1. 24 2月, 2006 1 次提交
    • P
      powerpc: Implement accurate task and CPU time accounting · c6622f63
      Paul Mackerras 提交于
      This implements accurate task and cpu time accounting for 64-bit
      powerpc kernels.  Instead of accounting a whole jiffy of time to a
      task on a timer interrupt because that task happened to be running at
      the time, we now account time in units of timebase ticks according to
      the actual time spent by the task in user mode and kernel mode.  We
      also count the time spent processing hardware and software interrupts
      accurately.  This is conditional on CONFIG_VIRT_CPU_ACCOUNTING.  If
      that is not set, we do tick-based approximate accounting as before.
      
      To get this accurate information, we read either the PURR (processor
      utilization of resources register) on POWER5 machines, or the timebase
      on other machines on
      
      * each entry to the kernel from usermode
      * each exit to usermode
      * transitions between process context, hard irq context and soft irq
        context in kernel mode
      * context switches.
      
      On POWER5 systems with shared-processor logical partitioning we also
      read both the PURR and the timebase at each timer interrupt and
      context switch in order to determine how much time has been taken by
      the hypervisor to run other partitions ("steal" time).  Unfortunately,
      since we need values of the PURR on both threads at the same time to
      accurately calculate the steal time, and since we can only calculate
      steal time on a per-core basis, the apportioning of the steal time
      between idle time (time which we ceded to the hypervisor in the idle
      loop) and actual stolen time is somewhat approximate at the moment.
      
      This is all based quite heavily on what s390 does, and it uses the
      generic interfaces that were added by the s390 developers,
      i.e. account_system_time(), account_user_time(), etc.
      
      This patch doesn't add any new interfaces between the kernel and
      userspace, and doesn't change the units in which time is reported to
      userspace by things such as /proc/stat, /proc/<pid>/stat, getrusage(),
      times(), etc.  Internally the various task and cpu times are stored in
      timebase units, but they are converted to USER_HZ units (1/100th of a
      second) when reported to userspace.  Some precision is therefore lost
      but there should not be any accumulating error, since the internal
      accumulation is at full precision.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      c6622f63
  2. 07 2月, 2006 1 次提交
  3. 13 1月, 2006 1 次提交
  4. 09 1月, 2006 3 次提交
  5. 16 11月, 2005 1 次提交
  6. 11 11月, 2005 1 次提交
    • B
      [PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel · a7f290da
      Benjamin Herrenschmidt 提交于
      This patch moves the vdso's to arch/powerpc, adds support for the 32
      bits vdso to the 32 bits kernel, rename systemcfg (finally !), and adds
      some new (still untested) routines to both vdso's: clock_gettime() with
      support for CLOCK_REALTIME and CLOCK_MONOTONIC, clock_getres() (same
      clocks) and get_tbfreq() for glibc to retreive the timebase frequency.
      
      Tom,Steve: The implementation of get_tbfreq() I've done for 32 bits
      returns a long long (r3, r4) not a long. This is such that if we ever
      add support for >4Ghz timebases on ppc32, the userland interface won't
      have to change.
      
      I have tested gettimeofday() using some glibc patches in both ppc32 and
      ppc64 kernels using 32 bits userland (I haven't had a chance to test a
      64 bits userland yet, but the implementation didn't change and was
      tested earlier). I haven't tested yet the new functions.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      a7f290da
  7. 10 11月, 2005 3 次提交
  8. 08 11月, 2005 1 次提交
  9. 05 11月, 2005 1 次提交
  10. 22 10月, 2005 1 次提交
  11. 20 10月, 2005 1 次提交
  12. 27 9月, 2005 1 次提交
  13. 28 7月, 2005 1 次提交
    • D
      [PATCH] ppc64: dynamically allocate segment tables · 533f0817
      David Gibson 提交于
      PPC64 machines before Power4 need a segment table page allocated for each
      CPU.  Currently these are allocated statically in a big array in head.S for
      all CPUs.  The segment tables need to be in the first segment (so
      do_stab_bolted doesn't take a recursive fault on the stab itself), but
      other than that there are no constraints which require the stabs for the
      secondary CPUs to be statically allocated.
      
      This patch allocates segment tables dynamically during boot, using
      lmb_alloc() to ensure they are within the first 256M segment.  This reduces
      the kernel image size by 192k...
      
      Tested on RS64 iSeries, POWER3 pSeries, and POWER5.
      Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      533f0817
  14. 23 6月, 2005 1 次提交
    • A
      [PATCH] ppc64: Add driver for BPA interrupt controllers · cebf589c
      Arnd Bergmann 提交于
      Add support for the integrated interrupt controller on BPA
      CPUs. There is one of those for each SMT thread.
      
      The mapping of interrupt numbers to HW interrupt sources
      is described in arch/ppc64/kernel/bpa_iic.h.
      
      This version hardcodes the 'Spider' chip as the secondary
      interrupt controller. That is not really generic for the
      architecture, but at the moment it is the only secondary
      PIC that exists.
      
      A little more work will be needed on this as soon as
      we have boards with multiple external interrupt controllers.
      Signed-off-by: NArnd Bergmann <arndb@de.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      cebf589c
  15. 03 6月, 2005 1 次提交
  16. 01 5月, 2005 1 次提交
  17. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4