提交于
The patch introduces facilities and cpu_ids per virtual machine. Different virtual machines may want to expose different facilities and cpu ids to the guest, so let's make them per-vm instead of global. Signed-off-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Tony Krowiak 提交于
We need to specify a different format for the crypto control block depending on whether the APXA facility is installed or not. Let's test for it by executing the PQAP(QCI) function and use either a format-1 or a format-2 crypto control block accordingly. This is a host only change for z13 and does not affect the guest view. Signed-off-by: NTony Krowiak <akrowiak@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Christian Borntraeger 提交于
commit 7be81a46 ("KVM: s390/facilities: allow TOD-CLOCK steering facility bit") accidentially disabled the "load program parameter" facility bit during rebase for upstream submission (my fault). Re-add that bit. As this is only for a performance measurement helper instruction (used by KVM itself) cc stable is not necessary see http://www-01.ibm.com/support/docview.wss?uid=isg26fcd1cc32246f4c8852574ce0044734a (SA23-2260 The Load-Program-Parameter and CPU-Measurement Facilities) for details about LPP and its usecase. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Fixes: 7be81a46 ("KVM: s390/facilities: allow TOD-CLOCK steering")
-
由 David Hildenbrand 提交于
If a vm with no VCPUs is created, the injection of a floating irq leads to an endless loop in the kernel. Let's skip the search for a destination VCPU for a floating irq if no VCPUs were created. Reviewed-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 06 2月, 2015 1 次提交
-
-
由 Paolo Bonzini 提交于
This patch introduces a new module parameter for the KVM module; when it is present, KVM attempts a bit of polling on every HLT before scheduling itself out via kvm_vcpu_block. This parameter helps a lot for latency-bound workloads---in particular I tested it with O_DSYNC writes with a battery-backed disk in the host. In this case, writes are fast (because the data doesn't have to go all the way to the platters) but they cannot be merged by either the host or the guest. KVM's performance here is usually around 30% of bare metal, or 50% if you use cache=directsync or cache=writethrough (these parameters avoid that the guest sends pointless flush requests, and at the same time they are not slow because of the battery-backed cache). The bad performance happens because on every halt the host CPU decides to halt itself too. When the interrupt comes, the vCPU thread is then migrated to a new physical CPU, and in general the latency is horrible because the vCPU thread has to be scheduled back in. With this patch performance reaches 60-65% of bare metal and, more important, 99% of what you get if you use idle=poll in the guest. This means that the tunable gets rid of this particular bottleneck, and more work can be done to improve performance in the kernel or QEMU. Of course there is some price to pay; every time an otherwise idle vCPUs is interrupted by an interrupt, it will poll unnecessarily and thus impose a little load on the host. The above results were obtained with a mostly random value of the parameter (500000), and the load was around 1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU. The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll, that can be used to tune the parameter. It counts how many HLT instructions received an interrupt during the polling period; each successful poll avoids that Linux schedules the VCPU thread out and back in, and may also avoid a likely trip to C1 and back for the physical CPU. While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second. Of these halts, almost all are failed polls. During the benchmark, instead, basically all halts end within the polling period, except a more or less constant stream of 50 per second coming from vCPUs that are not running the benchmark. The wasted time is thus very low. Things may be slightly different for Windows VMs, which have a ~10 ms timer tick. The effect is also visible on Marcelo's recently-introduced latency test for the TSC deadline timer. Though of course a non-RT kernel has awful latency bounds, the latency of the timer is around 8000-10000 clock cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC deadline timer, thus, the effect is both a smaller average latency and a smaller variance. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 23 1月, 2015 16 次提交
-
-
由 Jens Freimann 提交于
Setting inti->type again is unnecessary here, so let's remove this. Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Jens Freimann 提交于
When we convert interrupt data from struct kvm_s390_interrupt to struct kvm_s390_irq we need to check the data in the input parameter not the output parameter. Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We have to delete the allocated interrupt info if __inject_vm() fails. Otherwise user space can keep flooding kvm with floating interrupts and provoke more and more memory leaks. Reported-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Reviewed-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Tony Krowiak 提交于
Created new KVM device attributes for indicating whether the AES and DES/TDES protected key functions are available for programs running on the KVM guest. The attributes are used to set up the controls in the guest SIE block that specify whether programs running on the guest will be given access to the protected key functions available on the s390 hardware. Signed-off-by: NTony Krowiak <akrowiak@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NMichael Mueller <mimu@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> [split MSA4/protected key into two patches]
-
由 Jason J. Herne 提交于
