1. 20 7月, 2011 1 次提交
  2. 16 6月, 2011 2 次提交
    • K
      vmscan: implement swap token priority aging · d7911ef3
      KOSAKI Motohiro 提交于
      While testing for memcg aware swap token, I observed a swap token was
      often grabbed an intermittent running process (eg init, auditd) and they
      never release a token.
      
      Why?
      
      Some processes (eg init, auditd, audispd) wake up when a process exiting.
      And swap token can be get first page-in process when a process exiting
      makes no swap token owner.  Thus such above intermittent running process
      often get a token.
      
      And currently, swap token priority is only decreased at page fault path.
      Then, if the process sleep immediately after to grab swap token, the swap
      token priority never be decreased.  That's obviously undesirable.
      
      This patch implement very poor (and lightweight) priority aging.  It only
      be affect to the above corner case and doesn't change swap tendency
      workload performance (eg multi process qsbench load)
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d7911ef3
    • K
      vmscan: implement swap token trace · 83cd81a3
      KOSAKI Motohiro 提交于
      This is useful for observing swap token activity.
      
      example output:
      
                   zsh-1845  [000]   598.962716: update_swap_token_priority:
      mm=ffff88015eaf7700 old_prio=1 new_prio=0
                memtoy-1830  [001]   602.033900: update_swap_token_priority:
      mm=ffff880037a45880 old_prio=947 new_prio=949
                memtoy-1830  [000]   602.041509: update_swap_token_priority:
      mm=ffff880037a45880 old_prio=949 new_prio=951
                memtoy-1830  [000]   602.051959: update_swap_token_priority:
      mm=ffff880037a45880 old_prio=951 new_prio=953
                memtoy-1830  [000]   602.052188: update_swap_token_priority:
      mm=ffff880037a45880 old_prio=953 new_prio=955
                memtoy-1830  [001]   602.427184: put_swap_token:
      token_mm=ffff880037a45880
                   zsh-1789  [000]   602.427281: replace_swap_token:
      old_token_mm=          (null) old_prio=0 new_token_mm=ffff88015eaf7018
      new_prio=2
                   zsh-1789  [001]   602.433456: update_swap_token_priority:
      mm=ffff88015eaf7018 old_prio=2 new_prio=4
                   zsh-1789  [000]   602.437613: update_swap_token_priority:
      mm=ffff88015eaf7018 old_prio=4 new_prio=6
                   zsh-1789  [000]   602.443924: update_swap_token_priority:
      mm=ffff88015eaf7018 old_prio=6 new_prio=8
                   zsh-1789  [000]   602.451873: update_swap_token_priority:
      mm=ffff88015eaf7018 old_prio=8 new_prio=10
                   zsh-1789  [001]   602.462639: update_swap_token_priority:
      mm=ffff88015eaf7018 old_prio=10 new_prio=12
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Acked-by: Rik van Riel<riel@redhat.com>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      83cd81a3
  3. 14 1月, 2011 2 次提交
  4. 27 10月, 2010 2 次提交
    • K
      vmscan: narrow the scenarios in whcih lumpy reclaim uses synchrounous reclaim · 7d3579e8
      KOSAKI Motohiro 提交于
      shrink_page_list() can decide to give up reclaiming a page under a
      number of conditions such as
      
        1. trylock_page() failure
        2. page is unevictable
        3. zone reclaim and page is mapped
        4. PageWriteback() is true
        5. page is swapbacked and swap is full
        6. add_to_swap() failure
        7. page is dirty and gfpmask don't have GFP_IO, GFP_FS
        8. page is pinned
        9. IO queue is congested
       10. pageout() start IO, but not finished
      
      With lumpy reclaim, failures result in entering synchronous lumpy reclaim
      but this can be unnecessary.  In cases (2), (3), (5), (6), (7) and (8),
      there is no point retrying.  This patch causes lumpy reclaim to abort when
      it is known it will fail.
      
      Case (9) is more interesting. current behavior is,
        1. start shrink_page_list(async)
        2. found queue_congested()
        3. skip pageout write
        4. still start shrink_page_list(sync)
        5. wait on a lot of pages
        6. again, found queue_congested()
        7. give up pageout write again
      
      So, it's useless time wasting.  However, just skipping page reclaim is
      also notgood as x86 allocating a huge page needs 512 pages for example.
      It can have more dirty pages than queue congestion threshold (~=128).
      
