- 03 12月, 2016 1 次提交
-
-
由 David Ahern 提交于
Code move and rename only; no functional change intended. Signed-off-by: NDavid Ahern <dsa@cumulusnetworks.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 11月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Allow for checking the owner_prog_type of a program array map. In some cases bpf(2) can return -EINVAL /after/ the verifier passed and did all the rewrites of the bpf program. The reason that lets us fail at this late stage is that program array maps are incompatible. Allow users to inspect this earlier after they got the map fd through BPF_OBJ_GET command. tc will get support for this. Also, display how much we charged the map with regards to RLIMIT_MEMLOCK. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 11月, 2016 1 次提交
-
-
由 Daniel Mack 提交于
Extend the bpf(2) syscall by two new commands, BPF_PROG_ATTACH and BPF_PROG_DETACH which allow attaching and detaching eBPF programs to a target. On the API level, the target could be anything that has an fd in userspace, hence the name of the field in union bpf_attr is called 'target_fd'. When called with BPF_ATTACH_TYPE_CGROUP_INET_{E,IN}GRESS, the target is expected to be a valid file descriptor of a cgroup v2 directory which has the bpf controller enabled. These are the only use-cases implemented by this patch at this point, but more can be added. If a program of the given type already exists in the given cgroup, the program is swapped automically, so userspace does not have to drop an existing program first before installing a new one, which would otherwise leave a gap in which no program is attached. For more information on the propagation logic to subcgroups, please refer to the bpf cgroup controller implementation. The API is guarded by CAP_NET_ADMIN. Signed-off-by: NDaniel Mack <daniel@zonque.org> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 11月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
In mlx5e_create_rq(), when creating a new queue, we call bpf_prog_add() but without checking the return value. bpf_prog_add() can fail since 92117d84 ("bpf: fix refcnt overflow"), so we really must check it. Take the reference right when we assign it to the rq from priv->xdp_prog, and just drop the reference on error path. Destruction in mlx5e_destroy_rq() looks good, though. Fixes: 86994156 ("net/mlx5e: XDP fast RX drop bpf programs support") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NSaeed Mahameed <saeedm@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 11月, 2016 1 次提交
-
-
由 Martin KaFai Lau 提交于
Provide a LRU version of the existing BPF_MAP_TYPE_PERCPU_HASH Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 11月, 2016 1 次提交
-
-
由 Mickaël Salaün 提交于
Replace the custom u64_to_ptr() function with the u64_to_user_ptr() macro. Signed-off-by: NMickaël Salaün <mic@digikod.net> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 11月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Commit 67f8b1dc ("net/mlx4_en: Refactor the XDP forwarding rings scheme") added a bug in that the prog's reference count is not dropped in the error path when mlx4_en_try_alloc_resources() is failing from mlx4_xdp_set(). We previously took bpf_prog_add(prog, priv->rx_ring_num - 1), that we need to release again. Earlier in the call path, dev_change_xdp_fd() itself holds a reference to the prog as well (hence the '- 1' in the bpf_prog_add()), so a simple atomic_sub() is safe to use here. When an error is propagated, then bpf_prog_put() is called eventually from dev_change_xdp_fd() Fixes: 67f8b1dc ("net/mlx4_en: Refactor the XDP forwarding rings scheme") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 11月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
In map_create(), we first find and create the map, then once that suceeded, we charge it to the user's RLIMIT_MEMLOCK, and then fetch a new anon fd through anon_inode_getfd(). The problem is, once the latter fails f.e. due to RLIMIT_NOFILE limit, then we only destruct the map via map->ops->map_free(), but without uncharging the previously locked memory first. That means that the user_struct allocation is leaked as well as the accounted RLIMIT_MEMLOCK memory not released. Make the label names in the fix consistent with bpf_prog_load(). Fixes: aaac3ba9 ("bpf: charge user for creation of BPF maps and programs") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 7月, 2016 1 次提交
-
-
由 Brenden Blanco 提交于
A subsystem may need to store many copies of a bpf program, each deserving its own reference. Rather than requiring the caller to loop one by one (with possible mid-loop failure), add a bulk bpf_prog_add api. Signed-off-by: NBrenden Blanco <bblanco@plumgrid.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 7月, 2016 3 次提交
-
-
由 Martin KaFai Lau 提交于
