1. 05 6月, 2014 12 次提交
    • Q
      memcg: correct comments for __mem_cgroup_begin_update_page_stat · b5ffc856
      Qiang Huang 提交于
      Signed-off-by: NQiang Huang <h.huangqiang@huawei.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b5ffc856
    • Q
      memcg: fold mem_cgroup_stolen · bdcbb659
      Qiang Huang 提交于
      It is only used in __mem_cgroup_begin_update_page_stat(), the name is
      confusing and 2 routines for one thing also confuse people, so fold this
      function seems more clear.
      
      [akpm@linux-foundation.org: fix typo, per Michal]
      Signed-off-by: NQiang Huang <h.huangqiang@huawei.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bdcbb659
    • F
      mm/memcontrol.c: remove NULL assignment on static · ada4ba59
      Fabian Frederick 提交于
      static values are automatically initialized to NULL
      Signed-off-by: NFabian Frederick <fabf@skynet.be>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ada4ba59
    • C
      mm: replace __get_cpu_var uses with this_cpu_ptr · 7c8e0181
      Christoph Lameter 提交于
      Replace places where __get_cpu_var() is used for an address calculation
      with this_cpu_ptr().
      Signed-off-by: NChristoph Lameter <cl@linux.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7c8e0181
    • V
      memcg, slab: simplify synchronization scheme · bd673145
      Vladimir Davydov 提交于
      At present, we have the following mutexes protecting data related to per
      memcg kmem caches:
      
       - slab_mutex.  This one is held during the whole kmem cache creation
         and destruction paths.  We also take it when updating per root cache
         memcg_caches arrays (see memcg_update_all_caches).  As a result, taking
         it guarantees there will be no changes to any kmem cache (including per
         memcg).  Why do we need something else then?  The point is it is
         private to slab implementation and has some internal dependencies with
         other mutexes (get_online_cpus).  So we just don't want to rely upon it
         and prefer to introduce additional mutexes instead.
      
       - activate_kmem_mutex.  Initially it was added to synchronize
         initializing kmem limit (memcg_activate_kmem).  However, since we can
         grow per root cache memcg_caches arrays only on kmem limit
         initialization (see memcg_update_all_caches), we also employ it to
         protect against memcg_caches arrays relocation (e.g.  see
         __kmem_cache_destroy_memcg_children).
      
       - We have a convention not to take slab_mutex in memcontrol.c, but we
         want to walk over per memcg memcg_slab_caches lists there (e.g.  for
         destroying all memcg caches on offline).  So we have per memcg
         slab_caches_mutex's protecting those lists.
      
      The mutexes are taken in the following order:
      
         activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex
      
      Such a syncrhonization scheme has a number of flaws, for instance:
      
       - We can't call kmem_cache_{destroy,shrink} while walking over a
         memcg::memcg_slab_caches list due to locking order.  As a result, in
         mem_cgroup_destroy_all_caches we schedule the
         memcg_cache_params::destroy work shrinking and destroying the cache.
      
       - We don't have a mutex to synchronize per memcg caches destruction
         between memcg offline (mem_cgroup_destroy_all_caches) and root cache
         destruction (__kmem_cache_destroy_memcg_children).  Currently we just
         don't bother about it.
      
      This patch simplifies it by substituting per memcg slab_caches_mutex's
      with the global memcg_slab_mutex.  It will be held whenever a new per
      memcg cache is created or destroyed, so it protects per root cache
      memcg_caches arrays and per memcg memcg_slab_caches lists.  The locking
      order is following:
      
         activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex
      
      This allows us to call kmem_cache_{create,shrink,destroy} under the
      memcg_slab_mutex.  As a result, we don't need memcg_cache_params::destroy
      work any more - we can simply destroy caches while iterating over a per
      memcg slab caches list.
      
      Also using the global mutex simplifies synchronization between concurrent
      per memcg caches creation/destruction, e.g.  mem_cgroup_destroy_all_caches
      vs __kmem_cache_destroy_memcg_children.
      
