- 28 10月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
tp->lsndtime may not always be the SYNACK timestamp if a passive Fast Open socket sends data before handshake completes. And if the remote acknowledges both the data and the SYNACK, the RTT sample is already taken in tcp_ack(), so no need to call tcp_update_ack_rtt() in tcp_synack_rtt_meas() aagain. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 10月, 2013 1 次提交
-
-
由 Neal Cardwell 提交于
For passive TCP connections, upon receiving the ACK that completes the 3WHS, make sure we set our pacing rate after we get our first RTT sample. On passive TCP connections, when we receive the ACK completing the 3WHS we do not take an RTT sample in tcp_ack(), but rather in tcp_synack_rtt_meas(). So upon receiving the ACK that completes the 3WHS, tcp_ack() leaves sk_pacing_rate at its initial value. Originally the initial sk_pacing_rate value was 0, so passive-side connections defaulted to sysctl_tcp_min_tso_segs (2 segs) in skbuffs made in the first RTT. With a default initial cwnd of 10 packets, this happened to be correct for RTTs 5ms or bigger, so it was hard to see problems in WAN or emulated WAN testing. Since 7eec4174 ("pkt_sched: fq: fix non TCP flows pacing"), the initial sk_pacing_rate is 0xffffffff. So after that change, passive TCP connections were keeping this value (and using large numbers of segments per skbuff) until receiving an ACK for data. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 10月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On receiving an ACK that covers the loss probe sequence, TLP immediately sets the congestion state to Open, even though some packets are not recovered and retransmisssion are on the way. The later ACks may trigger a WARN_ON check in step D of tcp_fastretrans_alert(), e.g., https://bugzilla.redhat.com/show_bug.cgi?id=989251 The fix is to follow the similar procedure in recovery by calling tcp_try_keep_open(). The sender switches to Open state if no packets are retransmissted. Otherwise it goes to Disorder and let subsequent ACKs move the state to Recovery or Open. Reported-By: NMichael Sterrett <michael@sterretts.net> Tested-By: NDormando <dormando@rydia.net> Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 10月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Yuchung found following problem : There are bugs in the SACK processing code, merging part in tcp_shift_skb_data(), that incorrectly resets or ignores the sacked skbs FIN flag. When a receiver first SACK the FIN sequence, and later throw away ofo queue (e.g., sack-reneging), the sender will stop retransmitting the FIN flag, and hangs forever. Following packetdrill test can be used to reproduce the bug. $ cat sack-merge-bug.pkt `sysctl -q net.ipv4.tcp_fack=0` // Establish a connection and send 10 MSS. 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +.000 bind(3, ..., ...) = 0 +.000 listen(3, 1) = 0 +.050 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +.000 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.001 < . 1:1(0) ack 1 win 1024 +.000 accept(3, ..., ...) = 4 +.100 write(4, ..., 12000) = 12000 +.000 shutdown(4, SHUT_WR) = 0 +.000 > . 1:10001(10000) ack 1 +.050 < . 1:1(0) ack 2001 win 257 +.000 > FP. 10001:12001(2000) ack 1 +.050 < . 1:1(0) ack 2001 win 257 <sack 10001:11001,nop,nop> +.050 < . 1:1(0) ack 2001 win 257 <sack 10001:12002,nop,nop> // SACK reneg +.050 < . 1:1(0) ack 12001 win 257 +0 %{ print "unacked: ",tcpi_unacked }% +5 %{ print "" }% First, a typo inverted left/right of one OR operation, then code forgot to advance end_seq if the merged skb carried FIN. Bug was added in 2.6.29 by commit 832d11c5 ("tcp: Try to restore large SKBs while SACK processing") Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-by: NIlpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 9月, 2013 2 次提交
-
-
由 Eric Dumazet 提交于
TCP receive window handling is multi staged. A socket has a memory budget, static or dynamic, in sk_rcvbuf. Because we do not really know how this memory budget translates to a TCP window (payload), TCP announces a small initial window (about 20 MSS). When a packet is received, we increase TCP rcv_win depending on the payload/truesize ratio of this packet. Good citizen packets give a hint that it's reasonable to have rcv_win = sk_rcvbuf/2 This heuristic takes place in tcp_grow_window() Problem is : We currently call tcp_grow_window() only for in-order packets. This means that reorders or packet losses stop proper grow of rcv_win, and senders are unable to benefit from fast recovery, or proper reordering level detection. Really, a packet being stored in OFO queue is not a bad citizen. It should be part of the game as in-order packets. In our traces, we very often see sender is limited by linux small receive windows, even if linux hosts use autotuning (DRS) and should allow rcv_win to grow to ~3MB. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