Add a BPF_MAP_TYPE_CGROUP_ARRAY and its bpf_map_ops's implementations. To update an element, the caller is expected to obtain a cgroup2 backed fd by open(cgroup2_dir) and then update the array with that fd. Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Cc: Alexei Starovoitov <ast@fb.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Tejun Heo <tj@kernel.org> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Since bpf_prog_get() and program type check is used in a couple of places, refactor this into a small helper function that we can make use of. Since the non RO prog->aux part is not used in performance critical paths and a program destruction via RCU is rather very unlikley when doing the put, we shouldn't have an issue just doing the bpf_prog_get() + prog->type != type check, but actually not taking the ref at all (due to being in fdget() / fdput() section of the bpf fd) is even cleaner and makes the diff smaller as well, so just go for that. Callsites are changed to make use of the new helper where possible. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Jann Horn reported following analysis that could potentially result in a very hard to trigger (if not impossible) UAF race, to quote his event timeline: - Set up a process with threads T1, T2 and T3 - Let T1 set up a socket filter F1 that invokes another filter F2 through a BPF map [tail call] - Let T1 trigger the socket filter via a unix domain socket write, don't wait for completion - Let T2 call PERF_EVENT_IOC_SET_BPF with F2, don't wait for completion - Now T2 should be behind bpf_prog_get(), but before bpf_prog_put() - Let T3 close the file descriptor for F2, dropping the reference count of F2 to 2 - At this point, T1 should have looked up F2 from the map, but not finished executing it - Let T3 remove F2 from the BPF map, dropping the reference count of F2 to 1 - Now T2 should call bpf_prog_put() (wrong BPF program type), dropping the reference count of F2 to 0 and scheduling bpf_prog_free_deferred() via schedule_work() - At this point, the BPF program could be freed - BPF execution is still running in a freed BPF program While at PERF_EVENT_IOC_SET_BPF time it's only guaranteed that the perf event fd we're doing the syscall on doesn't disappear from underneath us for whole syscall time, it may not be the case for the bpf fd used as an argument only after we did the put. It needs to be a valid fd pointing to a BPF program at the time of the call to make the bpf_prog_get() and while T2 gets preempted, F2 must have dropped reference to 1 on the other CPU. The fput() from the close() in T3 should also add additionally delay to the reference drop via exit_task_work() when bpf_prog_release() gets called as well as scheduling bpf_prog_free_deferred(). That said, it makes nevertheless sense to move the BPF prog destruction generally after RCU grace period to guarantee that such scenario above, but also others as recently fixed in ceb56070 ("bpf, perf: delay release of BPF prog after grace period") with regards to tail calls won't happen. Integrating bpf_prog_free_deferred() directly into the RCU callback is not allowed since the invocation might happen from either softirq or process context, so we're not permitted to block. Reviewing all bpf_prog_put() invocations from eBPF side (note, cBPF -> eBPF progs don't use this for their destruction) with call_rcu() look good to me. Since we don't know whether at the time of attaching the program, we're already part of a tail call map, we need to use RCU variant. However, due to this, there won't be severely more stress on the RCU callback queue: situations with above bpf_prog_get() and bpf_prog_put() combo in practice normally won't lead to releases, but even if they would, enough effort/ cycles have to be put into loading a BPF program into the kernel already. Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 6月, 2016 2 次提交
-
-
由 Daniel Borkmann 提交于
This patch extends map_fd_get_ptr() callback that is used by fd array maps, so that struct file pointer from the related map can be passed in. It's safe to remove map_update_elem() callback for the two maps since this is only allowed from syscall side, but not from eBPF programs for these two map types. Like in per-cpu map case, bpf_fd_array_map_update_elem() needs to be called directly here due to the extra argument. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Add a release callback for maps that is invoked when the last reference to its struct file is gone and the struct file about to be released by vfs. The handler will be used by fd array maps. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 5月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Since the blinding is strictly only called from inside eBPF JITs, we need to change signatures for bpf_int_jit_compile() and bpf_prog_select_runtime() first in order to prepare that the eBPF program we're dealing with can change underneath. Hence, for call sites, we need to return the latest prog. No functional change in this patch. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 4月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK, the malicious application may overflow 32-bit bpf program refcnt. It's also possible to overflow map refcnt on 1Tb system. Impose 32k hard limit which means that the same bpf program or map cannot be shared by more than 32k processes. Fixes: 1be7f75d ("bpf: enable non-root eBPF programs") Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 3月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Add map_flags attribute to bpf_map_show_fdinfo(), so that tools like tc can check for them when loading objects from a pinned entry, e.g. if user intent wrt allocation (BPF_F_NO_PREALLOC) is different to the pinned object, it can bail out. Follow-up to 6c905981 ("bpf: pre-allocate hash map elements"), so that tc can still support this with v4.6. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 3月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