      The downside of this is that we substitute per-memcg slab_caches_mutex's
      with a hummer-like global mutex, but since we already take either the
      slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it
      shouldn't hurt concurrency a lot.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Glauber Costa <glommer@gmail.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bd673145
    • V
      memcg, slab: merge memcg_{bind,release}_pages to memcg_{un}charge_slab · c67a8a68
      Vladimir Davydov 提交于
      Currently we have two pairs of kmemcg-related functions that are called on
      slab alloc/free.  The first is memcg_{bind,release}_pages that count the
      total number of pages allocated on a kmem cache.  The second is
      memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource
      counter.  Let's just merge them to keep the code clean.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Glauber Costa <glommer@gmail.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c67a8a68
    • V
      memcg, slab: do not schedule cache destruction when last page goes away · 1e32e77f
      Vladimir Davydov 提交于
      This patchset is a part of preparations for kmemcg re-parenting.  It
      targets at simplifying kmemcg work-flows and synchronization.
      
      First, it removes async per memcg cache destruction (see patches 1, 2).
      Now caches are only destroyed on memcg offline.  That means the caches
      that are not empty on memcg offline will be leaked.  However, they are
      already leaked, because memcg_cache_params::nr_pages normally never drops
      to 0 so the destruction work is never scheduled except kmem_cache_shrink
      is called explicitly.  In the future I'm planning reaping such dead caches
      on vmpressure or periodically.
      
      Second, it substitutes per memcg slab_caches_mutex's with the global
      memcg_slab_mutex, which should be taken during the whole per memcg cache
      creation/destruction path before the slab_mutex (see patch 3).  This
      greatly simplifies synchronization among various per memcg cache
      creation/destruction paths.
      
      I'm still not quite sure about the end picture, in particular I don't know
      whether we should reap dead memcgs' kmem caches periodically or try to
      merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for
      more details), but whichever way we choose, this set looks like a
      reasonable change to me, because it greatly simplifies kmemcg work-flows
      and eases further development.
      
      This patch (of 3):
      
      After a memcg is offlined, we mark its kmem caches that cannot be deleted
      right now due to pending objects as dead by setting the
      memcg_cache_params::dead flag, so that memcg_release_pages will schedule
      cache destruction (memcg_cache_params::destroy) as soon as the last slab
      of the cache is freed (memcg_cache_params::nr_pages drops to zero).
      
      I guess the idea was to destroy the caches as soon as possible, i.e.
      immediately after freeing the last object.  However, it just doesn't work
      that way, because kmem caches always preserve some pages for the sake of
      performance, so that nr_pages never gets to zero unless the cache is
      shrunk explicitly using kmem_cache_shrink.  Of course, we could account
      the total number of objects on the cache or check if all the slabs
      allocated for the cache are empty on kmem_cache_free and schedule
      destruction if so, but that would be too costly.
      
      Thus we have a piece of code that works only when we explicitly call
      kmem_cache_shrink, but complicates the whole picture a lot.  Moreover,
      it's racy in fact.  For instance, kmem_cache_shrink may free the last slab
      and thus schedule cache destruction before it finishes checking that the
      cache is empty, which can lead to use-after-free.
      
      So I propose to remove this async cache destruction from
      memcg_release_pages, and check if the cache is empty explicitly after
      calling kmem_cache_shrink instead.  This will simplify things a lot w/o
      introducing any functional changes.
      
      And regarding dead memcg caches (i.e.  those that are left hanging around
      after memcg offline for they have objects), I suppose we should reap them
      either periodically or on vmpressure as Glauber suggested initially.  I'm
      going to implement this later.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Glauber Costa <glommer@gmail.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1e32e77f
    • M
      memcg: do not hang on OOM when killed by userspace OOM access to memory reserves · d8dc595c
      Michal Hocko 提交于
      Eric has reported that he can see task(s) stuck in memcg OOM handler
      regularly.  The only way out is to
      
      	echo 0 > $GROUP/memory.oom_control
      
      His usecase is:
      
      - Setup a hierarchy with memory and the freezer (disable kernel oom and
        have a process watch for oom).
      
      - In that memory cgroup add a process with one thread per cpu.
      
      - In one thread slowly allocate once per second I think it is 16M of ram
        and mlock and dirty it (just to force the pages into ram and stay
        there).
      
      - When oom is achieved loop:
        * attempt to freeze all of the tasks.
        * if frozen send every task SIGKILL, unfreeze, remove the directory in
          cgroupfs.
      