In commit 0f7cc9a3 "tcp: increase throughput when reordering is high", it only allows cwnd to increase in Open state. This mistakenly disables slow start after timeout (CA_Loss). Moreover cwnd won't grow if the state moves from Disorder to Open later in tcp_fastretrans_alert(). Therefore the correct logic should be to allow cwnd to grow as long as the data is received in order in Open, Loss, or even Disorder state. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 9月, 2013 1 次提交
-
-
由 Vijay Subramanian 提交于
tcp_rcv_established() returns only one value namely 0. We change the return value to void (as suggested by David Miller). After commit 0c24604b (tcp: implement RFC 5961 4.2), we no longer send RSTs in response to SYNs. We can remove the check and processing on the return value of tcp_rcv_established(). We also fix jtcp_rcv_established() in tcp_probe.c to match that of tcp_rcv_established(). Signed-off-by: NVijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 8月, 2013 2 次提交
-
-
由 Eric Dumazet 提交于
After hearing many people over past years complaining against TSO being bursty or even buggy, we are proud to present automatic sizing of TSO packets. One part of the problem is that tcp_tso_should_defer() uses an heuristic relying on upcoming ACKS instead of a timer, but more generally, having big TSO packets makes little sense for low rates, as it tends to create micro bursts on the network, and general consensus is to reduce the buffering amount. This patch introduces a per socket sk_pacing_rate, that approximates the current sending rate, and allows us to size the TSO packets so that we try to send one packet every ms. This field could be set by other transports. Patch has no impact for high speed flows, where having large TSO packets makes sense to reach line rate. For other flows, this helps better packet scheduling and ACK clocking. This patch increases performance of TCP flows in lossy environments. A new sysctl (tcp_min_tso_segs) is added, to specify the minimal size of a TSO packet (default being 2). A follow-up patch will provide a new packet scheduler (FQ), using sk_pacing_rate as an input to perform optional per flow pacing. This explains why we chose to set sk_pacing_rate to twice the current rate, allowing 'slow start' ramp up. sk_pacing_rate = 2 * cwnd * mss / srtt v2: Neal Cardwell reported a suspect deferring of last two segments on initial write of 10 MSS, I had to change tcp_tso_should_defer() to take into account tp->xmit_size_goal_segs Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Tom Herbert <therbert@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Andrew Vagin 提交于
The zero value means that tsecr is not valid, so it's a special case. tsoffset is used to customize tcp_time_stamp for one socket. tsoffset is usually zero, it's used when a socket was moved from one host to another host. Currently this issue affects logic of tcp_rcv_rtt_measure_ts. Due to incorrect value of rcv_tsecr, tcp_rcv_rtt_measure_ts sets rto to TCP_RTO_MAX. Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Reported-by: NCyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: NAndrey Vagin <avagin@openvz.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 8月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
The stack currently detects reordering and avoid spurious retransmission very well. However the throughput is sub-optimal under high reordering because cwnd is increased only if the data is deliverd in order. I.e., FLAG_DATA_ACKED check in tcp_ack(). The more packet are reordered the worse the throughput is. Therefore when reordering is proven high, cwnd should advance whenever the data is delivered regardless of its ordering. If reordering is low, conservatively advance cwnd only on ordered deliveries in Open state, and retain cwnd in Disordered state (RFC5681). Using netperf on a qdisc setup of 20Mbps BW and random RTT from 45ms to 55ms (for reordering effect). This change increases TCP throughput by 20 - 25% to near bottleneck BW. A special case is the stretched ACK with new SACK and/or ECE mark. For example, a receiver may receive an out of order or ECN packet with unacked data buffered because of LRO or delayed ACK. The principle on such an ACK is to advance cwnd on the cummulative acked part first, then reduce cwnd in tcp_fastretrans_alert(). Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 8月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On timeout the TCP sender unconditionally resets the estimated degree of network reordering (tp->reordering). The idea behind this is that the estimate is too large to trigger fast recovery (e.g., due to a IP path change). But for example if the sender only had 2 packets outstanding, then a timeout doesn't tell much about reordering. A sender that learns about reordering on big writes and loses packets on small writes will end up falsely retransmitting again and again, especially when reordering is more likely on big writes. Therefore the sender should only suspect that tp->reordering is too high if it could have gone into fast recovery with the (lower) default estimate. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 7月, 2013 4 次提交
-
-
由 Yuchung Cheng 提交于
If RTT is not available because Karn's check has failed or no new packet is acked, use the RTT measured from SACK to estimate the RTO. The sender can continue to estimate the RTO during loss recovery or reordering event upon receiving non-partial ACKs. This also changes when the RTO is re-armed. Previously it is only re-armed when some data is cummulatively acknowledged (i.e., SND.UNA advances), but now it is re-armed whenever RTT estimator is updated. This feature is particularly useful to reduce spurious timeout for buffer bloat including cellular carriers [1], and RTT estimation on reordering events. [1] "An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance", In Proc. of SIGCOMM 2013 Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Take RTT sample if an ACK selectively acks some sequences that have never been retransmitted. The Karn's algorithm does not apply even if that ACK (s)acks other retransmitted sequences, because it must been generated by an original but perhaps out-of-order packet. There is no ambiguity. In case when multiple blocks are newly sacked because of ACK losses the earliest block is used to measure RTT, similar to cummulative ACKs. Such RTT samples allow the sender to estimate the RTO during loss recovery and packet reordering events. It is still useful even with TCP timestamps. That's because during these events the SND.UNA may not advance preventing RTT samples from TS ECR (thus the FLAG_ACKED check before calling tcp_ack_update_rtt()). Therefore this new RTT source is complementary to existing ACK and TS RTT mechanisms. This patch does not update the RTO. It is done in the next patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Prefer packet timings to TS-ecr for RTT measurements when both sources are available. That's because broken middle-boxes and remote peer can return packets with corrupted TS ECR fields. Similarly most congestion controls that require RTT signals favor timing-based sources as well. Also check for bad TS ECR values to avoid RTT blow-ups. It has happened on production Web servers. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The first patch consolidates SYNACK and other RTT measurement to use a central function tcp_ack_update_rtt(). A (small) bonus is now SYNACK RTT measurement happens after PAWS check, potentially reducing the impact of RTO seeding on bad TCP timestamps values. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 6月, 2013 1 次提交
-
-
由 Cong Wang 提交于
In previous discussions, I tried to find some reasonable heuristics for delayed ACK, however this seems not possible, according to Eric: "ACKS might also be delayed because of bidirectional traffic, and is more controlled by the application response time. TCP stack can not easily estimate it." "ACK can be incredibly useful to recover from losses in a short time. The vast majority of TCP sessions are small lived, and we send one ACK per received segment anyway at beginning or retransmits to let the sender smoothly increase its cwnd, so an auto-tuning facility wont help them that much." and according to David: "ACKs are the only information we have to detect loss. And, for the same reasons that TCP VEGAS is fundamentally broken, we cannot measure the pipe or some other receiver-side-visible piece of information to determine when it's "safe" to stretch ACK. And even if it's "safe", we should not do it so that losses are accurately detected and we don't spuriously retransmit. The only way to know when the bandwidth increases is to "test" it, by sending more and more packets until drops happen. That's why all successful congestion control algorithms must operate on explicited tested pieces of information. Similarly, it's not really possible to universally know if it's safe to stretch ACK or not." It still makes sense to enable or disable quick ack mode like what TCP_QUICK_ACK does. Similar to TCP_QUICK_ACK option, but for people who can't modify the source code and still wants to control TCP delayed ACK behavior. As David suggested, this should belong to per-path scope, since different pathes may want different behaviors. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Rick Jones <rick.jones2@hp.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Graf <tgraf@suug.ch> CC: David Laight <David.Laight@ACULAB.COM> Signed-off-by: NCong Wang <amwang@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 6月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
Linux sends new unset data during disorder and recovery state if all (suspected) lost packets have been retransmitted ( RFC5681, section 3.2 step 1 & 2, RFC3517 section 4, NexSeg() Rule 2). One requirement is to keep the receive window about twice the estimated sender's congestion window (tcp_rcv_space_adjust()), assuming the fast retransmits repair the losses in the next round trip. But currently it's not the case on the first round trip in either normal or Fast Open connection, beucase the initial receive window is identical to (expected) sender's initial congestion window. The fix is to double it. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 5月, 2013 4 次提交
-
-
由 Yuchung Cheng 提交于
If the receiver supports DSACK, sender can detect false recoveries and revert cwnd reductions triggered by either severe network reordering or concurrent reordering and loss event. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Upon detecting spurious fast retransmit via timestamps during recovery, use PRR to clock out new data packet instead of retransmission. Once all retransmission are proven spurious, the sender then reverts the cwnd reduction and congestion state to open or disorder. The current code does the opposite: it undoes cwnd as soon as any retransmission is spurious and continues to retransmit until all data are acked. This nullifies the point to undo the cwnd because the sender is still retransmistting spuriously. This patch fixes it. The undo_ssthresh argument of tcp_undo_cwnd_reductiuon() is no longer needed and is removed. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Refactor and relocate various functions or variables to prepare the undo fix. Remove some unused function arguments. Rename tcp_undo_cwr to tcp_undo_cwnd_reduction to be consistent with the rest of CWR related function names. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
This patch series fixes an undo bug in fast recovery: the sender mistakenly undos the cwnd too early but continues fast retransmits until all pending data are acked. This also multiplies the SNMP stat PARTIALUNDO events by the degree of the network reordering. The first patch prepares the fix by consolidating the accounting of newly_acked_sacked in tcp_cwnd_reduction(), instead of updating newly_acked_sacked everytime sacked_out is adjusted. Also pass acked and prior_unsacked as const type because they are readonly in the rest of recovery processing. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 5月, 2013 3 次提交
-
-
由 Joe Perches 提交于
case TCP_FIN_WAIT1 can also be simplified by reversing tests and adding breaks; Add braces after case and move automatic definitions. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Joe Perches 提交于
case TCP_SYN_RECV: can have another indentation level removed by converting if (acceptable) { ...; } else { return 1; } to if (!acceptable) return 1; ...; Reflow code and comments to fit 80 columns. Another pure cleanup patch. Signed-off-by: NJoe Perches <joe@perches.com> Improved-by: NEric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Remove one level of indentation 'introduced' in commit c3ae62af (tcp: should drop incoming frames without ACK flag set) if (true) { ... } @acceptable variable is a boolean. This patch is a pure cleanup. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 5月, 2013 1 次提交
-
-
由 Nandita Dukkipati 提交于
