- 28 5月, 2015 4 次提交
-
-
由 Paul E. McKenney 提交于
This commit adds a "const" tag to the declarations of rcu_state_p, which should allow the compiler to generate better code and also to catch erroneous assignments to this variable. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit removes a few RCU_BOOST #ifdefs, replacing them with IS_ENABLED()-protected return statements. This relies on the optimizer to remove any resulting dead code. There are several other RCU_BOOST #ifdefs, however these rely on some per-CPU variables that are available only under RCU_BOOST. These might be converted later, if the simplification proves to outweigh the increase in memory footprint. One hoped-for advantage is more easily locating compiler errors in obscure combinations of Kconfig parameters. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: <linux-rt-users@vger.kernel.org>
-
由 Paul E. McKenney 提交于
It would be good to move more code from #ifdef to IS_ENABLED(), but that does not work if the body of the IS_ENABLED() "if" statement references a variable (such as rcu_preempt_state) that does not exist if the IS_ENABLED() Kconfig variable is not set. This commit therefore substitutes *rcu_state_p for all uses of rcu_preempt_state in kernel/rcu/tree_preempt.h, which should enable elimination of a few #ifdefs. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit moves from the old ACCESS_ONCE() API to the new READ_ONCE() and WRITE_ONCE() APIs. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Updated to include kernel/torture.c as suggested by Jason Low. ]
-
- 13 3月, 2015 3 次提交
-
-
由 Paul E. McKenney 提交于
Races between CPU hotplug and grace periods can be difficult to resolve, so the ->onoff_mutex is used to exclude the two events. Unfortunately, this means that it is impossible for an outgoing CPU to perform the last bits of its offlining from its last pass through the idle loop, because sleeplocks cannot be acquired in that context. This commit avoids these problems by buffering online and offline events in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a grace period starts, the events accumulated in this mask are applied to the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special case of all CPUs corresponding to a given leaf rcu_node structure being offline while there are still elements in that structure's ->blkd_tasks list is handled using a new ->wait_blkd_tasks field. In this case, propagating the offline bits up the tree is deferred until the beginning of the grace period after all of the tasks have exited their RCU read-side critical sections and removed themselves from the list, at which point the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node structure's CPUs comes back online before the list empties, then the ->wait_blkd_tasks flag is simply cleared. This of course means that RCU's notion of which CPUs are offline can be out of date. This is OK because RCU need only wait on CPUs that were online at the time that the grace period started. In addition, RCU's force-quiescent-state actions will handle the case where a CPU goes offline after the grace period starts. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The rcu_report_unblock_qs_rnp() function is invoked when the last task blocking the current grace period exits its outermost RCU read-side critical section. Previously, this was called only from rcu_read_unlock_special(), and was therefore defined only when CONFIG_RCU_PREEMPT=y. However, this function will be invoked even when CONFIG_RCU_PREEMPT=n once CPU-hotplug operations are processed only at the beginnings of RCU grace periods. The reason for this change is that the last task on a given leaf rcu_node structure's ->blkd_tasks list might well exit its RCU read-side critical section between the time that recent CPU-hotplug operations were applied and when the new grace period was initialized. This situation could result in RCU waiting forever on that leaf rcu_node structure, because if all that structure's CPUs were already offline, there would be no quiescent-state events to drive that structure's part of the grace period. This commit therefore moves rcu_report_unblock_qs_rnp() to common code that is built unconditionally so that the quiescent-state-forcing code can clean up after this situation, avoiding the grace-period stall. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Currently, the rcu_node tree ->expmask bitmasks are initially set to reflect the online CPUs. This is pointless, because only the CPUs preempted within RCU read-side critical sections by the preceding synchronize_sched_expedited() need to be tracked. This commit therefore instead sets up these bitmasks based on the state of the ->blkd_tasks lists. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 12 3月, 2015 2 次提交
-
-
由 Paul E. McKenney 提交于
Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit eliminates a boolean and associated "if" statement by rearranging the code. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 04 3月, 2015 4 次提交
-
-
由 Paul E. McKenney 提交于
Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit gets rid of some inline #ifdefs by replacing them with IS_ENABLED. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
If an RCU read-side critical section occurs within an interrupt handler or a softirq handler, it cannot have been preempted. Therefore, there is a check in rcu_read_unlock_special() checking for this error. However, when this check triggers, it lacks diagnostic information. This commit therefore moves rcu_read_unlock()'s lockdep annotation to follow the call to __rcu_read_unlock() and changes rcu_read_unlock_special()'s WARN_ON_ONCE() to an lockdep_rcu_suspicious() in order to locate where the offending RCU read-side critical section began. In addition, the value of the ->rcu_read_unlock_special field is printed. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
When a CPU is first determined to be a no-CBs CPUs, this commit causes any early boot callbacks to be moved to the no-CBs callback list, allowing them to be invoked. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 27 2月, 2015 3 次提交
-
-
由 Paul E. McKenney 提交于