      Eric has then pinpointed the issue to be memcg specific.
      
      All tasks are sitting on the memcg_oom_waitq when memcg oom is disabled.
      Those that have received fatal signal will bypass the charge and should
      continue on their way out.  The tricky part is that the exit path might
      trigger a page fault (e.g.  exit_robust_list), thus the memcg charge,
      while its memcg is still under OOM because nobody has released any charges
      yet.
      
      Unlike with the in-kernel OOM handler the exiting task doesn't get
      TIF_MEMDIE set so it doesn't shortcut further charges of the killed task
      and falls to the memcg OOM again without any way out of it as there are no
      fatal signals pending anymore.
      
      This patch fixes the issue by checking PF_EXITING early in
      mem_cgroup_try_charge and bypass the charge same as if it had fatal
      signal pending or TIF_MEMDIE set.
      
      Normally exiting tasks (aka not killed) will bypass the charge now but
      this should be OK as the task is leaving and will release memory and
      increasing the memory pressure just to release it in a moment seems
      dubious wasting of cycles.  Besides that charges after exit_signals should
      be rare.
      
      I am bringing this patch again (rebased on the current mmotm tree). I
      hope we can move forward finally. If there is still an opposition then
      I would really appreciate a concurrent approach so that we can discuss
      alternatives.
      
      http://comments.gmane.org/gmane.linux.kernel.stable/77650 is a reference
      to the followup discussion when the patch has been dropped from the mmotm
      last time.
      Reported-by: NEric W. Biederman <ebiederm@xmission.com>
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d8dc595c
    • V
      memcg: un-export __memcg_kmem_get_cache · e8d9df3a
      Vladimir Davydov 提交于
      It is only used in slab and should not be used anywhere else so there is
      no need in exporting it.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e8d9df3a
    • J
      mm: memcontrol: remove hierarchy restrictions for swappiness and oom_control · 3dae7fec
      Johannes Weiner 提交于
      Per-memcg swappiness and oom killing can currently not be tweaked on a
      memcg that is part of a hierarchy, but not the root of that hierarchy.
      Users have complained that they can't configure this when they turned on
      hierarchy mode.  In fact, with hierarchy mode becoming the default, this
      restriction disables the tunables entirely.
      
      But there is no good reason for this restriction.  The settings for
      swappiness and OOM killing are taken from whatever memcg whose limit
      triggered reclaim and OOM invocation, regardless of its position in the
      hierarchy tree.
      
      Allow setting swappiness on any group.  The knob on the root memcg
      already reads the global VM swappiness, make it writable as well.
      
      Allow disabling the OOM killer on any non-root memcg.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3dae7fec
    • V
      mm: get rid of __GFP_KMEMCG · 52383431
      Vladimir Davydov 提交于
      Currently to allocate a page that should be charged to kmemcg (e.g.
      threadinfo), we pass __GFP_KMEMCG flag to the page allocator.  The page
      allocated is then to be freed by free_memcg_kmem_pages.  Apart from
      looking asymmetrical, this also requires intrusion to the general
      allocation path.  So let's introduce separate functions that will
      alloc/free pages charged to kmemcg.
      
      The new functions are called alloc_kmem_pages and free_kmem_pages.  They
      should be used when the caller actually would like to use kmalloc, but
      has to fall back to the page allocator for the allocation is large.
      They only differ from alloc_pages and free_pages in that besides
      allocating or freeing pages they also charge them to the kmem resource
      counter of the current memory cgroup.
      
      [sfr@canb.auug.org.au: export kmalloc_order() to modules]
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NGreg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Glauber Costa <glommer@gmail.com>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Cc: Pekka Enberg <penberg@kernel.org>
      Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      52383431
    • V
      sl[au]b: charge slabs to kmemcg explicitly · 5dfb4175
      Vladimir Davydov 提交于
      We have only a few places where we actually want to charge kmem so
      instead of intruding into the general page allocation path with
      __GFP_KMEMCG it's better to explictly charge kmem there.  All kmem
      charges will be easier to follow that way.
      
      This is a step towards removing __GFP_KMEMCG.  It removes __GFP_KMEMCG
      from memcg caches' allocflags.  Instead it makes slab allocation path
      call memcg_charge_kmem directly getting memcg to charge from the cache's
      memcg params.
      