      After this patch, pageout() behaves as follows;
      
       - If order > PAGE_ALLOC_COSTLY_ORDER
      	Ignore queue congestion always.
       - If order <= PAGE_ALLOC_COSTLY_ORDER
      	skip write page and disable lumpy reclaim.
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NMel Gorman <mel@csn.ul.ie>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Minchan Kim <minchan.kim@gmail.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7d3579e8
    • M
      tracing, vmscan: add trace events for LRU list shrinking · e11da5b4
      Mel Gorman 提交于
      There have been numerous reports of stalls that pointed at the problem
      being somewhere in the VM.  There are multiple roots to the problems which
      means dealing with any of the root problems in isolation is tricky to
      justify on their own and they would still need integration testing.  This
      patch series puts together two different patch sets which in combination
      should tackle some of the root causes of latency problems being reported.
      
      Patch 1 adds a tracepoint for shrink_inactive_list.  For this series, the
      most important results is being able to calculate the scanning/reclaim
      ratio as a measure of the amount of work being done by page reclaim.
      
      Patch 2 accounts for time spent in congestion_wait.
      
      Patches 3-6 were originally developed by Kosaki Motohiro but reworked for
      this series.  It has been noted that lumpy reclaim is far too aggressive
      and trashes the system somewhat.  As SLUB uses high-order allocations, a
      large cost incurred by lumpy reclaim will be noticeable.  It was also
      reported during transparent hugepage support testing that lumpy reclaim
      was trashing the system and these patches should mitigate that problem
      without disabling lumpy reclaim.
      
      Patch 7 adds wait_iff_congested() and replaces some callers of
      congestion_wait().  wait_iff_congested() only sleeps if there is a BDI
      that is currently congested.  Patch 8 notes that any BDI being congested
      is not necessarily a problem because there could be multiple BDIs of
      varying speeds and numberous zones.  It attempts to track when a zone
      being reclaimed contains many pages backed by a congested BDI and if so,
      reclaimers wait on the congestion queue.
      
      I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each
      machine had 3G of RAM and the CPUs were
      
      X86:    Intel P4 2-core
      X86-64: AMD Phenom 4-core
      PPC64:  PPC970MP
      
      Each used a single disk and the onboard IO controller.  Dirty ratio was
      left at 20.  I'm just going to report for X86-64 and PPC64 in a vague
      attempt to keep this report short.  Four kernels were tested each based on
      v2.6.36-rc4
      
      traceonly-v2r2:     Patches 1 and 2 to instrument vmscan reclaims and congestion_wait
      lowlumpy-v2r3:      Patches 1-6 to test if lumpy reclaim is better
      waitcongest-v2r3:   Patches 1-7 to only wait on congestion
      waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested
      
      nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion
      nodirect-v1r5:  Patches 1-10 to disable filesystem writeback for better IO
      
      The tests run were as follows
      
      kernbench
      	compile-based benchmark. Smoke test performance
      
      sysbench
      	OLTP read-only benchmark. Will be re-run in the future as read-write
      
      micro-mapped-file-stream
      	This is a micro-benchmark from Johannes Weiner that accesses a
      	large sparse-file through mmap(). It was configured to run in only
      	single-CPU mode but can be indicative of how well page reclaim
      	identifies suitable pages.
      
      stress-highalloc
      	Tries to allocate huge pages under heavy load.
      
      kernbench, iozone and sysbench did not report any performance regression
      on any machine.  sysbench did pressure the system lightly and there was
      reclaim activity but there were no difference of major interest between
      the kernels.
      
      X86-64 micro-mapped-file-stream
      
                                            traceonly-v2r2           lowlumpy-v2r3        waitcongest-v2r3     waitwriteback-v2r4
      pgalloc_dma                       1639.00 (   0.00%)       667.00 (-145.73%)      1167.00 ( -40.45%)       578.00 (-183.56%)
      pgalloc_dma32                  2842410.00 (   0.00%)   2842626.00 (   0.01%)   2843043.00 (   0.02%)   2843014.00 (   0.02%)
      pgalloc_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pgsteal_dma                        729.00 (   0.00%)        85.00 (-757.65%)       609.00 ( -19.70%)       125.00 (-483.20%)
      pgsteal_dma32                  2338721.00 (   0.00%)   2447354.00 (   4.44%)   2429536.00 (   3.74%)   2436772.00 (   4.02%)
      pgsteal_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pgscan_kswapd_dma                 1469.00 (   0.00%)       532.00 (-176.13%)      1078.00 ( -36.27%)       220.00 (-567.73%)
      pgscan_kswapd_dma32            4597713.00 (   0.00%)   4503597.00 (  -2.09%)   4295673.00 (  -7.03%)   3891686.00 ( -18.14%)
      pgscan_kswapd_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pgscan_direct_dma                   71.00 (   0.00%)       134.00 (  47.01%)       243.00 (  70.78%)       352.00 (  79.83%)
      pgscan_direct_dma32             305820.00 (   0.00%)    280204.00 (  -9.14%)    600518.00 (  49.07%)    957485.00 (  68.06%)
      pgscan_direct_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pageoutrun                       16296.00 (   0.00%)     21254.00 (  23.33%)     18447.00 (  11.66%)     20067.00 (  18.79%)
      allocstall                         443.00 (   0.00%)       273.00 ( -62.27%)       513.00 (  13.65%)      1568.00 (  71.75%)
      