0-day bot reported build error: kernel/built-in.o: In function `map_lookup_elem': >> kernel/bpf/.tmp_syscall.o:(.text+0x329b3c): undefined reference to `bpf_stackmap_copy' when CONFIG_BPF_SYSCALL is set and CONFIG_PERF_EVENTS is not. Add weak definition to resolve it. This code path in map_lookup_elem() is never taken when CONFIG_PERF_EVENTS is not set. Fixes: 557c0c6e ("bpf: convert stackmap to pre-allocation") Reported-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 3月, 2016 3 次提交
-
-
由 Alexei Starovoitov 提交于
It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f6 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
If kprobe is placed on spin_unlock then calling kmalloc/kfree from bpf programs is not safe, since the following dead lock is possible: kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe-> bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock) and deadlocks. The following solutions were considered and some implemented, but eventually discarded - kmem_cache_create for every map - add recursion check to slow-path of slub - use reserved memory in bpf_map_update for in_irq or in preempt_disabled - kmalloc via irq_work At the end pre-allocation of all map elements turned out to be the simplest solution and since the user is charged upfront for all the memory, such pre-allocation doesn't affect the user space visible behavior. Since it's impossible to tell whether kprobe is triggered in a safe location from kmalloc point of view, use pre-allocation by default and introduce new BPF_F_NO_PREALLOC flag. While testing of per-cpu hash maps it was discovered that alloc_percpu(GFP_ATOMIC) has odd corner cases and often fails to allocate memory even when 90% of it is free. The pre-allocation of per-cpu hash elements solves this problem as well. Turned out that bpf_map_update() quickly followed by bpf_map_lookup()+bpf_map_delete() is very common pattern used in many of iovisor/bcc/tools, so there is additional benefit of pre-allocation, since such use cases are must faster. Since all hash map elements are now pre-allocated we can remove atomic increment of htab->count and save few more cycles. Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid large malloc/free done by users who don't have sufficient limits. Pre-allocation is done with vmalloc and alloc/free is done via percpu_freelist. Here are performance numbers for different pre-allocation algorithms that were implemented, but discarded in favor of percpu_freelist: 1 cpu: pcpu_ida 2.1M pcpu_ida nolock 2.3M bt 2.4M kmalloc 1.8M hlist+spinlock 2.3M pcpu_freelist 2.6M 4 cpu: pcpu_ida 1.5M pcpu_ida nolock 1.8M bt w/smp_align 1.7M bt no/smp_align 1.1M kmalloc 0.7M hlist+spinlock 0.2M pcpu_freelist 2.0M 8 cpu: pcpu_ida 0.7M bt w/smp_align 0.8M kmalloc 0.4M pcpu_freelist 1.5M 32 cpu: kmalloc 0.13M pcpu_freelist 0.49M pcpu_ida nolock is a modified percpu_ida algorithm without percpu_ida_cpu locks and without cross-cpu tag stealing. It's faster than existing percpu_ida, but not as fast as pcpu_freelist. bt is a variant of block/blk-mq-tag.c simlified and customized for bpf use case. bt w/smp_align is using cache line for every 'long' (similar to blk-mq-tag). bt no/smp_align allocates 'long' bitmasks continuously to save memory. It's comparable to percpu_ida and in some cases faster, but slower than percpu_freelist hlist+spinlock is the simplest free list with single spinlock. As expeceted it has very bad scaling in SMP. kmalloc is existing implementation which is still available via BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist, but saves memory, so in cases where map->max_entries can be large and number of map update/delete per second is low, it may make sense to use it. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
if kprobe is placed within update or delete hash map helpers that hold bucket spin lock and triggered bpf program is trying to grab the spinlock for the same bucket on the same cpu, it will deadlock. Fix it by extending existing recursion prevention mechanism. Note, map_lookup and other tracing helpers don't have this problem, since they don't hold any locks and don't modify global data. bpf_trace_printk has its own recursive check and ok as well. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
The functions bpf_map_lookup_elem(map, key, value) and bpf_map_update_elem(map, key, value, flags) need to get/set values from all-cpus for per-cpu hash and array maps, so that user space can aggregate/update them as necessary. Example of single counter aggregation in user space: unsigned int nr_cpus = sysconf(_SC_NPROCESSORS_CONF); long values[nr_cpus]; long value = 0; bpf_lookup_elem(fd, key, values); for (i = 0; i < nr_cpus; i++) value += values[i]; The user space must provide round_up(value_size, 8) * nr_cpus array to get/set values, since kernel will use 'long' copy of per-cpu values to try to copy good counters atomically. It's a best-effort, since bpf programs and user space are racing to access the same memory. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 12月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