      This also eliminates any possibility of misaccounting an allocation
      going from one memcg's cache to another memcg, because now we always
      charge slabs against the memcg the cache belongs to.  That's why this
      patch removes the big comment to memcg_kmem_get_cache.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NGreg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Glauber Costa <glommer@gmail.com>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Cc: Pekka Enberg <penberg@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5dfb4175
  2. 24 5月, 2014 1 次提交
    • M
      memcg: fix swapcache charge from kernel thread context · 6f6acb00
      Michal Hocko 提交于
      Commit 284f39af ("mm: memcg: push !mm handling out to page cache
      charge function") explicitly checks for page cache charges without any
      mm context (from kernel thread context[1]).
      
      This seemed to be the only possible case where memory could be charged
      without mm context so commit 03583f1a ("memcg: remove unnecessary
      !mm check from try_get_mem_cgroup_from_mm()") removed the mm check from
      get_mem_cgroup_from_mm().  This however caused another NULL ptr
      dereference during early boot when loopback kernel thread splices to
      tmpfs as reported by Stephan Kulow:
      
        BUG: unable to handle kernel NULL pointer dereference at 0000000000000360
        IP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60
        Oops: 0000 [#1] SMP
        Modules linked in: btrfs dm_multipath dm_mod scsi_dh multipath raid10 raid456 async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod parport_pc parport nls_utf8 isofs usb_storage iscsi_ibft iscsi_boot_sysfs arc4 ecb fan thermal nfs lockd fscache nls_iso8859_1 nls_cp437 sg st hid_generic usbhid af_packet sunrpc sr_mod cdrom ata_generic uhci_hcd virtio_net virtio_blk ehci_hcd usbcore ata_piix floppy processor button usb_common virtio_pci virtio_ring virtio edd squashfs loop ppa]
        CPU: 0 PID: 97 Comm: loop1 Not tainted 3.15.0-rc5-5-default #1
        Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
        Call Trace:
          __mem_cgroup_try_charge_swapin+0x40/0xe0
          mem_cgroup_charge_file+0x8b/0xd0
          shmem_getpage_gfp+0x66b/0x7b0
          shmem_file_splice_read+0x18f/0x430
          splice_direct_to_actor+0xa2/0x1c0
          do_lo_receive+0x5a/0x60 [loop]
          loop_thread+0x298/0x720 [loop]
          kthread+0xc6/0xe0
          ret_from_fork+0x7c/0xb0
      
      Also Branimir Maksimovic reported the following oops which is tiggered
      for the swapcache charge path from the accounting code for kernel threads:
      
        CPU: 1 PID: 160 Comm: kworker/u8:5 Tainted: P           OE 3.15.0-rc5-core2-custom #159
        Hardware name: System manufacturer System Product Name/MAXIMUSV GENE, BIOS 1903 08/19/2013
        task: ffff880404e349b0 ti: ffff88040486a000 task.ti: ffff88040486a000
        RIP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60
        Call Trace:
          __mem_cgroup_try_charge_swapin+0x45/0xf0
          mem_cgroup_charge_file+0x9c/0xe0
          shmem_getpage_gfp+0x62c/0x770
          shmem_write_begin+0x38/0x40
          generic_perform_write+0xc5/0x1c0
          __generic_file_aio_write+0x1d1/0x3f0
          generic_file_aio_write+0x4f/0xc0
          do_sync_write+0x5a/0x90
          do_acct_process+0x4b1/0x550
          acct_process+0x6d/0xa0
          do_exit+0x827/0xa70
          kthread+0xc3/0xf0
      
      This patch fixes the issue by reintroducing mm check into
      get_mem_cgroup_from_mm.  We could do the same trick in
      __mem_cgroup_try_charge_swapin as we do for the regular page cache path
      but it is not worth troubles.  The check is not that expensive and it is
      better to have get_mem_cgroup_from_mm more robust.
      