      These are based on the raw figures taken from /proc/vmstat.  It's a rough
      measure of reclaim activity.  Note that allocstall counts are higher
      because we are entering direct reclaim more often as a result of not
      sleeping in congestion.  In itself, it's not necessarily a bad thing.
      It's easier to get a view of what happened from the vmscan tracepoint
      report.
      
      FTrace Reclaim Statistics: vmscan
      
                                      traceonly-v2r2   lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4
      Direct reclaims                                443        273        513       1568
      Direct reclaim pages scanned                305968     280402     600825     957933
      Direct reclaim pages reclaimed               43503      19005      30327     117191
      Direct reclaim write file async I/O              0          0          0          0
      Direct reclaim write anon async I/O              0          3          4         12
      Direct reclaim write file sync I/O               0          0          0          0
      Direct reclaim write anon sync I/O               0          0          0          0
      Wake kswapd requests                        187649     132338     191695     267701
      Kswapd wakeups                                   3          1          4          1
      Kswapd pages scanned                       4599269    4454162    4296815    3891906
      Kswapd pages reclaimed                     2295947    2428434    2399818    2319706
      Kswapd reclaim write file async I/O              1          0          1          1
      Kswapd reclaim write anon async I/O             59        187         41        222
      Kswapd reclaim write file sync I/O               0          0          0          0
      Kswapd reclaim write anon sync I/O               0          0          0          0
      Time stalled direct reclaim (seconds)         4.34       2.52       6.63       2.96
      Time kswapd awake (seconds)                  11.15      10.25      11.01      10.19
      
      Total pages scanned                        4905237   4734564   4897640   4849839
      Total pages reclaimed                      2339450   2447439   2430145   2436897
      %age total pages scanned/reclaimed          47.69%    51.69%    49.62%    50.25%
      %age total pages scanned/written             0.00%     0.00%     0.00%     0.00%
      %age  file pages scanned/written             0.00%     0.00%     0.00%     0.00%
      Percentage Time Spent Direct Reclaim        29.23%    19.02%    38.48%    20.25%
      Percentage Time kswapd Awake                78.58%    78.85%    76.83%    79.86%
      
      What is interesting here for nocongest in particular is that while direct
      reclaim scans more pages, the overall number of pages scanned remains the
      same and the ratio of pages scanned to pages reclaimed is more or less the
      same.  In other words, while we are sleeping less, reclaim is not doing
      more work and as direct reclaim and kswapd is awake for less time, it
      would appear to be doing less work.
      
      FTrace Reclaim Statistics: congestion_wait
      Direct number congest     waited                87        196         64          0
      Direct time   congest     waited            4604ms     4732ms     5420ms        0ms
      Direct full   congest     waited                72        145         53          0
      Direct number conditional waited                 0          0        324       1315
      Direct time   conditional waited               0ms        0ms        0ms        0ms
      Direct full   conditional waited                 0          0          0          0
      KSwapd number congest     waited                20         10         15          7
      KSwapd time   congest     waited            1264ms      536ms      884ms      284ms
      KSwapd full   congest     waited                10          4          6          2
      KSwapd number conditional waited                 0          0          0          0
      KSwapd time   conditional waited               0ms        0ms        0ms        0ms
      KSwapd full   conditional waited                 0          0          0          0
      
      The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at
      all asleep with the patches.
      
      MMTests Statistics: duration
      User/Sys Time Running Test (seconds)         10.51     10.73      10.6     11.66
      Total Elapsed Time (seconds)                 14.19     13.00     14.33     12.76
      
      Overall, the tests completed faster. It is interesting to note that backing off further
      when a zone is congested and not just a BDI was more efficient overall.
      
