1. 23 5月, 2015 1 次提交
    • E
      tcp: fix a potential deadlock in tcp_get_info() · d654976c
      Eric Dumazet 提交于
      Taking socket spinlock in tcp_get_info() can deadlock, as
      inet_diag_dump_icsk() holds the &hashinfo->ehash_locks[i],
      while packet processing can use the reverse locking order.
      
      We could avoid this locking for TCP_LISTEN states, but lockdep would
      certainly get confused as all TCP sockets share same lockdep classes.
      
      [  523.722504] ======================================================
      [  523.728706] [ INFO: possible circular locking dependency detected ]
      [  523.734990] 4.1.0-dbg-DEV #1676 Not tainted
      [  523.739202] -------------------------------------------------------
      [  523.745474] ss/18032 is trying to acquire lock:
      [  523.750002]  (slock-AF_INET){+.-...}, at: [<ffffffff81669d44>] tcp_get_info+0x2c4/0x360
      [  523.758129]
      [  523.758129] but task is already holding lock:
      [  523.763968]  (&(&hashinfo->ehash_locks[i])->rlock){+.-...}, at: [<ffffffff816bcb75>] inet_diag_dump_icsk+0x1d5/0x6c0
      [  523.774661]
      [  523.774661] which lock already depends on the new lock.
      [  523.774661]
      [  523.782850]
      [  523.782850] the existing dependency chain (in reverse order) is:
      [  523.790326]
      -> #1 (&(&hashinfo->ehash_locks[i])->rlock){+.-...}:
      [  523.796599]        [<ffffffff811126bb>] lock_acquire+0xbb/0x270
      [  523.802565]        [<ffffffff816f5868>] _raw_spin_lock+0x38/0x50
      [  523.808628]        [<ffffffff81665af8>] __inet_hash_nolisten+0x78/0x110
      [  523.815273]        [<ffffffff816819db>] tcp_v4_syn_recv_sock+0x24b/0x350
      [  523.822067]        [<ffffffff81684d41>] tcp_check_req+0x3c1/0x500
      [  523.828199]        [<ffffffff81682d09>] tcp_v4_do_rcv+0x239/0x3d0
      [  523.834331]        [<ffffffff816842fe>] tcp_v4_rcv+0xa8e/0xc10
      [  523.840202]        [<ffffffff81658fa3>] ip_local_deliver_finish+0x133/0x3e0
      [  523.847214]        [<ffffffff81659a9a>] ip_local_deliver+0xaa/0xc0
      [  523.853440]        [<ffffffff816593b8>] ip_rcv_finish+0x168/0x5c0
      [  523.859624]        [<ffffffff81659db7>] ip_rcv+0x307/0x420
      
      Lets use u64_sync infrastructure instead. As a bonus, 64bit
      arches get optimized, as these are nop for them.
      
      Fixes: 0df48c26 ("tcp: add tcpi_bytes_acked to tcp_info")
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d654976c
  2. 22 5月, 2015 1 次提交
    • M
      tcp: add tcpi_segs_in and tcpi_segs_out to tcp_info · 2efd055c
      Marcelo Ricardo Leitner 提交于
      This patch tracks the total number of inbound and outbound segments on a
      TCP socket. One may use this number to have an idea on connection
      quality when compared against the retransmissions.
      
      RFC4898 named these : tcpEStatsPerfSegsIn and tcpEStatsPerfSegsOut
      
      These are a 32bit field each and can be fetched both from TCP_INFO
      getsockopt() if one has a handle on a TCP socket, or from inet_diag
      netlink facility (iproute2/ss patch will follow)
      
      Note that tp->segs_out was placed near tp->snd_nxt for good data
      locality and minimal performance impact, while tp->segs_in was placed
      near tp->bytes_received for the same reason.
      
      Join work with Eric Dumazet.
      
      Note that received SYN are accounted on the listener, but sent SYNACK
      are not accounted.
      Signed-off-by: NMarcelo Ricardo Leitner <mleitner@redhat.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      2efd055c
  3. 06 5月, 2015 1 次提交
    • E
      tcp: provide SYN headers for passive connections · cd8ae852
      Eric Dumazet 提交于
      This patch allows a server application to get the TCP SYN headers for
      its passive connections.  This is useful if the server is doing
      fingerprinting of clients based on SYN packet contents.
      