      [1] - http://marc.info/?l=linux-mm&m=139463617808941&w=2
      
      Fixes: 03583f1a ("memcg: remove unnecessary !mm check from try_get_mem_cgroup_from_mm()")
      Reported-and-tested-by: NStephan Kulow <coolo@suse.com>
      Reported-by: NBranimir Maksimovic <branimir.maksimovic@gmail.com>
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6f6acb00
  3. 07 5月, 2014 1 次提交
    • J
      mm: filemap: update find_get_pages_tag() to deal with shadow entries · 139b6a6f
      Johannes Weiner 提交于
      Dave Jones reports the following crash when find_get_pages_tag() runs
      into an exceptional entry:
      
        kernel BUG at mm/filemap.c:1347!
        RIP: find_get_pages_tag+0x1cb/0x220
        Call Trace:
          find_get_pages_tag+0x36/0x220
          pagevec_lookup_tag+0x21/0x30
          filemap_fdatawait_range+0xbe/0x1e0
          filemap_fdatawait+0x27/0x30
          sync_inodes_sb+0x204/0x2a0
          sync_inodes_one_sb+0x19/0x20
          iterate_supers+0xb2/0x110
          sys_sync+0x44/0xb0
          ia32_do_call+0x13/0x13
      
        1343                         /*
        1344                          * This function is never used on a shmem/tmpfs
        1345                          * mapping, so a swap entry won't be found here.
        1346                          */
        1347                         BUG();
      
      After commit 0cd6144a ("mm + fs: prepare for non-page entries in
      page cache radix trees") this comment and BUG() are out of date because
      exceptional entries can now appear in all mappings - as shadows of
      recently evicted pages.
      
      However, as Hugh Dickins notes,
      
        "it is truly surprising for a PAGECACHE_TAG_WRITEBACK (and probably
         any other PAGECACHE_TAG_*) to appear on an exceptional entry.
      
         I expect it comes down to an occasional race in RCU lookup of the
         radix_tree: lacking absolute synchronization, we might sometimes
         catch an exceptional entry, with the tag which really belongs with
         the unexceptional entry which was there an instant before."
      
      And indeed, not only is the tree walk lockless, the tags are also read
      in chunks, one radix tree node at a time.  There is plenty of time for
      page reclaim to swoop in and replace a page that was already looked up
      as tagged with a shadow entry.
      
      Remove the BUG() and update the comment.  While reviewing all other
      lookup sites for whether they properly deal with shadow entries of
      evicted pages, update all the comments and fix memcg file charge moving
      to not miss shmem/tmpfs swapcache pages.
      
      Fixes: 0cd6144a ("mm + fs: prepare for non-page entries in page cache radix trees")
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reported-by: NDave Jones <davej@redhat.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      139b6a6f
  4. 08 4月, 2014 13 次提交
  5. 19 3月, 2014 1 次提交
    • T
      cgroup: drop const from @buffer of cftype->write_string() · 4d3bb511
      Tejun Heo 提交于
      cftype->write_string() just passes on the writeable buffer from kernfs
      and there's no reason to add const restriction on the buffer.  The
      only thing const achieves is unnecessarily complicating parsing of the
      buffer.  Drop const from @buffer.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
      Cc: Daniel Borkmann <dborkman@redhat.com>
      Cc: Michal Hocko <mhocko@suse.cz>                                           
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      4d3bb511
  6. 04 3月, 2014 2 次提交
    • F
      memcg: reparent charges of children before processing parent · 4fb1a86f
      Filipe Brandenburger 提交于
      Sometimes the cleanup after memcg hierarchy testing gets stuck in
      mem_cgroup_reparent_charges(), unable to bring non-kmem usage down to 0.
      
      There may turn out to be several causes, but a major cause is this: the
      workitem to offline parent can get run before workitem to offline child;
      parent's mem_cgroup_reparent_charges() circles around waiting for the
      child's pages to be reparented to its lrus, but it's holding
      cgroup_mutex which prevents the child from reaching its
      mem_cgroup_reparent_charges().
      
      Further testing showed that an ordered workqueue for cgroup_destroy_wq
      is not always good enough: percpu_ref_kill_and_confirm's call_rcu_sched
      stage on the way can mess up the order before reaching the workqueue.
      
      Instead, when offlining a memcg, call mem_cgroup_reparent_charges() on
      all its children (and grandchildren, in the correct order) to have their
      charges reparented first.
      