      PPC64 micro-mapped-file-stream
      pgalloc_dma                    3024660.00 (   0.00%)   3027185.00 (   0.08%)   3025845.00 (   0.04%)   3026281.00 (   0.05%)
      pgalloc_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pgsteal_dma                    2508073.00 (   0.00%)   2565351.00 (   2.23%)   2463577.00 (  -1.81%)   2532263.00 (   0.96%)
      pgsteal_normal                       0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pgscan_kswapd_dma              4601307.00 (   0.00%)   4128076.00 ( -11.46%)   3912317.00 ( -17.61%)   3377165.00 ( -36.25%)
      pgscan_kswapd_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pgscan_direct_dma               629825.00 (   0.00%)    971622.00 (  35.18%)   1063938.00 (  40.80%)   1711935.00 (  63.21%)
      pgscan_direct_normal                 0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)         0.00 (   0.00%)
      pageoutrun                       27776.00 (   0.00%)     20458.00 ( -35.77%)     18763.00 ( -48.04%)     18157.00 ( -52.98%)
      allocstall                         977.00 (   0.00%)      2751.00 (  64.49%)      2098.00 (  53.43%)      5136.00 (  80.98%)
      
      Similar trends to x86-64. allocstalls are up but it's not necessarily bad.
      
      FTrace Reclaim Statistics: vmscan
      Direct reclaims                                977       2709       2098       5136
      Direct reclaim pages scanned                629825     963814    1063938    1711935
      Direct reclaim pages reclaimed               75550     242538     150904     387647
      Direct reclaim write file async I/O              0          0          0          2
      Direct reclaim write anon async I/O              0         10          0          4
      Direct reclaim write file sync I/O               0          0          0          0
      Direct reclaim write anon sync I/O               0          0          0          0
      Wake kswapd requests                        392119    1201712     571935     571921
      Kswapd wakeups                                   3          2          3          3
      Kswapd pages scanned                       4601307    4128076    3912317    3377165
      Kswapd pages reclaimed                     2432523    2318797    2312673    2144616
      Kswapd reclaim write file async I/O             20          1          1          1
      Kswapd reclaim write anon async I/O             57        132         11        121
      Kswapd reclaim write file sync I/O               0          0          0          0
      Kswapd reclaim write anon sync I/O               0          0          0          0
      Time stalled direct reclaim (seconds)         6.19       7.30      13.04      10.88
      Time kswapd awake (seconds)                  21.73      26.51      25.55      23.90
      
      Total pages scanned                        5231132   5091890   4976255   5089100
      Total pages reclaimed                      2508073   2561335   2463577   2532263
      %age total pages scanned/reclaimed          47.95%    50.30%    49.51%    49.76%
      %age total pages scanned/written             0.00%     0.00%     0.00%     0.00%
      %age  file pages scanned/written             0.00%     0.00%     0.00%     0.00%
      Percentage Time Spent Direct Reclaim        18.89%    20.65%    32.65%    27.65%
      Percentage Time kswapd Awake                72.39%    80.68%    78.21%    77.40%
      
      Again, a similar trend that the congestion_wait changes mean that direct
      reclaim scans more pages but the overall number of pages scanned while
      slightly reduced, are very similar.  The ratio of scanning/reclaimed
      remains roughly similar.  The downside is that kswapd and direct reclaim
      was awake longer and for a larger percentage of the overall workload.
      It's possible there were big differences in the amount of time spent
      reclaiming slab pages between the different kernels which is plausible
      considering that the micro tests runs after fsmark and sysbench.
      
      Trace Reclaim Statistics: congestion_wait
      Direct number congest     waited               845       1312        104          0
      Direct time   congest     waited           19416ms    26560ms     7544ms        0ms
      Direct full   congest     waited               745       1105         72          0
      Direct number conditional waited                 0          0       1322       2935
      Direct time   conditional waited               0ms        0ms       12ms      312ms
      Direct full   conditional waited                 0          0          0          3
      KSwapd number congest     waited                39        102         75         63
      KSwapd time   congest     waited            2484ms     6760ms     5756ms     3716ms
      KSwapd full   congest     waited                20         48         46         25
      KSwapd number conditional waited                 0          0          0          0
      KSwapd time   conditional waited               0ms        0ms        0ms        0ms
      KSwapd full   conditional waited                 0          0          0          0
      
      The vanilla kernel spent 20 seconds asleep in direct reclaim and only
      312ms asleep with the patches.  The time kswapd spent congest waited was
      also reduced by a large factor.
      
