- 23 3月, 2012 6 次提交
-
-
由 Steffen Persvold 提交于
As suggested by Suresh Siddha and Yinghai Lu: For x2apic pre-enabled systems, apic driver is set already early through early_acpi_boot_init()/early_acpi_process_madt()/ acpi_parse_madt()/default_acpi_madt_oem_check() path so that apic_id_valid() checking will be sufficient during MADT and SRAT parsing. For non-x2apic pre-enabled systems, all apic ids should be less than 255. This allows us to substitute the checks in arch/x86/kernel/acpi/boot.c::acpi_parse_x2apic() and arch/x86/mm/srat.c::acpi_numa_x2apic_affinity_init() with apic->apic_id_valid(). In addition we can avoid feigning the x2apic cpu feature in the NumaChip apic code. The following apic drivers have separate apic_id_valid() functions which will accept x2apic type IDs : x2apic_phys x2apic_cluster x2apic_uv_x apic_numachip Signed-off-by: NSteffen Persvold <sp@numascale.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Daniel J Blueman <daniel@numascale-asia.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jack Steiner <steiner@sgi.com> Link: http://lkml.kernel.org/r/1331925935-13372-1-git-send-email-sp@numascale.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
Link: http://lkml.kernel.org/n/tip-ahz3d8i1vxwj0379gv4tqcru@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
Dave found: | During bootup, I now have 162 messages like this.. | [ 0.227346] MSR0000001b: 00000000fee00900 | [ 0.227465] MSR00000021: 0000000000000001 | [ 0.227584] MSR0000002a: 00000000c1c81400 | | commit 21c3fcf3 looks suspect. | It claims that it will only print these out if show_msr= is | passed, but that doesn't seem to be the case. Fix it by changing to the version that checks the index. Reported-and-tested-by: NDave Jones <davej@redhat.com> Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1332477103-4595-1-git-send-email-yinghai@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dmitry Adamushko 提交于
The problem occurs on !CONFIG_VM86 kernels [1] when a kernel-mode task returns from a system call with a pending signal. A real-life scenario is a child of 'khelper' returning from a failed kernel_execve() in ____call_usermodehelper() [ kernel/kmod.c ]. kernel_execve() fails due to a pending SIGKILL, which is the result of "kill -9 -1" (at least, busybox's init does it upon reboot). The loop is as follows: * syscall_exit_work: - work_pending: // start_of_the_loop - work_notify_sig: - do_notify_resume() - do_signal() - if (!user_mode(regs)) return; - resume_userspace // TIF_SIGPENDING is still set - work_pending // so we call work_pending => goto // start_of_the_loop More information can be found in another LKML thread: http://www.serverphorums.com/read.php?12,457826 [1] the problem was also seen on MIPS. Signed-off-by: NDmitry Adamushko <dmitry.adamushko@gmail.com> Link: http://lkml.kernel.org/r/1332448765.2299.68.camel@dimm Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <stable@vger.kernel.org> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 H. Peter Anvin 提交于
This is a partial revert of commit: d40f8336 "Restrict CFLAGS for hostprogs" The endian-manipulation macros in tools/include need <linux/types.h>, but the hostprogs in arch/x86/boot need several headers from the kernel build tree, which means we have to add the kernel headers to the include path. This picks up <linux/types.h> from the kernel tree, which gives a warning. Since this use of <linux/types.h> is intentional, add -D__EXPORTED_HEADERS__ to the command line to silence the warning. A better way to fix this would be to always install the exported kernel headers into $(objtree)/usr/include as a standard part of the kernel build, but that is a lot more involved. Reported-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NMatt Fleming <matt.fleming@intel.com> Link: http://lkml.kernel.org/r/1330436245-24875-5-git-send-email-matt@console-pimps.orgSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 Thierry Reding 提交于