For large map->value_size the user space can trigger memory allocation warnings like: WARNING: CPU: 2 PID: 11122 at mm/page_alloc.c:2989 __alloc_pages_nodemask+0x695/0x14e0() Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff82743b56>] dump_stack+0x68/0x92 lib/dump_stack.c:50 [<ffffffff81244ec9>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:460 [<ffffffff812450f9>] warn_slowpath_null+0x29/0x30 kernel/panic.c:493 [< inline >] __alloc_pages_slowpath mm/page_alloc.c:2989 [<ffffffff81554e95>] __alloc_pages_nodemask+0x695/0x14e0 mm/page_alloc.c:3235 [<ffffffff816188fe>] alloc_pages_current+0xee/0x340 mm/mempolicy.c:2055 [< inline >] alloc_pages include/linux/gfp.h:451 [<ffffffff81550706>] alloc_kmem_pages+0x16/0xf0 mm/page_alloc.c:3414 [<ffffffff815a1c89>] kmalloc_order+0x19/0x60 mm/slab_common.c:1007 [<ffffffff815a1cef>] kmalloc_order_trace+0x1f/0xa0 mm/slab_common.c:1018 [< inline >] kmalloc_large include/linux/slab.h:390 [<ffffffff81627784>] __kmalloc+0x234/0x250 mm/slub.c:3525 [< inline >] kmalloc include/linux/slab.h:463 [< inline >] map_update_elem kernel/bpf/syscall.c:288 [< inline >] SYSC_bpf kernel/bpf/syscall.c:744 To avoid never succeeding kmalloc with order >= MAX_ORDER check that elem->value_size and computed elem_size are within limits for both hash and array type maps. Also add __GFP_NOWARN to kmalloc(value_size | elem_size) to avoid OOM warnings. Note kmalloc(key_size) is highly unlikely to trigger OOM, since key_size <= 512, so keep those kmalloc-s as-is. Large value_size can cause integer overflows in elem_size and map.pages formulas, so check for that as well. Fixes: aaac3ba9 ("bpf: charge user for creation of BPF maps and programs") Reported-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 11月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently, when having map file descriptors pointing to program arrays, there's still the issue that we unconditionally flush program array contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens when such a file descriptor is released and is independent of the map's refcount. Having this flush independent of the refcount is for a reason: there can be arbitrary complex dependency chains among tail calls, also circular ones (direct or indirect, nesting limit determined during runtime), and we need to make sure that the map drops all references to eBPF programs it holds, so that the map's refcount can eventually drop to zero and initiate its freeing. Btw, a walk of the whole dependency graph would not be possible for various reasons, one being complexity and another one inconsistency, i.e. new programs can be added to parts of the graph at any time, so there's no guaranteed consistent state for the time of such a walk. Now, the program array pinning itself works, but the issue is that each derived file descriptor on close would nevertheless call unconditionally into bpf_fd_array_map_clear(). Instead, keep track of users and postpone this flush until the last reference to a user is dropped. As this only concerns a subset of references (f.e. a prog array could hold a program that itself has reference on the prog array holding it, etc), we need to track them separately. Short analysis on the refcounting: on map creation time usercnt will be one, so there's no change in behaviour for bpf_map_release(), if unpinned. If we already fail in map_create(), we are immediately freed, and no file descriptor has been made public yet. In bpf_obj_pin_user(), we need to probe for a possible map in bpf_fd_probe_obj() already with a usercnt reference, so before we drop the reference on the fd with fdput(). Therefore, if actual pinning fails, we need to drop that reference again in bpf_any_put(), otherwise we keep holding it. When last reference drops on the inode, the bpf_any_put() in bpf_evict_inode() will take care of dropping the usercnt again. In the bpf_obj_get_user() case, the bpf_any_get() will grab a reference on the usercnt, still at a time when we have the reference on the path. Should we later on fail to grab a new file descriptor, bpf_any_put() will drop it, otherwise we hold it until bpf_map_release() time. Joint work with Alexei. Fixes: b2197755 ("bpf: add support for persistent maps/progs") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 11月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Add a handler for show_fdinfo() to be used by the anon-inodes backend for eBPF maps, and dump the map specification there. Not only useful for admins, but also it provides a minimal way to compare specs from ELF vs pinned object. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 11月, 2015 4 次提交
-
-
由 Daniel Borkmann 提交于