      Fixes: e5fca243 ("cgroup: use a dedicated workqueue for cgroup destruction")
      Signed-off-by: NFilipe Brandenburger <filbranden@google.com>
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Reviewed-by: NTejun Heo <tj@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: <stable@vger.kernel.org>	[v3.10+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4fb1a86f
    • H
      memcg: fix endless loop in __mem_cgroup_iter_next() · ce48225f
      Hugh Dickins 提交于
      Commit 0eef6156 ("memcg: fix css reference leak and endless loop in
      mem_cgroup_iter") got the interaction with the commit a few before it
      d8ad3055 ("mm/memcg: iteration skip memcgs not yet fully
      initialized") slightly wrong, and we didn't notice at the time.
      
      It's elusive, and harder to get than the original, but for a couple of
      days before rc1, I several times saw a endless loop similar to that
      supposedly being fixed.
      
      This time it was a tighter loop in __mem_cgroup_iter_next(): because we
      can get here when our root has already been offlined, and the ordering
      of conditions was such that we then just cycled around forever.
      
      Fixes: 0eef6156 ("memcg: fix css reference leak and endless loop in mem_cgroup_iter").
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: <stable@vger.kernel.org>	[3.12+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ce48225f
  7. 26 2月, 2014 1 次提交
    • M
      memcg: change oom_info_lock to mutex · 08088cb9
      Michal Hocko 提交于
      Kirill has reported the following:
      
        Task in /test killed as a result of limit of /test
        memory: usage 10240kB, limit 10240kB, failcnt 51
        memory+swap: usage 10240kB, limit 10240kB, failcnt 0
        kmem: usage 0kB, limit 18014398509481983kB, failcnt 0
        Memory cgroup stats for /test:
      
        BUG: sleeping function called from invalid context at kernel/cpu.c:68
        in_atomic(): 1, irqs_disabled(): 0, pid: 66, name: memcg_test
        2 locks held by memcg_test/66:
         #0:  (memcg_oom_lock#2){+.+...}, at: [<ffffffff81131014>] pagefault_out_of_memory+0x14/0x90
         #1:  (oom_info_lock){+.+...}, at: [<ffffffff81197b2a>] mem_cgroup_print_oom_info+0x2a/0x390
        CPU: 2 PID: 66 Comm: memcg_test Not tainted 3.14.0-rc1-dirty #745
        Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Bochs 01/01/2011
        Call Trace:
          __might_sleep+0x16a/0x210
          get_online_cpus+0x1c/0x60
          mem_cgroup_read_stat+0x27/0xb0
          mem_cgroup_print_oom_info+0x260/0x390
          dump_header+0x88/0x251
          ? trace_hardirqs_on+0xd/0x10
          oom_kill_process+0x258/0x3d0
          mem_cgroup_oom_synchronize+0x656/0x6c0
          ? mem_cgroup_charge_common+0xd0/0xd0
          pagefault_out_of_memory+0x14/0x90
          mm_fault_error+0x91/0x189
          __do_page_fault+0x48e/0x580
          do_page_fault+0xe/0x10
          page_fault+0x22/0x30
      
      which complains that mem_cgroup_read_stat cannot be called from an atomic
      context but mem_cgroup_print_oom_info takes a spinlock.  Change
      oom_info_lock to a mutex.
      
      This was introduced by 947b3dd1 ("memcg, oom: lock
      mem_cgroup_print_oom_info").
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reported-by: N"Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      08088cb9
  8. 13 2月, 2014 1 次提交
    • T
      cgroup: implement cgroup_has_tasks() and unexport cgroup_task_count() · 07bc356e
      Tejun Heo 提交于
      cgroup_task_count() read-locks css_set_lock and walks all tasks to
      count them and then returns the result.  The only thing all the users
      want is determining whether the cgroup is empty or not.  This patch
      implements cgroup_has_tasks() which tests whether cgroup->cset_links
      is empty, replaces all cgroup_task_count() usages and unexports it.
      
      Note that the test isn't synchronized.  This is the same as before.
      The test has always been racy.
      
      This will help planned css_set locking update.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      07bc356e
  9. 12 2月, 2014 2 次提交
    • T
      cgroup: remove cgroup->name · e61734c5
      Tejun Heo 提交于
      cgroup->name handling became quite complicated over time involving
      dedicated struct cgroup_name for RCU protection.  Now that cgroup is
      on kernfs, we can drop all of it and simply use kernfs_name/path() and
      friends.  Replace cgroup->name and all related code with kernfs
      name/path constructs.
      