Provide controls for setting/getting the guest TOD clock based on the VM attribute interface. Provide TOD and TOD_HIGH vm attributes on s390 for managing guest Time Of Day clock value. TOD_HIGH is presently always set to 0. In the future it will contain a high order expansion of the tod clock value after it overflows the 64-bits of the TOD. Signed-off-by: NJason J. Herne <jjherne@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Jens Freimann 提交于
When injecting SIGP set prefix or a machine check, we trace the values in our per-vcpu local_int data structure instead of the parameters passed to the function. Fix this by changing the trace statement to use the correct values. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Jens Freimann 提交于
Currently we are always setting the wrong bit in the bitmap for pending emergency signals. Instead of using emerg.code from the passed in irq parameter, we use the value in our per-vcpu local_int structure, which is always zero. That means all emergency signals will have address 0 as parameter. If two CPUs send a SIGP to the same target, one might be lost. Let's fix this by using the value from the parameter and also trace the correct value. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Thomas Huth 提交于
The handler for MVPG partial execution interception does not take the current CPU addressing mode into account yet, so addresses are always treated as 64-bit addresses. For correct behaviour, we should properly handle 24-bit and 31-bit addresses, too. Since MVPG is defined to work with logical addresses, we can simply use guest_translate_address() to achieve the required behaviour (since DAT is disabled here, guest_translate_address() skips the MMU translation and only translates the address via kvm_s390_logical_to_effective() and kvm_s390_real_to_abs(), which is exactly what we want here). Signed-off-by: NThomas Huth <thuth@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Christian Borntraeger 提交于
The kvm mutex was (probably) used to protect against cpu hotplug. The current code no longer needs to protect against that, as we only rely on CPU data structures that are guaranteed to be available if we can access the CPU. (e.g. vcpu_create will put the cpu in the array AFTER the cpu is ready). Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NJens Freimann <jfrei@linux.vnet.ibm.com>
-
由 David Hildenbrand 提交于
Most SIGP orders are handled partially in kernel and partially in user space. In order to: - Get a correct SIGP SET PREFIX handler that informs user space - Avoid race conditions between concurrently executed SIGP orders - Serialize SIGP orders per VCPU We need to handle all "slow" SIGP orders in user space. The remaining ones to be handled completely in kernel are: - SENSE - SENSE RUNNING - EXTERNAL CALL - EMERGENCY SIGNAL - CONDITIONAL EMERGENCY SIGNAL According to the PoP, they have to be fast. They can be executed without conflicting to the actions of other pending/concurrently executing orders (e.g. STOP vs. START). This patch introduces a new capability that will - when enabled - forward all but the mentioned SIGP orders to user space. The instruction counters in the kernel are still updated. Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We need a way to clear the async pfault queue from user space (e.g. for resets and SIGP SET ARCHITECTURE). This patch simply clears the queue as soon as user space sets the invalid pfault token. The definition of the invalid token is moved to uapi. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Only one external call may be pending at a vcpu at a time. For this reason, we have to detect whether the SIGP externcal call interpretation facility is available. If so, all external calls have to be injected using this mechanism. SIGP EXTERNAL CALL orders have to return whether another external call is already pending. This check was missing until now. SIGP SENSE hasn't returned yet in all conditions whether an external call was pending. If a SIGP EXTERNAL CALL irq is to be injected and one is already pending, -EBUSY is returned. Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
This patch cleanes up the the SIGP SET PREFIX code. A SIGP SET PREFIX irq may only be injected if the target vcpu is stopped. Let's move the checking code into the injection code and return -EBUSY if the target vcpu is not stopped. Reviewed-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
As a SIGP STOP is an interrupt with the least priority, it may only result in stop of the vcpu when no other interrupts are left pending. To detect whether a non-stop irq is pending, we need a way to mask out stop irqs from the general kvm_cpu_has_interrupt() function. For this reason, the existing function (with an outdated name) is replaced by kvm_s390_vcpu_has_irq() which allows to mask out pending stop irqs. Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
This patch removes the famous action_bits and moves the handling of SIGP STOP AND STORE STATUS directly into the SIGP STOP interrupt. The new local interrupt infrastructure is used to track pending stop requests. STOP irqs are the only irqs that don't get actively delivered. They remain pending until the stop function is executed (=stop intercept). If another STOP irq is already pending, -EBUSY will now be returned (needed for the SIGP handling code). Migration of pending SIGP STOP (AND STORE STATUS) orders should now be supported out of the box. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
In order to get rid of the action_flags and to properly migrate pending SIGP STOP irqs triggered e.g. by SIGP STOP AND STORE STATUS, we need to remember whether to store the status when stopping. For this reason, a new parameter (flags) for the SIGP STOP irq is introduced. These flags further define details of the requested STOP and can be easily migrated. Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-