Syscall 282 was mistakenly named mq_getsetaddr instead of mq_getsetattr. When building uClibc against the Linux kernel this would result in a shared library that doesn't provide the mq_getattr() and mq_setattr() functions. Signed-off-by: NThierry Reding <thierry.reding@avionic-design.de> Link: http://lkml.kernel.org/r/1332366608-2695-2-git-send-email-thierry.reding@avionic-design.de Cc: <stable@vger.kernel.org> v3.3 Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 22 3月, 2012 5 次提交
-
-
由 Andrea Arcangeli 提交于
Without this fix the cpumask_of_node() for a fake=numa=2 is: cpumask 0 ff cpumask 1 ff with the fix it's correct and it's set to: cpumask 0 55 cpumask 1 aa Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xiao Guangrong 提交于
After looking up the vma which covers or follows the cached search address, the following condition is always true: !prev_vma || (addr >= prev_vma->vm_end) so we can stop checking the previous VMA altogether. Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xiao Guangrong 提交于
If the required size is bigger than cached_hole_size it is better to search from free_area_cache - it is easier to get a free region, specifically for the 64 bit process whose address space is large enough Do it just as hugetlb_get_unmapped_area_topdown() in arch/x86/mm/hugetlbpage.c Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xiao Guangrong 提交于
Search again only if some holes may be skipped in the first pass. [akpm@linux-foundation.org: clean up crazy compound definition] Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrea Arcangeli 提交于
In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(¤t->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: NUlrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: NLarry Woodman <lwoodman@redhat.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 3月, 2012 2 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Just don't pass NULL to it - nobody does, anyway. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 20 3月, 2012 3 次提交
-
-
由 Cong Wang 提交于
[swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename] Signed-off-by: NStephen Warren <swarren@nvidia.com> Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Cong Wang 提交于
Acked-by: NAvi Kivity <avi@redhat.com> Acked-by: NHerbert Xu <herbert@gondor.apana.org.au> Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Eric Dumazet 提交于
Matt Evans spotted that x86 bpf_jit was incorrectly handling negative constant offsets in BPF_S_LDX_B_MSH instruction. We need to abort JIT compilation like we do in common_load so that filter uses the interpreter code and can call __load_pointer() Reference: http://lists.openwall.net/netdev/2011/07/19/11 Thanks to Indan Zupancic to bring back this issue. Reported-by: NMatt Evans <matt@ozlabs.org> Reported-by: NIndan Zupancic <indan@nul.nu> Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 3月, 2012 1 次提交
-
-
由 Steffen Persvold 提交于
Fix the following section warnings : WARNING: vmlinux.o(.text+0x49dbc): Section mismatch in reference from the function acpi_map_cpu2node() to the variable .cpuinit.data:__apicid_to_node The function acpi_map_cpu2node() references the variable __cpuinitdata __apicid_to_node. This is often because acpi_map_cpu2node lacks a __cpuinitdata annotation or the annotation of __apicid_to_node is wrong. WARNING: vmlinux.o(.text+0x49dc1): Section mismatch in reference from the function acpi_map_cpu2node() to the function .cpuinit.text:numa_set_node() The function acpi_map_cpu2node() references the function __cpuinit numa_set_node(). This is often because acpi_map_cpu2node lacks a __cpuinit annotation or the annotation of numa_set_node is wrong. WARNING: vmlinux.o(.text+0x526e77): Section mismatch in reference from the function prealloc_protection_domains() to the function .init.text:alloc_passthrough_domain() The function prealloc_protection_domains() references the function __init alloc_passthrough_domain(). This is often because prealloc_protection_domains lacks a __init annotation or the annotation of alloc_passthrough_domain is wrong. Signed-off-by: NSteffen Persvold <sp@numascale.com> Link: http://lkml.kernel.org/r/1331810188-24785-1-git-send-email-sp@numascale.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 3月, 2012 1 次提交