      * Reimplement cgroup_name() and cgroup_path() as thin wrappers on top
        of kernfs counterparts, which involves semantic changes.
        pr_cont_cgroup_name() and pr_cont_cgroup_path() added.
      
      * cgroup->name handling dropped from cgroup_rename().
      
      * All users of cgroup_name/path() updated to the new semantics.  Users
        which were formatting the string just to printk them are converted
        to use pr_cont_cgroup_name/path() instead, which simplifies things
        quite a bit.  As cgroup_name() no longer requires RCU read lock
        around it, RCU lockings which were protecting only cgroup_name() are
        removed.
      
      v2: Comment above oom_info_lock updated as suggested by Michal.
      
      v3: dummy_top doesn't have a kn associated and
          pr_cont_cgroup_name/path() ended up calling the matching kernfs
          functions with NULL kn leading to oops.  Test for NULL kn and
          print "/" if so.  This issue was reported by Fengguang Wu.
      
      v4: Rebased on top of 0ab02ca8 ("cgroup: protect modifications to
          cgroup_idr with cgroup_mutex").
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Fengguang Wu <fengguang.wu@intel.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      e61734c5
    • T
      cgroup: improve css_from_dir() into css_tryget_from_dir() · 5a17f543
      Tejun Heo 提交于
      css_from_dir() returns the matching css (cgroup_subsys_state) given a
      dentry and subsystem.  The function doesn't pin the css before
      returning and requires the caller to be holding RCU read lock or
      cgroup_mutex and handling pinning on the caller side.
      
      Given that users of the function are likely to want to pin the
      returned css (both existing users do) and that getting and putting
      css's are very cheap, there's no reason for the interface to be tricky
      like this.
      
      Rename css_from_dir() to css_tryget_from_dir() and make it try to pin
      the found css and return it only if pinning succeeded.  The callers
      are updated so that they no longer do RCU locking and pinning around
      the function and just use the returned css.
      
      This will also ease converting cgroup to kernfs.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      5a17f543
  10. 08 2月, 2014 1 次提交
    • T
      cgroup: clean up cgroup_subsys names and initialization · 073219e9
      Tejun Heo 提交于
      cgroup_subsys is a bit messier than it needs to be.
      
      * The name of a subsys can be different from its internal identifier
        defined in cgroup_subsys.h.  Most subsystems use the matching name
        but three - cpu, memory and perf_event - use different ones.
      
      * cgroup_subsys_id enums are postfixed with _subsys_id and each
        cgroup_subsys is postfixed with _subsys.  cgroup.h is widely
        included throughout various subsystems, it doesn't and shouldn't
        have claim on such generic names which don't have any qualifier
        indicating that they belong to cgroup.
      
      * cgroup_subsys->subsys_id should always equal the matching
        cgroup_subsys_id enum; however, we require each controller to
        initialize it and then BUG if they don't match, which is a bit
        silly.
      
      This patch cleans up cgroup_subsys names and initialization by doing
      the followings.
      
      * cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
        cgroup_subsys with _cgrp_subsys.
      
      * With the above, renaming subsys identifiers to match the userland
        visible names doesn't cause any naming conflicts.  All non-matching
        identifiers are renamed to match the official names.
      
        cpu_cgroup -> cpu
        mem_cgroup -> memory
        perf -> perf_event
      
      * controllers no longer need to initialize ->subsys_id and ->name.
        They're generated in cgroup core and set automatically during boot.
      
      * Redundant cgroup_subsys declarations removed.
      
      * While updating BUG_ON()s in cgroup_init_early(), convert them to
        WARN()s.  BUGging that early during boot is stupid - the kernel
        can't print anything, even through serial console and the trap
        handler doesn't even link stack frame properly for back-tracing.
      