      Two socket options are added: TCP_SAVE_SYN and TCP_SAVED_SYN.
      
      The first is used on a socket to enable saving the SYN headers
      for child connections. This can be set before or after the listen()
      call.
      
      The latter is used to retrieve the SYN headers for passive connections,
      if the parent listener has enabled TCP_SAVE_SYN.
      
      TCP_SAVED_SYN is read once, it frees the saved SYN headers.
      
      The data returned in TCP_SAVED_SYN are network (IPv4/IPv6) and TCP
      headers.
      
      Original patch was written by Tom Herbert, I changed it to not hold
      a full skb (and associated dst and conntracking reference).
      
      We have used such patch for about 3 years at Google.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Tested-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      cd8ae852
  4. 30 4月, 2015 2 次提交
    • E
      tcp: add tcpi_bytes_received to tcp_info · bdd1f9ed
      Eric Dumazet 提交于
      This patch tracks total number of payload bytes received on a TCP socket.
      This is the sum of all changes done to tp->rcv_nxt
      
      RFC4898 named this : tcpEStatsAppHCThruOctetsReceived
      
      This is a 64bit field, and can be fetched both from TCP_INFO
      getsockopt() if one has a handle on a TCP socket, or from inet_diag
      netlink facility (iproute2/ss patch will follow)
      
      Note that tp->bytes_received was placed near tp->rcv_nxt for
      best data locality and minimal performance impact.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Yuchung Cheng <ycheng@google.com>
      Cc: Matt Mathis <mattmathis@google.com>
      Cc: Eric Salo <salo@google.com>
      Cc: Martin Lau <kafai@fb.com>
      Cc: Chris Rapier <rapier@psc.edu>
      Acked-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bdd1f9ed
    • E
      tcp: add tcpi_bytes_acked to tcp_info · 0df48c26
      Eric Dumazet 提交于
      This patch tracks total number of bytes acked for a TCP socket.
      This is the sum of all changes done to tp->snd_una, and allows
      for precise tracking of delivered data.
      
      RFC4898 named this : tcpEStatsAppHCThruOctetsAcked
      
      This is a 64bit field, and can be fetched both from TCP_INFO
      getsockopt() if one has a handle on a TCP socket, or from inet_diag
      netlink facility (iproute2/ss patch will follow)
      
      Note that tp->bytes_acked was placed near tp->snd_una for
      best data locality and minimal performance impact.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NYuchung Cheng <ycheng@google.com>
      Cc: Matt Mathis <mattmathis@google.com>
      Cc: Eric Salo <salo@google.com>
      Cc: Martin Lau <kafai@fb.com>
      Cc: Chris Rapier <rapier@psc.edu>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      0df48c26
  5. 08 4月, 2015 2 次提交
  6. 18 3月, 2015 1 次提交
  7. 01 3月, 2015 1 次提交
    • E
      tcp: tso: remove tp->tso_deferred · 5f852eb5
      Eric Dumazet 提交于
      TSO relies on ability to defer sending a small amount of packets.
      Heuristic is to wait for future ACKS in hope to send more packets at once.
      Current algorithm uses a per socket tso_deferred field as a pseudo timer.
      
      This pseudo timer relies on future ACK, but there is no guarantee
      we receive them in time.
      
      Fix would be to use a real timer, but cost of such timer is probably too
      expensive for typical cases.
      
      This patch changes the logic to test the time of last transmit,
      because we should not add bursts of more than 1ms for any given flow.
      
      We've used this patch for about two years at Google, before FQ/pacing
      as it would reduce a fair amount of bursts.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      5f852eb5
  8. 08 2月, 2015 3 次提交
  9. 10 12月, 2014 2 次提交
    • E
      tcp: refine TSO autosizing · 605ad7f1
      Eric Dumazet 提交于
      Commit 95bd09eb ("tcp: TSO packets automatic sizing") tried to
      control TSO size, but did this at the wrong place (sendmsg() time)
      
      At sendmsg() time, we might have a pessimistic view of flow rate,
      and we end up building very small skbs (with 2 MSS per skb).
      
      This is bad because :
      
       - It sends small TSO packets even in Slow Start where rate quickly
         increases.
       - It tends to make socket write queue very big, increasing tcp_ack()
         processing time, but also increasing memory needs, not necessarily
         accounted for, as fast clones overhead is currently ignored.
       - Lower GRO efficiency and more ACK packets.
      