      MMTests Statistics: duration
      ser/Sys Time Running Test (seconds)         26.58     28.05      26.9     28.47
      Total Elapsed Time (seconds)                 30.02     32.86     32.67     30.88
      
      With all patches applies, the completion times are very similar.
      
      X86-64 STRESS-HIGHALLOC
                      traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
      Pass 1          82.00 ( 0.00%)    84.00 ( 2.00%)    85.00 ( 3.00%)    85.00 ( 3.00%)
      Pass 2          90.00 ( 0.00%)    87.00 (-3.00%)    88.00 (-2.00%)    89.00 (-1.00%)
      At Rest         92.00 ( 0.00%)    90.00 (-2.00%)    90.00 (-2.00%)    91.00 (-1.00%)
      
      Success figures across the board are broadly similar.
      
                      traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
      Direct reclaims                               1045        944        886        887
      Direct reclaim pages scanned                135091     119604     109382     101019
      Direct reclaim pages reclaimed               88599      47535      47863      46671
      Direct reclaim write file async I/O            494        283        465        280
      Direct reclaim write anon async I/O          29357      13710      16656      13462
      Direct reclaim write file sync I/O             154          2          2          3
      Direct reclaim write anon sync I/O           14594        571        509        561
      Wake kswapd requests                          7491        933        872        892
      Kswapd wakeups                                 814        778        731        780
      Kswapd pages scanned                       7290822   15341158   11916436   13703442
      Kswapd pages reclaimed                     3587336    3142496    3094392    3187151
      Kswapd reclaim write file async I/O          91975      32317      28022      29628
      Kswapd reclaim write anon async I/O        1992022     789307     829745     849769
      Kswapd reclaim write file sync I/O               0          0          0          0
      Kswapd reclaim write anon sync I/O               0          0          0          0
      Time stalled direct reclaim (seconds)      4588.93    2467.16    2495.41    2547.07
      Time kswapd awake (seconds)                2497.66    1020.16    1098.06    1176.82
      
      Total pages scanned                        7425913  15460762  12025818  13804461
      Total pages reclaimed                      3675935   3190031   3142255   3233822
      %age total pages scanned/reclaimed          49.50%    20.63%    26.13%    23.43%
      %age total pages scanned/written            28.66%     5.41%     7.28%     6.47%
      %age  file pages scanned/written             1.25%     0.21%     0.24%     0.22%
      Percentage Time Spent Direct Reclaim        57.33%    42.15%    42.41%    42.99%
      Percentage Time kswapd Awake                43.56%    27.87%    29.76%    31.25%
      
      Scanned/reclaimed ratios again look good with big improvements in
      efficiency.  The Scanned/written ratios also look much improved.  With a
      better scanned/written ration, there is an expectation that IO would be
      more efficient and indeed, the time spent in direct reclaim is much
      reduced by the full series and kswapd spends a little less time awake.
      
      Overall, indications here are that allocations were happening much faster
      and this can be seen with a graph of the latency figures as the
      allocations were taking place
      http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps
      
      FTrace Reclaim Statistics: congestion_wait
      Direct number congest     waited              1333        204        169          4
      Direct time   congest     waited           78896ms     8288ms     7260ms      200ms
      Direct full   congest     waited               756         92         69          2
      Direct number conditional waited                 0          0         26        186
      Direct time   conditional waited               0ms        0ms        0ms     2504ms
      Direct full   conditional waited                 0          0          0         25
      KSwapd number congest     waited                 4        395        227        282
      KSwapd time   congest     waited             384ms    25136ms    10508ms    18380ms
      KSwapd full   congest     waited                 3        232         98        176
      KSwapd number conditional waited                 0          0          0          0
      KSwapd time   conditional waited               0ms        0ms        0ms        0ms
      KSwapd full   conditional waited                 0          0          0          0
      KSwapd full   conditional waited               318          0        312          9
      
      Overall, the time spent speeping is reduced.  kswapd is still hitting
      congestion_wait() but that is because there are callers remaining where it
      wasn't clear in advance if they should be changed to wait_iff_congested()
      or not.  Overall the sleep imes are reduced though - from 79ish seconds to
      about 19.
      