-
-
由 Dan Carpenter 提交于
"filename" is a efi_char16_t string so this check for reaching the end of the array doesn't work. We need to cast the pointer to (u8 *) before doing the math. This patch changes the "filename" to "filename_16" to avoid confusion in the future. Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Link: http://lkml.kernel.org/r/20120305180614.GA26880@elgon.mountainAcked-by: NMatt Fleming <matt.fleming@intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 14 3月, 2012 2 次提交
-
-
由 Jussi Kivilinna 提交于
Patch adds x86_64 assembler implementation of Camellia block cipher. Two set of functions are provided. First set is regular 'one-block at time' encrypt/decrypt functions. Second is 'two-block at time' functions that gain performance increase on out-of-order CPUs. Performance of 2-way functions should be equal to 1-way functions with in-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmark results: AMD Phenom II 1055T (fam:16, model:10): camellia-asm vs camellia_generic: 128bit key: (lrw:256bit) (xts:256bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 1.27x 1.22x 1.30x 1.42x 1.30x 1.34x 1.19x 1.05x 1.23x 1.24x 64B 1.74x 1.79x 1.43x 1.87x 1.81x 1.87x 1.48x 1.38x 1.55x 1.62x 256B 1.90x 1.87x 1.43x 1.94x 1.94x 1.95x 1.63x 1.62x 1.67x 1.70x 1024B 1.96x 1.93x 1.43x 1.95x 1.98x 2.01x 1.67x 1.69x 1.74x 1.80x 8192B 1.96x 1.96x 1.39x 1.93x 2.01x 2.03x 1.72x 1.64x 1.71x 1.76x 256bit key: (lrw:384bit) (xts:512bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 1.23x 1.23x 1.33x 1.39x 1.34x 1.38x 1.04x 1.18x 1.21x 1.29x 64B 1.72x 1.69x 1.42x 1.78x 1.81x 1.89x 1.57x 1.52x 1.56x 1.65x 256B 1.85x 1.88x 1.42x 1.86x 1.93x 1.96x 1.69x 1.65x 1.70x 1.75x 1024B 1.88x 1.86x 1.45x 1.95x 1.96x 1.95x 1.77x 1.71x 1.77x 1.78x 8192B 1.91x 1.86x 1.42x 1.91x 2.03x 1.98x 1.73x 1.71x 1.78x 1.76x camellia-asm vs aes-asm (8kB block): 128bit 256bit ecb-enc 1.15x 1.22x ecb-dec 1.16x 1.16x cbc-enc 0.85x 0.90x cbc-dec 1.20x 1.23x ctr-enc 1.28x 1.30x ctr-dec 1.27x 1.28x lrw-enc 1.12x 1.16x lrw-dec 1.08x 1.10x xts-enc 1.11x 1.15x xts-dec 1.14x 1.15x Intel Core2 T8100 (fam:6, model:23, step:6): camellia-asm vs camellia_generic: 128bit key: (lrw:256bit) (xts:256bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 1.10x 1.12x 1.14x 1.16x 1.16x 1.15x 1.02x 1.02x 1.08x 1.08x 64B 1.61x 1.60x 1.17x 1.68x 1.67x 1.66x 1.43x 1.42x 1.44x 1.42x 256B 1.65x 1.73x 1.17x 1.77x 1.81x 1.80x 1.54x 1.53x 1.58x 1.54x 1024B 1.76x 1.74x 1.18x 1.80x 1.85x 1.85x 1.60x 1.59x 1.65x 1.60x 8192B 1.77x 1.75x 1.19x 1.81x 1.85x 1.86x 1.63x 1.61x 1.66x 1.62x 256bit key: (lrw:384bit) (xts:512bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 1.10x 1.07x 1.13x 1.16x 1.11x 1.16x 1.03x 1.02x 1.08x 1.07x 64B 1.61x 1.62x 1.15x 1.66x 1.63x 1.68x 1.47x 1.46x 1.47x 1.44x 256B 1.71x 1.70x 1.16x 1.75x 1.69x 1.79x 1.58x 1.57x 1.59x 1.55x 1024B 1.78x 1.72x 1.17x 1.75x 1.80x 1.80x 1.63x 1.62x 1.65x 1.62x 8192B 1.76x 1.73x 1.17x 1.78x 1.80x 1.81x 1.64x 1.62x 1.68x 1.64x camellia-asm vs aes-asm (8kB block): 128bit 256bit ecb-enc 1.17x 1.21x ecb-dec 1.17x 1.20x cbc-enc 0.80x 0.82x cbc-dec 1.22x 1.24x ctr-enc 1.25x 1.26x ctr-dec 1.25x 1.26x lrw-enc 1.14x 1.18x lrw-dec 1.13x 1.17x xts-enc 1.14x 1.18x xts-dec 1.14x 1.17x Signed-off-by: NJussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Daniel J Blueman 提交于
Move APIC ID validity check into platform APIC code, so it can be overridden when needed. For NumaChip systems, always trust MADT, as it's constructed with high APIC IDs. Behaviour verifies on standard x86 systems and on NumaChip systems with this, and compile-tested with allyesconfig. Signed-off-by: NDaniel J Blueman <daniel@numascale-asia.com> Reviewed-by: NSteffen Persvold <sp@numascale.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1331709454-27966-1-git-send-email-daniel@numascale-asia.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 13 3月, 2012 5 次提交