      Servers with a lot of small lived connections suffer from this.
      
      Lets instead fill skbs as much as possible (64KB of payload), but split
      them at xmit time, when we have a precise idea of the flow rate.
      skb split is actually quite efficient.
      
      Patch looks bigger than necessary, because TCP Small Queue decision now
      has to take place after the eventual split.
      
      As Neal suggested, introduce a new tcp_tso_autosize() helper, so that
      tcp_tso_should_defer() can be synchronized on same goal.
      
      Rename tp->xmit_size_goal_segs to tp->gso_segs, as this variable
      contains number of mss that we can put in GSO packet, and is not
      related to the autosizing goal anymore.
      
      Tested:
      
      40 ms rtt link
      
      nstat >/dev/null
      netperf -H remote -l -2000000 -- -s 1000000
      nstat | egrep "IpInReceives|IpOutRequests|TcpOutSegs|IpExtOutOctets"
      
      Before patch :
      
      Recv   Send    Send
      Socket Socket  Message  Elapsed
      Size   Size    Size     Time     Throughput
      bytes  bytes   bytes    secs.    10^6bits/s
      
       87380 2000000 2000000    0.36         44.22
      IpInReceives                    600                0.0
      IpOutRequests                   599                0.0
      TcpOutSegs                      1397               0.0
      IpExtOutOctets                  2033249            0.0
      
      After patch :
      
      Recv   Send    Send
      Socket Socket  Message  Elapsed
      Size   Size    Size     Time     Throughput
      bytes  bytes   bytes    secs.    10^6bits/sec
      
       87380 2000000 2000000    0.36       44.27
      IpInReceives                    221                0.0
      IpOutRequests                   232                0.0
      TcpOutSegs                      1397               0.0
      IpExtOutOctets                  2013953            0.0
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      605ad7f1
    • A
      f4362a2c
  10. 30 10月, 2014 1 次提交
    • E
      tcp: allow for bigger reordering level · dca145ff
      Eric Dumazet 提交于
      While testing upcoming Yaogong patch (converting out of order queue
      into an RB tree), I hit the max reordering level of linux TCP stack.
      
      Reordering level was limited to 127 for no good reason, and some
      network setups [1] can easily reach this limit and get limited
      throughput.
      
      Allow a new max limit of 300, and add a sysctl to allow admins to even
      allow bigger (or lower) values if needed.
      
      [1] Aggregation of links, per packet load balancing, fabrics not doing
       deep packet inspections, alternative TCP congestion modules...
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Yaogong Wang <wygivan@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      dca145ff
  11. 28 9月, 2014 1 次提交
  12. 23 8月, 2014 1 次提交
    • Y
      tcp: improve undo on timeout · 989e04c5
      Yuchung Cheng 提交于
      Upon timeout, undo (via both timestamps/Eifel and DSACKs) was
      disabled if any retransmits were still in flight.  The concern was
      perhaps that spurious retransmission sent in a previous recovery
      episode may trigger DSACKs to falsely undo the current recovery.
      
      However, this inadvertently misses undo opportunities (using either
      TCP timestamps or DSACKs) when timeout occurs during a loss episode,
      i.e.  recurring timeouts or timeout during fast recovery. In these
      cases some retransmissions will be in flight but we should allow
      undo. Furthermore, we should only reset undo_marker and undo_retrans
      upon timeout if we are starting a new recovery episode. Finally,
      when we do reset our undo state, we now do so in a manner similar
      to tcp_enter_recovery(), so that we require a DSACK for each of
      the outstsanding retransmissions. This will achieve the original
      goal by requiring that we receive the same number of DSACKs as
      retransmissions.
      
      This patch increases the undo events by 50% on Google servers.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      989e04c5
  13. 28 6月, 2014 1 次提交
  14. 23 5月, 2014 1 次提交
    • N
      tcp: make cwnd-limited checks measurement-based, and gentler · ca8a2263
      Neal Cardwell 提交于
      Experience with the recent e114a710 ("tcp: fix cwnd limited
      checking to improve congestion control") has shown that there are
      common cases where that commit can cause cwnd to be much larger than
      necessary. This leads to TSO autosizing cooking skbs that are too
      large, among other things.
      