This work adds support for "persistent" eBPF maps/programs. The term "persistent" is to be understood that maps/programs have a facility that lets them survive process termination. This is desired by various eBPF subsystem users. Just to name one example: tc classifier/action. Whenever tc parses the ELF object, extracts and loads maps/progs into the kernel, these file descriptors will be out of reach after the tc instance exits. So a subsequent tc invocation won't be able to access/relocate on this resource, and therefore maps cannot easily be shared, f.e. between the ingress and egress networking data path. The current workaround is that Unix domain sockets (UDS) need to be instrumented in order to pass the created eBPF map/program file descriptors to a third party management daemon through UDS' socket passing facility. This makes it a bit complicated to deploy shared eBPF maps or programs (programs f.e. for tail calls) among various processes. We've been brainstorming on how we could tackle this issue and various approches have been tried out so far, which can be read up further in the below reference. The architecture we eventually ended up with is a minimal file system that can hold map/prog objects. The file system is a per mount namespace singleton, and the default mount point is /sys/fs/bpf/. Any subsequent mounts within a given namespace will point to the same instance. The file system allows for creating a user-defined directory structure. The objects for maps/progs are created/fetched through bpf(2) with two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor along with a pathname is being passed to bpf(2) that in turn creates (we call it eBPF object pinning) the file system nodes. Only the pathname is being passed to bpf(2) for getting a new BPF file descriptor to an existing node. The user can use that to access maps and progs later on, through bpf(2). Removal of file system nodes is being managed through normal VFS functions such as unlink(2), etc. The file system code is kept to a very minimum and can be further extended later on. The next step I'm working on is to add dump eBPF map/prog commands to bpf(2), so that a specification from a given file descriptor can be retrieved. This can be used by things like CRIU but also applications can inspect the meta data after calling BPF_OBJ_GET. Big thanks also to Alexei and Hannes who significantly contributed in the design discussion that eventually let us end up with this architecture here. Reference: https://lkml.org/lkml/2015/10/15/925Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
We currently have duplicated cleanup code in bpf_prog_put() and bpf_prog_put_rcu() cleanup paths. Back then we decided that it was not worth it to make it a common helper called by both, but with the recent addition of resource charging, we could have avoided the fix in commit ac00737f ("bpf: Need to call bpf_prog_uncharge_memlock from bpf_prog_put") if we would have had only a single, common path. We can simplify it further by assigning aux->prog only once during allocation time. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Add a bpf_map_get() function that we're going to use later on and align/clean the remaining helpers a bit so that we have them a bit more consistent: - __bpf_map_get() and __bpf_prog_get() that both work on the fd struct, check whether the descriptor is eBPF and return the pointer to the map/prog stored in the private data. Also, we can return f.file->private_data directly, the function signature is enough of a documentation already. - bpf_map_get() and bpf_prog_get() that both work on u32 user fd, call their respective __bpf_map_get()/__bpf_prog_get() variants, and take a reference. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Since we're going to use anon_inode_getfd() invocations in more than just the current places, make a helper function for both, so that we only need to pass a map/prog pointer to the helper itself in order to get a fd. The new helpers are called bpf_map_new_fd() and bpf_prog_new_fd(). Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 10月, 2015 1 次提交
-
-
由 Tom Herbert 提交于
Currently, is only called from __prog_put_rcu in the bpf_prog_release path. Need this to call this from bpf_prog_put also to get correct accounting. Fixes: aaac3ba9 ("bpf: charge user for creation of BPF maps and programs") Signed-off-by: NTom Herbert <tom@herbertland.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 10月, 2015 2 次提交
-
-
由 Alexei Starovoitov 提交于
since eBPF programs and maps use kernel memory consider it 'locked' memory from user accounting point of view and charge it against RLIMIT_MEMLOCK limit. This limit is typically set to 64Kbytes by distros, so almost all bpf+tracing programs would need to increase it, since they use maps, but kernel charges maximum map size upfront. For example the hash map of 1024 elements will be charged as 64Kbyte. It's inconvenient for current users and changes current behavior for root, but probably worth doing to be consistent root vs non-root. Similar accounting logic is done by mmap of perf_event. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Reviewed-by: NKees Cook <keescook@chromium.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 10月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