-
-
由 Salman Qazi 提交于
When a machine boots up, the TSC generally gets reset. However, when kexec is used to boot into a kernel, the TSC value would be carried over from the previous kernel. The computation of cycns_offset in set_cyc2ns_scale is prone to an overflow, if the machine has been up more than 208 days prior to the kexec. The overflow happens when we multiply *scale, even though there is enough room to store the final answer. We fix this issue by decomposing tsc_now into the quotient and remainder of division by CYC2NS_SCALE_FACTOR and then performing the multiplication separately on the two components. Refactor code to share the calculation with the previous fix in __cycles_2_ns(). Signed-off-by: NSalman Qazi <sqazi@google.com> Acked-by: NJohn Stultz <john.stultz@linaro.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Cc: john stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/20120310004027.19291.88460.stgit@dungbeetle.mtv.corp.google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
With the recent changes to clear_IO_APIC_pin() which tries to clear remoteIRR bit explicitly, some of the users started to see "Unable to reset IRR for apic .." messages. Close look shows that these are related to bogus IO-APIC entries which return's all 1's for their io-apic registers. And the above mentioned error messages are benign. But kernel should have ignored such io-apic's in the first place. Check if register 0, 1, 2 of the listed io-apic are all 1's and ignore such io-apic. Reported-by: NÁlvaro Castillo <midgoon@gmail.com> Tested-by: NJon Dufresne <jon@jondufresne.org> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: yinghai@kernel.org Cc: kernel-team@fedoraproject.org Cc: Josh Boyer <jwboyer@redhat.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/r/1331577393.31585.94.camel@sbsiddha-desk.sc.intel.com [ Performed minor cleanup of affected code. ] Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
I got somewhat tired of having to decode hex numbers.. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Stephane Eranian <eranian@google.com> Cc: Robert Richter <robert.richter@amd.com> Link: http://lkml.kernel.org/n/tip-0vsy1sgywc4uar3mu1szm0rg@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Verified using the below proglet.. before: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,101,554 node-stores 2,096,931 node-store-misses 5.021546079 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 501,137 node-stores 199 node-store-misses 5.124451068 seconds time elapsed After: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,107,516 node-stores 2,097,187 node-store-misses 5.012755149 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 2,063,355 node-stores 165 node-store-misses 5.082091494 seconds time elapsed #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <errno.h> #include <sys/mman.h> #include <sys/types.h> #include <dirent.h> #include <signal.h> #include <unistd.h> #include <numaif.h> #include <stdlib.h> #define SIZE (32*1024*1024) volatile int done; void sig_done(int sig) { done = 1; } int main(int argc, char **argv) { cpu_set_t *mask, *mask2; size_t size; int i, err, t; int nrcpus = 1024; char *mem; unsigned long nodemask = 0x01; /* node 0 */ DIR *node; struct dirent *de; int read = 0; int local = 0; if (argc < 2) { printf("usage: %s [0-3]\n", argv[0]); printf(" bit0 - local/remote\n"); printf(" bit1 - read/write\n"); exit(0); } switch (atoi(argv[1])) { case 0: printf("remote write\n"); break; case 1: printf("local write\n"); local = 1; break; case 2: printf("remote read\n"); read = 1; break; case 3: printf("local read\n"); local = 1; read = 1; break; } mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); node = opendir("/sys/devices/system/node/node0/"); if (!node) perror("opendir"); while ((de = readdir(node))) { int cpu; if (sscanf(de->d_name, "cpu%d", &cpu) == 1) CPU_SET_S(cpu, size, mask); } closedir(node); mask2 = CPU_ALLOC(nrcpus); CPU_ZERO_S(size, mask2); for (i = 0; i < size; i++) CPU_SET_S(i, size, mask2); CPU_XOR_S(size, mask2, mask2, mask); // invert if (!local) mask = mask2; err = sched_setaffinity(0, size, mask); if (err) perror("sched_setaffinity"); mem = mmap(0, SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); err = mbind(mem, SIZE, MPOL_BIND, &nodemask, 8*sizeof(nodemask), MPOL_MF_MOVE); if (err) perror("mbind"); signal(SIGALRM, sig_done); alarm(5); if (!read) { while (!done) { for (i = 0; i < SIZE; i++) mem[i] = 0x01; } } else { while (!done) { for (i = 0; i < SIZE; i++) t += *(volatile char *)(mem + i); } } return 0; } Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/n/tip-tq73sxus35xmqpojf7ootxgs@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Stepan found: CPU0 CPUn _cpu_up() __cpu_up() boostrap() notify_cpu_starting() set_cpu_online() while (!cpu_active()) cpu_relax() <PREEMPT-out> smp_call_function(.wait=1) /* we find cpu_online() is true */ arch_send_call_function_ipi_mask() /* wait-forever-more */ <PREEMPT-in> local_irq_enable() cpu_notify(CPU_ONLINE) sched_cpu_active() set_cpu_active() Now the purpose of cpu_active is mostly with bringing down a cpu, where we mark it !active to avoid the load-balancer from moving tasks to it while we tear down the cpu. This is required because we only update the sched_domain tree after we brought the cpu-down. And this is needed so that some tasks can still run while we bring it down, we just don't want new tasks to appear. On cpu-up however the sched_domain tree doesn't yet include the new cpu, so its invisible to the load-balancer, regardless of the active state. So instead of setting the active state after we boot the new cpu (and consequently having to wait for it before enabling interrupts) set the cpu active before we set it online and avoid the whole mess. Reported-by: NStepan Moskovchenko <stepanm@codeaurora.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NThomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1323965362.18942.71.camel@twinsSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 10 3月, 2012 1 次提交
-
-
由 Thomas Gleixner 提交于
Commit f0fbf0ab ("x86: integrate delay functions") converted delay_tsc() into a random delay generator for 64 bit. The reason is that it merged the mostly identical versions of delay_32.c and delay_64.c. Though the subtle difference of the result was: static void delay_tsc(unsigned long loops) { - unsigned bclock, now; + unsigned long bclock, now; Now the function uses rdtscl() which returns the lower 32bit of the TSC. On 32bit that's not problematic as unsigned long is 32bit. On 64 bit this fails when the lower 32bit are close to wrap around when bclock is read, because the following check if ((now - bclock) >= loops) break; evaluated to true on 64bit for e.g. bclock = 0xffffffff and now = 0 because the unsigned long (now - bclock) of these values results in 0xffffffff00000001 which is definitely larger than the loops value. That explains Tvortkos observation: "Because I am seeing udelay(500) (_occasionally_) being short, and that by delaying for some duration between 0us (yep) and 491us." Make those variables explicitely u32 again, so this works for both 32 and 64 bit. Reported-by: NTvrtko Ursulin <tvrtko.ursulin@onelan.co.uk> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org # >= 2.6.27 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 3月, 2012 1 次提交
-
-
由 Linus Torvalds 提交于
Ok, this is hacky, and only works on little-endian machines with goo unaligned handling. And even then only with CONFIG_DEBUG_PAGEALLOC disabled, since it can access up to 7 bytes after the pathname. But it runs like a bat out of hell. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 3月, 2012 3 次提交
-
-