      The main problems seemed to be:
      
      (1) That commit attempted to predict the future behavior of the
      connection by looking at the write queue (if TSO or TSQ limit
      sending). That prediction sometimes overestimated future outstanding
      packets.
      
      (2) That commit always allowed cwnd to grow to twice the number of
      outstanding packets (even in congestion avoidance, where this is not
      needed).
      
      This commit improves both of these, by:
      
      (1) Switching to a measurement-based approach where we explicitly
      track the largest number of packets in flight during the past window
      ("max_packets_out"), and remember whether we were cwnd-limited at the
      moment we finished sending that flight.
      
      (2) Only allowing cwnd to grow to twice the number of outstanding
      packets ("max_packets_out") in slow start. In congestion avoidance
      mode we now only allow cwnd to grow if it was fully utilized.
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ca8a2263
  15. 14 5月, 2014 1 次提交
  16. 03 5月, 2014 1 次提交
    • E
      tcp: fix cwnd limited checking to improve congestion control · e114a710
      Eric Dumazet 提交于
      Yuchung discovered tcp_is_cwnd_limited() was returning false in
      slow start phase even if the application filled the socket write queue.
      
      All congestion modules take into account tcp_is_cwnd_limited()
      before increasing cwnd, so this behavior limits slow start from
      probing the bandwidth at full speed.
      
      The problem is that even if write queue is full (aka we are _not_
      application limited), cwnd can be under utilized if TSO should auto
      defer or TCP Small queues decided to hold packets.
      
      So the in_flight can be kept to smaller value, and we can get to the
      point tcp_is_cwnd_limited() returns false.
      
      With TCP Small Queues and FQ/pacing, this issue is more visible.
      
      We fix this by having tcp_cwnd_validate(), which is supposed to track
      such things, take into account unsent_segs, the number of segs that we
      are not sending at the moment due to TSO or TSQ, but intend to send
      real soon. Then when we are cwnd-limited, remember this fact while we
      are processing the window of ACKs that comes back.
      
      For example, suppose we have a brand new connection with cwnd=10; we
      are in slow start, and we send a flight of 9 packets. By the time we
      have received ACKs for all 9 packets we want our cwnd to be 18.
      We implement this by setting tp->lsnd_pending to 9, and
      considering ourselves to be cwnd-limited while cwnd is less than
      twice tp->lsnd_pending (2*9 -> 18).
      
      This makes tcp_is_cwnd_limited() more understandable, by removing
      the GSO/TSO kludge, that tried to work around the issue.
      
      Note the in_flight parameter can be removed in a followup cleanup
      patch.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e114a710
  17. 27 2月, 2014 1 次提交
    • E
      tcp: switch rtt estimations to usec resolution · 740b0f18
      Eric Dumazet 提交于
      Upcoming congestion controls for TCP require usec resolution for RTT
      estimations. Millisecond resolution is simply not enough these days.
      
      FQ/pacing in DC environments also require this change for finer control
      and removal of bimodal behavior due to the current hack in
      tcp_update_pacing_rate() for 'small rtt'
      
      TCP_CONG_RTT_STAMP is no longer needed.
      
      As Julian Anastasov pointed out, we need to keep user compatibility :
      tcp_metrics used to export RTT and RTTVAR in msec resolution,
      so we added RTT_US and RTTVAR_US. An iproute2 patch is needed
      to use the new attributes if provided by the kernel.
      
      In this example ss command displays a srtt of 32 usecs (10Gbit link)
      
      lpk51:~# ./ss -i dst lpk52
      Netid  State      Recv-Q Send-Q   Local Address:Port       Peer
      Address:Port
      tcp    ESTAB      0      1         10.246.11.51:42959
      10.246.11.52:64614
               cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448
      cwnd:10 send
      3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559
      
      Updated iproute2 ip command displays :
      
      lpk51:~# ./ip tcp_metrics | grep 10.246.11.52
      10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source
      10.246.11.51
      
      Old binary displays :
      
      lpk51:~# ip tcp_metrics | grep 10.246.11.52
      10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source
      10.246.11.51
      
      With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Cc: Stephen Hemminger <stephen@networkplumber.org>
      Cc: Yuchung Cheng <ycheng@google.com>
      Cc: Larry Brakmo <brakmo@google.com>
      Cc: Julian Anastasov <ja@ssi.bg>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      740b0f18
  18. 07 1月, 2014 1 次提交
  19. 01 8月, 2013 1 次提交
  20. 25 7月, 2013 1 次提交
    • E
      tcp: TCP_NOTSENT_LOWAT socket option · c9bee3b7
      Eric Dumazet 提交于
      Idea of this patch is to add optional limitation of number of
      unsent bytes in TCP sockets, to reduce usage of kernel memory.
      