While recently arguing on a seccomp discussion that raw prandom_u32() access shouldn't be exposed to unpriviledged user space, I forgot the fact that SKF_AD_RANDOM extension actually already does it for some time in cBPF via commit 4cd3675e ("filter: added BPF random opcode"). Since prandom_u32() is being used in a lot of critical networking code, lets be more conservative and split their states. Furthermore, consolidate eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF, bpf_get_prandom_u32() was only accessible for priviledged users, but should that change one day, we also don't want to leak raw sequences through things like eBPF maps. One thought was also to have own per bpf_prog states, but due to ABI reasons this is not easily possible, i.e. the program code currently cannot access bpf_prog itself, and copying the rnd_state to/from the stack scratch space whenever a program uses the prng seems not really worth the trouble and seems too hacky. If needed, taus113 could in such cases be implemented within eBPF using a map entry to keep the state space, or get_random_bytes() could become a second helper in cases where performance would not be critical. Both sides can trigger a one-time late init via prandom_init_once() on the shared state. Performance-wise, there should even be a tiny gain as bpf_user_rnd_u32() saves one function call. The PRNG needs to live inside the BPF core since kernels could have a NET-less config as well. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Cc: Chema Gonzalez <chema@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 10月, 2015 2 次提交
-
-
由 Daniel Borkmann 提交于
Using routing realms as part of the classifier is quite useful, it can be viewed as a tag for one or multiple routing entries (think of an analogy to net_cls cgroup for processes), set by user space routing daemons or via iproute2 as an indicator for traffic classifiers and later on processed in the eBPF program. Unlike actions, the classifier can inspect device flags and enable netif_keep_dst() if necessary. tc actions don't have that possibility, but in case people know what they are doing, it can be used from there as well (e.g. via devs that must keep dsts by design anyway). If a realm is set, the handler returns the non-zero realm. User space can set the full 32bit realm for the dst. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
As we need to add further flags to the bpf_prog structure, lets migrate both bools to a bitfield representation. The size of the base structure (excluding insns) remains unchanged at 40 bytes. Add also tags for the kmemchecker, so that it doesn't throw false positives. Even in case gcc would generate suboptimal code, it's not being accessed in performance critical paths. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 9月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
We may already have gotten a proper fd struct through fdget(), so whenever we return at the end of an map operation, we need to call fdput(). However, each map operation from syscall side first probes CHECK_ATTR() to verify that unused fields in the bpf_attr union are zero. In case of malformed input, we return with error, but the lookup to the map_fd was already performed at that time, so that we return without an corresponding fdput(). Fix it by performing an fdget() only right before bpf_map_get(). The fdget() invocation on maps in the verifier is not affected. Fixes: db20fd2b ("bpf: add lookup/update/delete/iterate methods to BPF maps") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 8月, 2015 1 次提交
-
-
由 Wang Nan 提交于
All the map backends are of generic nature. In order to avoid adding much special code into the eBPF core, rewrite part of the bpf_prog_array map code and make it more generic. So the new perf_event_array map type can reuse most of code with bpf_prog_array map and add fewer lines of special code. Signed-off-by: NWang Nan <wangnan0@huawei.com> Signed-off-by: NKaixu Xia <xiakaixu@huawei.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 5月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
Normally the program attachment place (like sockets, qdiscs) takes care of rcu protection and calls bpf_prog_put() after a grace period. The programs stored inside prog_array may not be attached anywhere, so prog_array needs to take care of preserving rcu protection. Otherwise bpf_tail_call() will race with bpf_prog_put(). To solve that introduce bpf_prog_put_rcu() helper function and use it in 3 places where unattached program can decrement refcnt: closing program fd, deleting/replacing program in prog_array. Fixes: 04fd61ab ("bpf: allow bpf programs to tail-call other bpf programs") Reported-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 5月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