由 Jan Beulich 提交于
... to ensure that declarations and definitions are in sync. Signed-off-by: NJan Beulich <jbeulich@suse.com> Link: http://lkml.kernel.org/r/4F5888F902000078000770F1@nat28.tlf.novell.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jan Beulich 提交于
While for a user mode register dump it may be reasonable to skip those (albeit x86-64 doesn't do so), for kernel mode dumps these should be printed to make sure all information possibly necessary for analysis is available. Signed-off-by: NJan Beulich <jbeulich@suse.com> Link: http://lkml.kernel.org/r/4F58889202000078000770E7@nat28.tlf.novell.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jan Beulich 提交于
Building in support for either of these CPUs is pointless when e.g. M686 was selected (since such a kernel would use cmov instructions, which aren't available on these older CPUs). Signed-off-by: NJan Beulich <jbeulich@suse.com> Link: http://lkml.kernel.org/r/4F58875A02000078000770E0@nat28.tlf.novell.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 07 3月, 2012 3 次提交
-
-
由 Srivatsa S. Bhat 提交于
While booting, the following message is seen: [ 21.665087] =============================== [ 21.669439] [ INFO: suspicious RCU usage. ] [ 21.673798] 3.2.0-0.0.0.28.36b5ec9-default #2 Not tainted [ 21.681353] ------------------------------- [ 21.685864] arch/x86/kernel/cpu/mcheck/mce.c:194 suspicious rcu_dereference_index_check() usage! [ 21.695013] [ 21.695014] other info that might help us debug this: [ 21.695016] [ 21.703488] [ 21.703489] rcu_scheduler_active = 1, debug_locks = 1 [ 21.710426] 3 locks held by modprobe/2139: [ 21.714754] #0: (&__lockdep_no_validate__){......}, at: [<ffffffff8133afd3>] __driver_attach+0x53/0xa0 [ 21.725020] #1: [ 21.725323] ioatdma: Intel(R) QuickData Technology Driver 4.00 [ 21.733206] (&__lockdep_no_validate__){......}, at: [<ffffffff8133afe1>] __driver_attach+0x61/0xa0 [ 21.743015] #2: (i7core_edac_lock){+.+.+.}, at: [<ffffffffa01cfa5f>] i7core_probe+0x1f/0x5c0 [i7core_edac] [ 21.753708] [ 21.753709] stack backtrace: [ 21.758429] Pid: 2139, comm: modprobe Not tainted 3.2.0-0.0.0.28.36b5ec9-default #2 [ 21.768253] Call Trace: [ 21.770838] [<ffffffff810977cd>] lockdep_rcu_suspicious+0xcd/0x100 [ 21.777366] [<ffffffff8101aa41>] drain_mcelog_buffer+0x191/0x1b0 [ 21.783715] [<ffffffff8101aa78>] mce_register_decode_chain+0x18/0x20 [ 21.790430] [<ffffffffa01cf8db>] i7core_register_mci+0x2fb/0x3e4 [i7core_edac] [ 21.798003] [<ffffffffa01cfb14>] i7core_probe+0xd4/0x5c0 [i7core_edac] [ 21.804809] [<ffffffff8129566b>] local_pci_probe+0x5b/0xe0 [ 21.810631] [<ffffffff812957c9>] __pci_device_probe+0xd9/0xe0 [ 21.816650] [<ffffffff813362e4>] ? get_device+0x14/0x20 [ 21.822178] [<ffffffff81296916>] pci_device_probe+0x36/0x60 [ 21.828061] [<ffffffff8133ac8a>] really_probe+0x7a/0x2b0 [ 21.833676] [<ffffffff8133af23>] driver_probe_device+0x63/0xc0 [ 21.839868] [<ffffffff8133b01b>] __driver_attach+0x9b/0xa0 [ 21.845718] [<ffffffff8133af80>] ? driver_probe_device+0xc0/0xc0 [ 21.852027] [<ffffffff81339168>] bus_for_each_dev+0x68/0x90 [ 21.857876] [<ffffffff8133aa3c>] driver_attach+0x1c/0x20 [ 21.863462] [<ffffffff8133a64d>] bus_add_driver+0x16d/0x2b0 [ 21.869377] [<ffffffff8133b6dc>] driver_register+0x7c/0x160 [ 21.875220] [<ffffffff81296bda>] __pci_register_driver+0x6a/0xf0 [ 21.881494] [<ffffffffa01fe000>] ? 0xffffffffa01fdfff [ 21.886846] [<ffffffffa01fe047>] i7core_init+0x47/0x1000 [i7core_edac] [ 21.893737] [<ffffffff810001ce>] do_one_initcall+0x3e/0x180 [ 21.899670] [<ffffffff810a9b95>] sys_init_module+0xc5/0x220 [ 21.905542] [<ffffffff8149bc39>] system_call_fastpath+0x16/0x1b Fix this by using ACCESS_ONCE() instead of rcu_dereference_check_mce() over mcelog.next. Since the access to each entry is controlled by the ->finished field, ACCESS_ONCE() should work just fine. An rcu_dereference is unnecessary here. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Suggested-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com>