      TCP receiver might announce a big window, and TCP sender autotuning
      might allow a large amount of bytes in write queue, but this has little
      performance impact if a large part of this buffering is wasted :
      
      Write queue needs to be large only to deal with large BDP, not
      necessarily to cope with scheduling delays (incoming ACKS make room
      for the application to queue more bytes)
      
      For most workloads, using a value of 128 KB or less is OK to give
      applications enough time to react to POLLOUT events in time
      (or being awaken in a blocking sendmsg())
      
      This patch adds two ways to set the limit :
      
      1) Per socket option TCP_NOTSENT_LOWAT
      
      2) A sysctl (/proc/sys/net/ipv4/tcp_notsent_lowat) for sockets
      not using TCP_NOTSENT_LOWAT socket option (or setting a zero value)
      Default value being UINT_MAX (0xFFFFFFFF), meaning this has no effect.
      
      This changes poll()/select()/epoll() to report POLLOUT
      only if number of unsent bytes is below tp->nosent_lowat
      
      Note this might increase number of sendmsg()/sendfile() calls
      when using non blocking sockets,
      and increase number of context switches for blocking sockets.
      
      Note this is not related to SO_SNDLOWAT (as SO_SNDLOWAT is
      defined as :
       Specify the minimum number of bytes in the buffer until
       the socket layer will pass the data to the protocol)
      
      Tested:
      
      netperf sessions, and watching /proc/net/protocols "memory" column for TCP
      
      With 200 concurrent netperf -t TCP_STREAM sessions, amount of kernel memory
      used by TCP buffers shrinks by ~55 % (20567 pages instead of 45458)
      
      lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat
      lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols
      TCPv6     1880      2   45458   no     208   yes  ipv6        y  y  y  y  y  y  y  y  y  y  y  y  y  n  y  y  y  y  y
      TCP       1696    508   45458   no     208   yes  kernel      y  y  y  y  y  y  y  y  y  y  y  y  y  n  y  y  y  y  y
      
      lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat
      lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols
      TCPv6     1880      2   20567   no     208   yes  ipv6        y  y  y  y  y  y  y  y  y  y  y  y  y  n  y  y  y  y  y
      TCP       1696    508   20567   no     208   yes  kernel      y  y  y  y  y  y  y  y  y  y  y  y  y  n  y  y  y  y  y
      
      Using 128KB has no bad effect on the throughput or cpu usage
      of a single flow, although there is an increase of context switches.
      
      A bonus is that we hold socket lock for a shorter amount
      of time and should improve latencies of ACK processing.
      
      lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat
      lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3
      OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf.
      Local       Remote      Local  Elapsed Throughput Throughput  Local Local  Remote Remote Local   Remote  Service
      Send Socket Recv Socket Send   Time               Units       CPU   CPU    CPU    CPU    Service Service Demand
      Size        Size        Size   (sec)                          Util  Util   Util   Util   Demand  Demand  Units
      Final       Final                                             %     Method %      Method
      1651584     6291456     16384  20.00   17447.90   10^6bits/s  3.13  S      -1.00  U      0.353   -1.000  usec/KB
      
       Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3':
      
                 412,514 context-switches
      
           200.034645535 seconds time elapsed
      
      lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat
      lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3
      OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf.
      Local       Remote      Local  Elapsed Throughput Throughput  Local Local  Remote Remote Local   Remote  Service
      Send Socket Recv Socket Send   Time               Units       CPU   CPU    CPU    CPU    Service Service Demand
      Size        Size        Size   (sec)                          Util  Util   Util   Util   Demand  Demand  Units
      Final       Final                                             %     Method %      Method
      1593240     6291456     16384  20.00   17321.16   10^6bits/s  3.35  S      -1.00  U      0.381   -1.000  usec/KB
      
       Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3':
      
               2,675,818 context-switches
      
           200.029651391 seconds time elapsed
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Cc: Yuchung Cheng <ycheng@google.com>
      Acked-By: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c9bee3b7
  21. 20 5月, 2013 1 次提交
    • Y
      tcp: remove bad timeout logic in fast recovery · 3e59cb0d
      Yuchung Cheng 提交于
      tcp_timeout_skb() was intended to trigger fast recovery on timeout,
      unfortunately in reality it often causes spurious retransmission
      storms during fast recovery. The particular sign is a fast retransmit
      over the highest sacked sequence (SND.FACK).
      