This patch is a fix for a bug triggering newly_acked_sacked < 0 in tcp_ack(.). The bug is triggered by sacked_out decreasing relative to prior_sacked, but packets_out remaining the same as pior_packets. This is because the snapshot of prior_packets is taken after tcp_sacktag_write_queue() while prior_sacked is captured before tcp_sacktag_write_queue(). The problem is: tcp_sacktag_write_queue (tcp_match_skb_to_sack() -> tcp_fragment) adjusts the pcount for packets_out and sacked_out (MSS change or other reason). As a result, this delta in pcount is reflected in (prior_sacked - sacked_out) but not in (prior_packets - packets_out). This patch does the following: 1) initializes prior_packets at the start of tcp_ack() so as to capture the delta in packets_out created by tcp_fragment. 2) introduces a new "previous_packets_out" variable that snapshots packets_out right before tcp_clean_rtx_queue, so pkts_acked can be correctly computed as before. 3) Computes pkts_acked using previous_packets_out, and computes newly_acked_sacked using prior_packets. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 5月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
tcp_timeout_skb() was intended to trigger fast recovery on timeout, unfortunately in reality it often causes spurious retransmission storms during fast recovery. The particular sign is a fast retransmit over the highest sacked sequence (SND.FACK). Currently the RTO timer re-arming (as in RFC6298) offers a nice cushion to avoid spurious timeout: when SND.UNA advances the sender re-arms RTO and extends the timeout by icsk_rto. The sender does not offset the time elapsed since the packet at SND.UNA was sent. But if the next (DUP)ACK arrives later than ~RTTVAR and triggers tcp_fastretrans_alert(), then tcp_timeout_skb() will mark any packet sent before the icsk_rto interval lost, including one that's above the highest sacked sequence. Most likely a large part of scorebard will be marked. If most packets are not lost then the subsequent DUPACKs with new SACK blocks will cause the sender to continue to retransmit packets beyond SND.FACK spuriously. Even if only one packet is lost the sender may falsely retransmit almost the entire window. The situation becomes common in the world of bufferbloat: the RTT continues to grow as the queue builds up but RTTVAR remains small and close to the minimum 200ms. If a data packet is lost and the DUPACK triggered by the next data packet is slightly delayed, then a spurious retransmission storm forms. As the original comment on tcp_timeout_skb() suggests: the usefulness of this feature is questionable. It also wastes cycles walking the sack scoreboard and is actually harmful because of false recovery. It's time to remove this. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 5月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_fixup_rcvbuf() contains a loop to estimate initial socket rcv space needed for a given mss. With large MTU (like 64K on lo), we can loop ~500 times and consume a lot of cpu cycles. perf top of 200 concurrent netperf -t TCP_CRR 5.62% netperf [kernel.kallsyms] [k] tcp_init_buffer_space 1.71% netperf [kernel.kallsyms] [k] _raw_spin_lock 1.55% netperf [kernel.kallsyms] [k] kmem_cache_free 1.51% netperf [kernel.kallsyms] [k] tcp_transmit_skb 1.50% netperf [kernel.kallsyms] [k] tcp_ack Lets use a 100% factor, and remove the loop. 100% is needed anyway for tcp_adv_win_scale=1 default value, and is also the maximum factor. Refs: commit b49960a0 ("tcp: change tcp_adv_win_scale and tcp_rmem[2]") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 4月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Add MIB counters for checksum errors in IP layer, and TCP/UDP/ICMP layers, to help diagnose problems. $ nstat -a | grep Csum IcmpInCsumErrors 72 0.0 TcpInCsumErrors 382 0.0 UdpInCsumErrors 463221 0.0 Icmp6InCsumErrors 75 0.0 Udp6InCsumErrors 173442 0.0 IpExtInCsumErrors 10884 0.0 Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 4月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
commit bd090dfc (tcp: tcp_replace_ts_recent() should not be called from tcp_validate_incoming()) introduced a TS ecr bug in slow path processing. 1 A > B P. 1:10001(10000) ack 1 <nop,nop,TS val 1001 ecr 200> 2 B < A . 1:1(0) ack 1 win 257 <sack 9001:10001,TS val 300 ecr 1001> 3 A > B . 1:1001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200> 4 A > B . 1001:2001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200> (ecr 200 should be ecr 300 in packets 3 & 4) Problem is tcp_ack() can trigger send of new packets (retransmits), reflecting the prior TSval, instead of the TSval contained in the currently processed incoming packet. Fix this by calling tcp_replace_ts_recent() from tcp_ack() after the checks, but before the actions. Reported-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 3月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On SACK reneging the sender immediately retransmits and forces a timeout but disables Eifel (undo). If the (buggy) receiver does not drop any packet this can trigger a false slow-start retransmit storm driven by the ACKs of the original packets. This can be detected with undo and TCP timestamps. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 3月, 2013 3 次提交