-
由 Linus Torvalds 提交于
It turns out that test-compiling this file on x86-64 doesn't really help, because much of it is x86-32-specific. And so I hadn't noticed the slightly over-eager removal of the 'r' from 'addr' variable despite thinking I had tested it. Signed-off-by: NLinus "oopsie" Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
Several users of "find_vma_prev()" were not in fact interested in the previous vma if there was no primary vma to be found either. And in those cases, we're much better off just using the regular "find_vma()", and then "prev" can be looked up by just checking vma->vm_prev. The find_vma_prev() semantics are fairly subtle (see Mikulas' recent commit 83cd904d: "mm: fix find_vma_prev"), and the whole "return prev by reference" means that it generates worse code too. Thus this "let's avoid using this inconvenient and clearly too subtle interface when we don't really have to" patch. Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 3月, 2012 7 次提交
-
-
由 Daniel Drake 提交于
Like most systems, OLPC's ACPI LID switch wakes up the system when the lid is opened, but not when it is closed. Under OLPC's opportunistic suspend model, the lid may be closed while the system was oportunistically suspended with the screen running. In this event, we want to wake up to turn the screen off. Enable control of normal ACPI wakeups through lid close events through a new sysfs attribute "lid_wake_on_closed". When set, and when LID wakeups are enabled through ACPI, the system will wake up on both open and close lid events. Signed-off-by: NDaniel Drake <dsd@laptop.org> Cc: Andres Salomon <dilinger@queued.net> Cc: Matthew Garrett <mjg@redhat.com> [ Fixed sscanf checking] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-bgt8hxu2wwe0x5p8edhogtf7@git.kernel.org [ Did very minor readability tweaks ] Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Masami Hiramatsu 提交于
Split out optprobe related code to arch/x86/kernel/kprobes-opt.c for maintenanceability. Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Suggested-by: NIngo Molnar <mingo@elte.hu> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: yrl.pp-manager.tt@hitachi.com Cc: systemtap@sourceware.org Cc: anderson@redhat.com Link: http://lkml.kernel.org/r/20120305133222.5982.54794.stgit@localhost.localdomain [ Tidied up the code a tiny bit ] Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Masami Hiramatsu 提交于
Fix a bug in kprobes which can modify kernel code permanently at run-time. In the result, kernel can crash when it executes the modified code. This bug can happen when we put two probes enough near and the first probe is optimized. When the second probe is set up, it copies a byte which is already modified by the first probe, and executes it when the probe is hit. Even worse, the first probe and the second probe are removed respectively, the second probe writes back the copied (modified) instruction. To fix this bug, kprobes always recovers the original code and copies the first byte from recovered instruction. Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: yrl.pp-manager.tt@hitachi.com Cc: systemtap@sourceware.org Cc: anderson@redhat.com Link: http://lkml.kernel.org/r/20120305133215.5982.31991.stgit@localhost.localdomainSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Masami Hiramatsu 提交于
Current probed-instruction recovery expects that only breakpoint instruction modifies instruction. However, since kprobes jump optimization can replace original instructions with a jump, that expectation is not enough. And it may cause instruction decoding failure on the function where an optimized probe already exists. This bug can reproduce easily as below: 1) find a target function address (any kprobe-able function is OK) $ grep __secure_computing /proc/kallsyms ffffffff810c19d0 T __secure_computing 2) decode the function $ objdump -d vmlinux --start-address=0xffffffff810c19d0 --stop-address=0xffffffff810c19eb