      Currently the RTO timer re-arming (as in RFC6298) offers a nice cushion
      to avoid spurious timeout: when SND.UNA advances the sender re-arms
      RTO and extends the timeout by icsk_rto. The sender does not offset
      the time elapsed since the packet at SND.UNA was sent.
      
      But if the next (DUP)ACK arrives later than ~RTTVAR and triggers
      tcp_fastretrans_alert(), then tcp_timeout_skb() will mark any packet
      sent before the icsk_rto interval lost, including one that's above the
      highest sacked sequence. Most likely a large part of scorebard will be
      marked.
      
      If most packets are not lost then the subsequent DUPACKs with new SACK
      blocks will cause the sender to continue to retransmit packets beyond
      SND.FACK spuriously. Even if only one packet is lost the sender may
      falsely retransmit almost the entire window.
      
      The situation becomes common in the world of bufferbloat: the RTT
      continues to grow as the queue builds up but RTTVAR remains small and
      close to the minimum 200ms. If a data packet is lost and the DUPACK
      triggered by the next data packet is slightly delayed, then a spurious
      retransmission storm forms.
      
      As the original comment on tcp_timeout_skb() suggests: the usefulness
      of this feature is questionable. It also wastes cycles walking the
      sack scoreboard and is actually harmful because of false recovery.
      
      It's time to remove this.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NNandita Dukkipati <nanditad@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3e59cb0d
  22. 21 3月, 2013 2 次提交
    • Y
      tcp: implement RFC5682 F-RTO · e33099f9
      Yuchung Cheng 提交于
      This patch implements F-RTO (foward RTO recovery):
      
      When the first retransmission after timeout is acknowledged, F-RTO
      sends new data instead of old data. If the next ACK acknowledges
      some never-retransmitted data, then the timeout was spurious and the
      congestion state is reverted.  Otherwise if the next ACK selectively
      acknowledges the new data, then the timeout was genuine and the
      loss recovery continues. This idea applies to recurring timeouts
      as well. While F-RTO sends different data during timeout recovery,
      it does not (and should not) change the congestion control.
      
      The implementaion follows the three steps of SACK enhanced algorithm
      (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and
      3 are in tcp_process_loss().  The basic version is not supported
      because SACK enhanced version also works for non-SACK connections.
      
      The new implementation is functionally in parity with the old F-RTO
      implementation except the one case where it increases undo events:
      In addition to the RFC algorithm, a spurious timeout may be detected
      without sending data in step 2, as long as the SACK confirms not
      all the original data are dropped. When this happens, the sender
      will undo the cwnd and perhaps enter fast recovery instead. This
      additional check increases the F-RTO undo events by 5x compared
      to the prior implementation on Google Web servers, since the sender
      often does not have new data to send for HTTP.
      
      Note F-RTO may detect spurious timeout before Eifel with timestamps
      does so.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e33099f9
    • Y
      tcp: refactor F-RTO · 9b44190d
      Yuchung Cheng 提交于
      The patch series refactor the F-RTO feature (RFC4138/5682).
      
      This is to simplify the loss recovery processing. Existing F-RTO
      was developed during the experimental stage (RFC4138) and has
      many experimental features.  It takes a separate code path from
      the traditional timeout processing by overloading CA_Disorder
      instead of using CA_Loss state. This complicates CA_Disorder state
      handling because it's also used for handling dubious ACKs and undos.
      While the algorithm in the RFC does not change the congestion control,
      the implementation intercepts congestion control in various places
      (e.g., frto_cwnd in tcp_ack()).
      