      MMTests Statistics: duration
      User/Sys Time Running Test (seconds)       3415.43   3386.65   3388.39    3377.5
      Total Elapsed Time (seconds)               5733.48   3660.33   3689.41   3765.39
      
      With the full series, the time to complete the tests are reduced by 30%
      
      PPC64 STRESS-HIGHALLOC
                      traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
      Pass 1          17.00 ( 0.00%)    34.00 (17.00%)    38.00 (21.00%)    43.00 (26.00%)
      Pass 2          25.00 ( 0.00%)    37.00 (12.00%)    42.00 (17.00%)    46.00 (21.00%)
      At Rest         49.00 ( 0.00%)    43.00 (-6.00%)    45.00 (-4.00%)    51.00 ( 2.00%)
      
      Success rates there are *way* up particularly considering that the 16MB
      huge pages on PPC64 mean that it's always much harder to allocate them.
      
      FTrace Reclaim Statistics: vmscan
                    stress-highalloc  stress-highalloc  stress-highalloc  stress-highalloc
                      traceonly-v2r2     lowlumpy-v2r3  waitcongest-v2r3waitwriteback-v2r4
      Direct reclaims                                499        505        564        509
      Direct reclaim pages scanned                223478      41898      51818      45605
      Direct reclaim pages reclaimed              137730      21148      27161      23455
      Direct reclaim write file async I/O            399        136        162        136
      Direct reclaim write anon async I/O          46977       2865       4686       3998
      Direct reclaim write file sync I/O              29          0          1          3
      Direct reclaim write anon sync I/O           31023        159        237        239
      Wake kswapd requests                           420        351        360        326
      Kswapd wakeups                                 185        294        249        277
      Kswapd pages scanned                      15703488   16392500   17821724   17598737
      Kswapd pages reclaimed                     5808466    2908858    3139386    3145435
      Kswapd reclaim write file async I/O         159938      18400      18717      13473
      Kswapd reclaim write anon async I/O        3467554     228957     322799     234278
      Kswapd reclaim write file sync I/O               0          0          0          0
      Kswapd reclaim write anon sync I/O               0          0          0          0
      Time stalled direct reclaim (seconds)      9665.35    1707.81    2374.32    1871.23
      Time kswapd awake (seconds)                9401.21    1367.86    1951.75    1328.88
      
      Total pages scanned                       15926966  16434398  17873542  17644342
      Total pages reclaimed                      5946196   2930006   3166547   3168890
      %age total pages scanned/reclaimed          37.33%    17.83%    17.72%    17.96%
      %age total pages scanned/written            23.27%     1.52%     1.94%     1.43%
      %age  file pages scanned/written             1.01%     0.11%     0.11%     0.08%
      Percentage Time Spent Direct Reclaim        44.55%    35.10%    41.42%    36.91%
      Percentage Time kswapd Awake                86.71%    43.58%    52.67%    41.14%
      
      While the scanning rates are slightly up, the scanned/reclaimed and
      scanned/written figures are much improved.  The time spent in direct
      reclaim and with kswapd are massively reduced, mostly by the lowlumpy
      patches.
      
      FTrace Reclaim Statistics: congestion_wait
      Direct number congest     waited               725        303        126          3
      Direct time   congest     waited           45524ms     9180ms     5936ms      300ms
      Direct full   congest     waited               487        190         52          3
      Direct number conditional waited                 0          0        200        301
      Direct time   conditional waited               0ms        0ms        0ms     1904ms
      Direct full   conditional waited                 0          0          0         19
      KSwapd number congest     waited                 0          2         23          4
      KSwapd time   congest     waited               0ms      200ms      420ms      404ms
      KSwapd full   congest     waited                 0          2          2          4
      KSwapd number conditional waited                 0          0          0          0
      KSwapd time   conditional waited               0ms        0ms        0ms        0ms
      KSwapd full   conditional waited                 0          0          0          0
      
      Not as dramatic a story here but the time spent asleep is reduced and we
      can still see what wait_iff_congested is going to sleep when necessary.
      
      MMTests Statistics: duration
      User/Sys Time Running Test (seconds)      12028.09   3157.17   3357.79   3199.16
      Total Elapsed Time (seconds)              10842.07   3138.72   3705.54   3229.85
      
      The time to complete this test goes way down.  With the full series, we
      are allocating over twice the number of huge pages in 30% of the time and
      there is a corresponding impact on the allocation latency graph available
      at.
      
      http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps
      
      This patch:
      
      Add a trace event for shrink_inactive_list() and updates the sample
      postprocessing script appropriately.  It can be used to determine how many
      pages were reclaimed and for non-lumpy reclaim where exactly the pages
      were reclaimed from.
      Signed-off-by: NMel Gorman <mel@csn.ul.ie>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Minchan Kim <minchan.kim@gmail.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e11da5b4
  5. 10 8月, 2010 7 次提交