      This patch doesn't introduce any behavior changes.
      
      v2: Rebased on top of fe1217c4 ("net: net_cls: move cgroupfs
          classid handling into core").
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NNeil Horman <nhorman@tuxdriver.com>
      Acked-by: N"David S. Miller" <davem@davemloft.net>
      Acked-by: N"Rafael J. Wysocki" <rjw@rjwysocki.net>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Acked-by: NAristeu Rozanski <aris@redhat.com>
      Acked-by: NIngo Molnar <mingo@redhat.com>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Serge E. Hallyn <serue@us.ibm.com>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      Cc: Thomas Graf <tgraf@suug.ch>
      073219e9
  11. 31 1月, 2014 1 次提交
  12. 24 1月, 2014 4 次提交
    • V
      memcg: remove unused code from kmem_cache_destroy_work_func · 0d8a4a37
      Vladimir Davydov 提交于
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0d8a4a37
    • M
      memcg: fix css reference leak and endless loop in mem_cgroup_iter · 0eef6156
      Michal Hocko 提交于
      Commit 19f39402 ("memcg: simplify mem_cgroup_iter") has reorganized
      mem_cgroup_iter code in order to simplify it.  A part of that change was
      dropping an optimization which didn't call css_tryget on the root of the
      walked tree.  The patch however didn't change the css_put part in
      mem_cgroup_iter which excludes root.
      
      This wasn't an issue at the time because __mem_cgroup_iter_next bailed
      out for root early without taking a reference as cgroup iterators
      (css_next_descendant_pre) didn't visit root themselves.
      
      Nevertheless cgroup iterators have been reworked to visit root by commit
      bd8815a6 ("cgroup: make css_for_each_descendant() and friends
      include the origin css in the iteration") when the root bypass have been
      dropped in __mem_cgroup_iter_next.  This means that css_put is not
      called for root and so css along with mem_cgroup and other cgroup
      internal object tied by css lifetime are never freed.
      
      Fix the issue by reintroducing root check in __mem_cgroup_iter_next and
      do not take css reference for it.
      
      This reference counting magic protects us also from another issue, an
      endless loop reported by Hugh Dickins when reclaim races with root
      removal and css_tryget called by iterator internally would fail.  There
      would be no other nodes to visit so __mem_cgroup_iter_next would return
      NULL and mem_cgroup_iter would interpret it as "start looping from root
      again" and so mem_cgroup_iter would loop forever internally.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reported-by: NHugh Dickins <hughd@google.com>
      Tested-by: NHugh Dickins <hughd@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: <stable@vger.kernel.org>	[3.12+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0eef6156
    • M
      memcg: fix endless loop caused by mem_cgroup_iter · ecc736fc
      Michal Hocko 提交于
      Hugh has reported an endless loop when the hardlimit reclaim sees the
      same group all the time.  This might happen when the reclaim races with
      the memcg removal.
      
      shrink_zone
                                                      [rmdir root]
        mem_cgroup_iter(root, NULL, reclaim)
          // prev = NULL
          rcu_read_lock()
          mem_cgroup_iter_load
            last_visited = iter->last_visited   // gets root || NULL
            css_tryget(last_visited)            // failed
            last_visited = NULL                 [1]
          memcg = root = __mem_cgroup_iter_next(root, NULL)
          mem_cgroup_iter_update
            iter->last_visited = root;
          reclaim->generation = iter->generation
      
       mem_cgroup_iter(root, root, reclaim)
         // prev = root
         rcu_read_lock
          mem_cgroup_iter_load
            last_visited = iter->last_visited   // gets root
            css_tryget(last_visited)            // failed
          [1]
      
      The issue seemed to be introduced by commit 5f578161 ("memcg: relax
      memcg iter caching") which has replaced unconditional css_get/css_put by
      css_tryget/css_put for the cached iterator.
      
      This patch fixes the issue by skipping css_tryget on the root of the
      tree walk in mem_cgroup_iter_load and symmetrically doesn't release it
      in mem_cgroup_iter_update.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reported-by: NHugh Dickins <hughd@google.com>
      Tested-by: NHugh Dickins <hughd@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: <stable@vger.kernel.org>	[3.10+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ecc736fc
    • D
      mm, oom: prefer thread group leaders for display purposes · d49ad935
      David Rientjes 提交于
      When two threads have the same badness score, it's preferable to kill
      the thread group leader so that the actual process name is printed to
      the kernel log rather than the thread group name which may be shared
      amongst several processes.
      
      This was the behavior when select_bad_process() used to do
      for_each_process(), but it now iterates threads instead and leads to
      ambiguity.
      Signed-off-by: NDavid Rientjes <rientjes@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Greg Thelen <gthelen@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d49ad935