      The new code implements newer F-RTO RFC5682 using CA_Loss processing
      path.  F-RTO becomes a small extension in the timeout processing
      and interfaces with congestion control and Eifel undo modules.
      It lets congestion control (module) determines how many to send
      independently.  F-RTO only chooses what to send in order to detect
      spurious retranmission. If timeout is found spurious it invokes
      existing Eifel undo algorithms like DSACK or TCP timestamp based
      detection.
      
      The first patch removes all F-RTO code except the sysctl_tcp_frto is
      left for the new implementation.  Since CA_EVENT_FRTO is removed, TCP
      westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9b44190d
  23. 18 3月, 2013 1 次提交
    • C
      tcp: Remove TCPCT · 1a2c6181
      Christoph Paasch 提交于
      TCPCT uses option-number 253, reserved for experimental use and should
      not be used in production environments.
      Further, TCPCT does not fully implement RFC 6013.
      
      As a nice side-effect, removing TCPCT increases TCP's performance for
      very short flows:
      
      Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests
      for files of 1KB size.
      
      before this patch:
      	average (among 7 runs) of 20845.5 Requests/Second
      after:
      	average (among 7 runs) of 21403.6 Requests/Second
      Signed-off-by: NChristoph Paasch <christoph.paasch@uclouvain.be>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      1a2c6181
  24. 12 3月, 2013 2 次提交
    • N
      tcp: TLP loss detection. · 9b717a8d
      Nandita Dukkipati 提交于
      This is the second of the TLP patch series; it augments the basic TLP
      algorithm with a loss detection scheme.
      
      This patch implements a mechanism for loss detection when a Tail
      loss probe retransmission plugs a hole thereby masking packet loss
      from the sender. The loss detection algorithm relies on counting
      TLP dupacks as outlined in Sec. 3 of:
      http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
      
      The basic idea is: Sender keeps track of TLP "episode" upon
      retransmission of a TLP packet. An episode ends when the sender receives
      an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the
      episode. We want to make sure that before the episode ends the sender
      receives a "TLP dupack", indicating that the TLP retransmission was
      unnecessary, so there was no loss/hole that needed plugging. If the
      sender gets no TLP dupack before the end of the episode, then it reduces
      ssthresh and the congestion window, because the TLP packet arriving at
      the receiver probably plugged a hole.
      Signed-off-by: NNandita Dukkipati <nanditad@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9b717a8d
    • N
      tcp: Tail loss probe (TLP) · 6ba8a3b1
      Nandita Dukkipati 提交于
      This patch series implement the Tail loss probe (TLP) algorithm described
      in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The
      first patch implements the basic algorithm.
      
      TLP's goal is to reduce tail latency of short transactions. It achieves
      this by converting retransmission timeouts (RTOs) occuring due
      to tail losses (losses at end of transactions) into fast recovery.
      TLP transmits one packet in two round-trips when a connection is in
      Open state and isn't receiving any ACKs. The transmitted packet, aka
      loss probe, can be either new or a retransmission. When there is tail
      loss, the ACK from a loss probe triggers FACK/early-retransmit based
      fast recovery, thus avoiding a costly RTO. In the absence of loss,
      there is no change in the connection state.
      
      PTO stands for probe timeout. It is a timer event indicating
      that an ACK is overdue and triggers a loss probe packet. The PTO value
      is set to max(2*SRTT, 10ms) and is adjusted to account for delayed
      ACK timer when there is only one oustanding packet.
      
      TLP Algorithm
      
      On transmission of new data in Open state:
        -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms).
        -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms)
        -> PTO = min(PTO, RTO)
      
      Conditions for scheduling PTO:
        -> Connection is in Open state.
        -> Connection is either cwnd limited or no new data to send.
        -> Number of probes per tail loss episode is limited to one.
        -> Connection is SACK enabled.
      
      When PTO fires:
        new_segment_exists:
          -> transmit new segment.
          -> packets_out++. cwnd remains same.
      
        no_new_packet:
          -> retransmit the last segment.
             Its ACK triggers FACK or early retransmit based recovery.
      
      ACK path:
        -> rearm RTO at start of ACK processing.
        -> reschedule PTO if need be.
      