-
-
由 Yuchung Cheng 提交于
This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Consolidate all of TCP CA_Loss state processing in tcp_fastretrans_alert() into a new function called tcp_process_loss(). This is to prepare the new F-RTO implementation in the next patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 3月, 2013 1 次提交
-
-
由 Christoph Paasch 提交于
TCPCT uses option-number 253, reserved for experimental use and should not be used in production environments. Further, TCPCT does not fully implement RFC 6013. As a nice side-effect, removing TCPCT increases TCP's performance for very short flows: Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests for files of 1KB size. before this patch: average (among 7 runs) of 20845.5 Requests/Second after: average (among 7 runs) of 21403.6 Requests/Second Signed-off-by: NChristoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 3月, 2013 2 次提交
-
-
由 Nandita Dukkipati 提交于
This is the second of the TLP patch series; it augments the basic TLP algorithm with a loss detection scheme. This patch implements a mechanism for loss detection when a Tail loss probe retransmission plugs a hole thereby masking packet loss from the sender. The loss detection algorithm relies on counting TLP dupacks as outlined in Sec. 3 of: http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 The basic idea is: Sender keeps track of TLP "episode" upon retransmission of a TLP packet. An episode ends when the sender receives an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the episode. We want to make sure that before the episode ends the sender receives a "TLP dupack", indicating that the TLP retransmission was unnecessary, so there was no loss/hole that needed plugging. If the sender gets no TLP dupack before the end of the episode, then it reduces ssthresh and the congestion window, because the TLP packet arriving at the receiver probably plugged a hole. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Nandita Dukkipati 提交于
This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 3月, 2013 1 次提交
-
-
由 Neal Cardwell 提交于
We should not update ts_recent and call tcp_rcv_rtt_measure_ts() both before and after going to step5. That wastes CPU and double-counts the receiver-side RTT sample. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 2月, 2013 2 次提交
-
-
由 Pravin B Shelar 提交于
Patch cef401de (net: fix possible wrong checksum generation) fixed wrong checksum calculation but it broke TSO by defining new GSO type but not a netdev feature for that type. net_gso_ok() would not allow hardware checksum/segmentation offload of such packets without the feature. Following patch fixes TSO and wrong checksum. This patch uses same logic that Eric Dumazet used. Patch introduces new flag SKBTX_SHARED_FRAG if at least one frag can be modified by the user. but SKBTX_SHARED_FRAG flag is kept in skb shared info tx_flags rather than gso_type. tx_flags is better compared to gso_type since we can have skb with shared frag without gso packet. It does not link SHARED_FRAG to GSO, So there is no need to define netdev feature for this. Signed-off-by: NPravin B Shelar <pshelar@nicira.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Andrey Vagin 提交于
A socket timestamp is a sum of the global tcp_time_stamp and a per-socket offset. A socket offset is added in places where externally visible tcp timestamp option is parsed/initialized. Connections in the SYN_RECV state are not supported, global tcp_time_stamp is used for them, because repair mode doesn't support this state. In a future it can be implemented by the similar way as for TIME_WAIT sockets. Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: NAndrey Vagin <avagin@openvz.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 2月, 2013 1 次提交
-
-
由 Ilpo Järvinen 提交于
There are transients during normal FRTO procedure during which the packets_in_flight can go to zero between write_queue state updates and firing the resulting segments out. As FRTO processing occurs during that window the check must be more precise to not match "spuriously" :-). More specificly, e.g., when packets_in_flight is zero but FLAG_DATA_ACKED is true the problematic branch that set cwnd into zero would not be taken and new segments might be sent out later. Signed-off-by: NIlpo Järvinen <ilpo.jarvinen@helsinki.fi> Tested-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-