vmlinux: file format elf64-x86-64 Disassembly of section .text: ffffffff810c19d0 <__secure_computing>: ffffffff810c19d0: 55 push %rbp ffffffff810c19d1: 48 89 e5 mov %rsp,%rbp ffffffff810c19d4: e8 67 8f 72 00 callq ffffffff817ea940 <mcount> ffffffff810c19d9: 65 48 8b 04 25 40 b8 mov %gs:0xb840,%rax ffffffff810c19e0: 00 00 ffffffff810c19e2: 83 b8 88 05 00 00 01 cmpl $0x1,0x588(%rax) ffffffff810c19e9: 74 05 je ffffffff810c19f0 <__secure_computing+0x20> 3) put a kprobe-event at an optimize-able place, where no call/jump places within the 5 bytes. $ su - # cd /sys/kernel/debug/tracing # echo p __secure_computing+0x9 > kprobe_events 4) enable it and check it is optimized. # echo 1 > events/kprobes/p___secure_computing_9/enable # cat ../kprobes/list ffffffff810c19d9 k __secure_computing+0x9 [OPTIMIZED] 5) put another kprobe on an instruction after previous probe in the same function. # echo p __secure_computing+0x12 >> kprobe_events bash: echo: write error: Invalid argument # dmesg | tail -n 1 [ 1666.500016] Probing address(0xffffffff810c19e2) is not an instruction boundary. 6) however, if the kprobes optimization is disabled, it works. # echo 0 > /proc/sys/debug/kprobes-optimization # cat ../kprobes/list ffffffff810c19d9 k __secure_computing+0x9 # echo p __secure_computing+0x12 >> kprobe_events (no error) This is because kprobes doesn't recover the instruction which is overwritten with a relative jump by another kprobe when finding instruction boundary. It only recovers the breakpoint instruction. This patch fixes kprobes to recover such instructions. With this fix: # echo p __secure_computing+0x9 > kprobe_events # echo 1 > events/kprobes/p___secure_computing_9/enable # cat ../kprobes/list ffffffff810c1aa9 k __secure_computing+0x9 [OPTIMIZED] # echo p __secure_computing+0x12 >> kprobe_events # cat ../kprobes/list ffffffff810c1aa9 k __secure_computing+0x9 [OPTIMIZED] ffffffff810c1ab2 k __secure_computing+0x12 [DISABLED] Changes in v4: - Fix a bug to ensure optimized probe is really optimized by jump. - Remove kprobe_optready() dependency. - Cleanup code for preparing optprobe separation. Changes in v3: - Fix a build error when CONFIG_OPTPROBE=n. (Thanks, Ingo!) To fix the error, split optprobe instruction recovering path from kprobes path. - Cleanup comments/styles. Changes in v2: - Fix a bug to recover original instruction address in RIP-relative instruction fixup. - Moved on tip/master. Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: yrl.pp-manager.tt@hitachi.com Cc: systemtap@sourceware.org Cc: anderson@redhat.com Link: http://lkml.kernel.org/r/20120305133209.5982.36568.stgit@localhost.localdomainSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Philip Prindeville 提交于
Add platform driver for the Soekris Engineering net5501 single-board computer. Probes well-known locations in ROM for BIOS signature to confirm correct platform. Registers 1 LED and 1 GPIO-based button (typically used for soft reset). Signed-off-by: NPhilip Prindeville <philipp@redfish-solutions.com> Acked-by: NAlessandro Zummo <a.zummo@towertech.it> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Andres Salomon <dilinger@queued.net> Cc: Matthew Garrett <mjg@redhat.com> [ Removed Kconfig and Makefile detritus from drivers/leds/] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-jv5uf34996juqh5syes8mn4h@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Philip Prindeville 提交于
GPIO 24 is used in reference designs as a soft-reset button, and the alix2 is no exception. Add it as a gpio-button. Use symbolic values to describe BIOS addresses. Record the model number. Signed-off-by: NPhilip A. Prindeville <philipp@redfish-solutions.com> Acked-by: NEd Wildgoose <kernel@wildgooses.com> Acked-by: NAndres Salomon <dilinger@queued.net> Cc: Matthew Garrett <mjg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-sjp6k1rjksitx1pej0c0qxd1@git.kernel.org [ tidied up the code a bit ] Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-