      In addition, the patch includes a small variation to the Early Retransmit
      (ER) algorithm, such that ER and TLP together can in principle recover any
      N-degree of tail loss through fast recovery. TLP is controlled by the same
      sysctl as ER, tcp_early_retrans sysctl.
      tcp_early_retrans==0; disables TLP and ER.
      		 ==1; enables RFC5827 ER.
      		 ==2; delayed ER.
      		 ==3; TLP and delayed ER. [DEFAULT]
      		 ==4; TLP only.
      
      The TLP patch series have been extensively tested on Google Web servers.
      It is most effective for short Web trasactions, where it reduced RTOs by 15%
      and improved HTTP response time (average by 6%, 99th percentile by 10%).
      The transmitted probes account for <0.5% of the overall transmissions.
      Signed-off-by: NNandita Dukkipati <nanditad@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6ba8a3b1
  25. 11 3月, 2013 1 次提交
  26. 14 2月, 2013 1 次提交
    • A
      tcp: adding a per-socket timestamp offset · ceaa1fef
      Andrey Vagin 提交于
      This functionality is used for restoring tcp sockets. A tcp timestamp
      depends on how long a system has been running, so it's differ for each
      host. The solution is to set a per-socket offset.
      
      A per-socket offset for a TIME_WAIT socket is inherited from a proper
      tcp socket.
      
      tcp_request_sock doesn't have a timestamp offset, because the repair
      mode for them are not implemented.
      
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
      Cc: James Morris <jmorris@namei.org>
      Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
      Cc: Patrick McHardy <kaber@trash.net>
      Cc: Eric Dumazet <edumazet@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Signed-off-by: NAndrey Vagin <avagin@openvz.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ceaa1fef
  27. 06 2月, 2013 1 次提交
  28. 09 12月, 2012 1 次提交
  29. 23 10月, 2012 1 次提交
  30. 13 10月, 2012 1 次提交
  31. 21 9月, 2012 1 次提交
  32. 01 9月, 2012 1 次提交
    • J
      tcp: TCP Fast Open Server - header & support functions · 10467163
      Jerry Chu 提交于
      This patch adds all the necessary data structure and support
      functions to implement TFO server side. It also documents a number
      of flags for the sysctl_tcp_fastopen knob, and adds a few Linux
      extension MIBs.
      
      In addition, it includes the following:
      
      1. a new TCP_FASTOPEN socket option an application must call to
      supply a max backlog allowed in order to enable TFO on its listener.
      
      2. A number of key data structures:
      "fastopen_rsk" in tcp_sock - for a big socket to access its
      request_sock for retransmission and ack processing purpose. It is
      non-NULL iff 3WHS not completed.
      
      "fastopenq" in request_sock_queue - points to a per Fast Open
      listener data structure "fastopen_queue" to keep track of qlen (# of
      outstanding Fast Open requests) and max_qlen, among other things.
      
      "listener" in tcp_request_sock - to point to the original listener
      for book-keeping purpose, i.e., to maintain qlen against max_qlen
      as part of defense against IP spoofing attack.
      
      3. various data structure and functions, many in tcp_fastopen.c, to
      support server side Fast Open cookie operations, including
      /proc/sys/net/ipv4/tcp_fastopen_key to allow manual rekeying.
      Signed-off-by: NH.K. Jerry Chu <hkchu@google.com>
      Cc: Yuchung Cheng <ycheng@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Cc: Eric Dumazet <edumazet@google.com>
      Cc: Tom Herbert <therbert@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      10467163
  33. 23 7月, 2012 1 次提交
    • E
      tcp: dont drop MTU reduction indications · 563d34d0
      Eric Dumazet 提交于
      ICMP messages generated in output path if frame length is bigger than
      mtu are actually lost because socket is owned by user (doing the xmit)
      
      One example is the ipgre_tunnel_xmit() calling
      icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu));
      
      We had a similar case fixed in commit a34a101e (ipv6: disable GSO on
      sockets hitting dst_allfrag).
      
      Problem of such fix is that it relied on retransmit timers, so short tcp
      sessions paid a too big latency increase price.
      
      This patch uses the tcp_release_cb() infrastructure so that MTU
      reduction messages (ICMP messages) are not lost, and no extra delay
      is added in TCP transmits.
      Reported-by: NMaciej Żenczykowski <maze@google.com>
      Diagnosed-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Nandita Dukkipati <nanditad@google.com>
      Cc: Tom Herbert <therbert@google.com>
      Cc: Tore Anderson <tore@fud.no>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      563d34d0