introduce bpf_tail_call(ctx, &jmp_table, index) helper function which can be used from BPF programs like: int bpf_prog(struct pt_regs *ctx) { ... bpf_tail_call(ctx, &jmp_table, index); ... } that is roughly equivalent to: int bpf_prog(struct pt_regs *ctx) { ... if (jmp_table[index]) return (*jmp_table[index])(ctx); ... } The important detail that it's not a normal call, but a tail call. The kernel stack is precious, so this helper reuses the current stack frame and jumps into another BPF program without adding extra call frame. It's trivially done in interpreter and a bit trickier in JITs. In case of x64 JIT the bigger part of generated assembler prologue is common for all programs, so it is simply skipped while jumping. Other JITs can do similar prologue-skipping optimization or do stack unwind before jumping into the next program. bpf_tail_call() arguments: ctx - context pointer jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table index - index in the jump table Since all BPF programs are idenitified by file descriptor, user space need to populate the jmp_table with FDs of other BPF programs. If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere and program execution continues as normal. New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can populate this jmp_table array with FDs of other bpf programs. Programs can share the same jmp_table array or use multiple jmp_tables. The chain of tail calls can form unpredictable dynamic loops therefore tail_call_cnt is used to limit the number of calls and currently is set to 32. Use cases: Acked-by: NDaniel Borkmann <daniel@iogearbox.net> ========== - simplify complex programs by splitting them into a sequence of small programs - dispatch routine For tracing and future seccomp the program may be triggered on all system calls, but processing of syscall arguments will be different. It's more efficient to implement them as: int syscall_entry(struct seccomp_data *ctx) { bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */); ... default: process unknown syscall ... } int sys_write_event(struct seccomp_data *ctx) {...} int sys_read_event(struct seccomp_data *ctx) {...} syscall_jmp_table[__NR_write] = sys_write_event; syscall_jmp_table[__NR_read] = sys_read_event; For networking the program may call into different parsers depending on packet format, like: int packet_parser(struct __sk_buff *skb) { ... parse L2, L3 here ... __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol)); bpf_tail_call(skb, &ipproto_jmp_table, ipproto); ... default: process unknown protocol ... } int parse_tcp(struct __sk_buff *skb) {...} int parse_udp(struct __sk_buff *skb) {...} ipproto_jmp_table[IPPROTO_TCP] = parse_tcp; ipproto_jmp_table[IPPROTO_UDP] = parse_udp; - for TC use case, bpf_tail_call() allows to implement reclassify-like logic - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table are atomic, so user space can build chains of BPF programs on the fly Implementation details: ======================= - high performance of bpf_tail_call() is the goal. It could have been implemented without JIT changes as a wrapper on top of BPF_PROG_RUN() macro, but with two downsides: . all programs would have to pay performance penalty for this feature and tail call itself would be slower, since mandatory stack unwind, return, stack allocate would be done for every tailcall. . tailcall would be limited to programs running preempt_disabled, since generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would need to be either global per_cpu variable accessed by helper and by wrapper or global variable protected by locks. In this implementation x64 JIT bypasses stack unwind and jumps into the callee program after prologue. - bpf_prog_array_compatible() ensures that prog_type of callee and caller are the same and JITed/non-JITed flag is the same, since calling JITed program from non-JITed is invalid, since stack frames are different. Similarly calling kprobe type program from socket type program is invalid. - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map' abstraction, its user space API and all of verifier logic. It's in the existing arraymap.c file, since several functions are shared with regular array map. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 4月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
BPF programs, attached to kprobes, provide a safe way to execute user-defined BPF byte-code programs without being able to crash or hang the kernel in any way. The BPF engine makes sure that such programs have a finite execution time and that they cannot break out of their sandbox. The user interface is to attach to a kprobe via the perf syscall: struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .config = event_id, ... }; event_fd = perf_event_open(&attr,...); ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd); 'prog_fd' is a file descriptor associated with BPF program previously loaded. 'event_id' is an ID of the kprobe created. Closing 'event_fd': close(event_fd); ... automatically detaches BPF program from it. BPF programs can call in-kernel helper functions to: - lookup/update/delete elements in maps - probe_read - wraper of probe_kernel_read() used to access any kernel data structures BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is architecture dependent) and return 0 to ignore the event and 1 to store kprobe event into the ring buffer. Note, kprobes are a fundamentally _not_ a stable kernel ABI, so BPF programs attached to kprobes must be recompiled for every kernel version and user must supply correct LINUX_VERSION_CODE in attr.kern_version during bpf_prog_load() call. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-