If the RCU grace-period kthread invoking rcu_sysidle_check_cpu() happens to be running on the tick_do_timer_cpu initially, then rcu_bind_gp_kthread() won't bind it. This kthread might then migrate before invoking rcu_gp_fqs(), which will trigger the WARN_ON_ONCE() in rcu_sysidle_check_cpu(). This commit therefore makes rcu_bind_gp_kthread() do the binding even if the kthread is currently on the same CPU. Because this incurs added overhead, this commit also causes each RCU grace-period kthread to invoke rcu_bind_gp_kthread() once at boot rather than at the beginning of each grace period. And as long as rcu_bind_gp_kthread() is being modified, this commit eliminates its #ifdef. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit updates open-coded tests of the rcu_expedited variable to instead use rcu_gp_is_expedited(). Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Some diagnostics under CONFIG_PROVE_RCU in rcu_nocb_cpu_needs_barrier() assume that there can be no early-boot callbacks. This commit therefore qualifies the diagnostic with rcu_scheduler_fully_active to permit early boot callbacks to avoid this splat. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 14 2月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
printk and friends can now format bitmaps using '%*pb[l]'. cpumask and nodemask also provide cpumask_pr_args() and nodemask_pr_args() respectively which can be used to generate the two printf arguments necessary to format the specified cpu/nodemask. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 2月, 2015 1 次提交
-
-
由 Paul E. McKenney 提交于
If the scheduling-clock interrupt sets the current tasks need_qs flag, but if the current CPU passes through a quiescent state in the meantime, then rcu_preempt_qs() will fail to clear the need_qs flag, which can fool RCU into thinking that additional rcu_read_unlock_special() processing is needed. This commit therefore clears the need_qs flag before checking for additional processing. For this problem to occur, we need rcu_preempt_data.passed_quiesce equal to true and current->rcu_read_unlock_special.b.need_qs also equal to true. This condition can occur as follows: 1. CPU 0 is aware of the current preemptible RCU grace period, but has not yet passed through a quiescent state. Among other things, this means that rcu_preempt_data.passed_quiesce is false. 2. Task A running on CPU 0 enters a preemptible RCU read-side critical section. 3. CPU 0 takes a scheduling-clock interrupt, which notices the RCU read-side critical section and the need for a quiescent state, and thus sets current->rcu_read_unlock_special.b.need_qs to true. 4. Task A is preempted, enters the scheduler, eventually invoking rcu_preempt_note_context_switch() which in turn invokes rcu_preempt_qs(). Because rcu_preempt_data.passed_quiesce is false, control enters the body of the "if" statement, which sets rcu_preempt_data.passed_quiesce to true. 5. At this point, CPU 0 takes an interrupt. The interrupt handler contains an RCU read-side critical section, and the rcu_read_unlock() notes that current->rcu_read_unlock_special is nonzero, and thus invokes rcu_read_unlock_special(). 6. Once in rcu_read_unlock_special(), the fact that current->rcu_read_unlock_special.b.need_qs is true becomes apparent, so rcu_read_unlock_special() invokes rcu_preempt_qs(). Recursively, given that we interrupted out of that same function in the preceding step. 7. Because rcu_preempt_data.passed_quiesce is now true, rcu_preempt_qs() does nothing, and simply returns. 8. Upon return to rcu_read_unlock_special(), it is noted that current->rcu_read_unlock_special is still nonzero (because the interrupted rcu_preempt_qs() had not yet gotten around to clearing current->rcu_read_unlock_special.b.need_qs). 9. Execution proceeds to the WARN_ON_ONCE(), which notes that we are in an interrupt handler and thus duly splats. The solution, as noted above, is to make rcu_read_unlock_special() clear out current->rcu_read_unlock_special.b.need_qs after calling rcu_preempt_qs(). The interrupted rcu_preempt_qs() will clear it again, but this is harmless. The worst that happens is that we clobber another attempt to set this field, but this is not a problem because we just got done reporting a quiescent state. Reported-by: NSasha Levin <sasha.levin@oracle.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Fix embarrassing build bug noted by Sasha Levin. ] Tested-by: NSasha Levin <sasha.levin@oracle.com>
-
- 16 1月, 2015 1 次提交
-
-
由 Paul E. McKenney 提交于
Recent testing has shown that under heavy load, running RCU's grace-period kthreads at real-time priority can improve performance (according to 0day test robot) and reduce the incidence of RCU CPU stall warnings. However, most systems do just fine with the default non-realtime priorities for these kthreads, and it does not make sense to expose the entire user base to any risk stemming from this change, given that this change is of use only to a few users running extremely heavy workloads. Therefore, this commit allows users to specify realtime priorities for the grace-period kthreads, but leaves them running SCHED_OTHER by default. The realtime priority may be specified at build time via the RCU_KTHREAD_PRIO Kconfig parameter, or at boot time via the rcutree.kthread_prio parameter. Either way, 0 says to continue the default SCHED_OTHER behavior and values from 1-99 specify that priority of SCHED_FIFO behavior. Note that a value of 0 is not permitted when the RCU_BOOST Kconfig parameter is specified. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 11 1月, 2015 2 次提交
-
-
由 Paul E. McKenney 提交于
Currently, rcutorture's Reader Batch checks measure from the end of the previous grace period to the end of the current one. This commit tightens up these checks by measuring from the start and end of the same grace period. This involves adding rcu_batches_started() and friends corresponding to the existing rcu_batches_completed() and friends. We leave SRCU alone for the moment, as it does not yet have a way of tracking both ends of its grace periods. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Long ago, the various ->completed fields were of type long, but now are unsigned long due to signed-integer-overflow concerns. However, the various _batches_completed() functions remained of type long, even though their only purpose in life is to return the corresponding ->completed field. This patch cleans this up by changing these functions' return types to unsigned long. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 07 1月, 2015 12 次提交
-
-
由 Paul E. McKenney 提交于
Subtle race conditions can result if a CPU stays in dyntick-idle mode long enough for the ->gpnum and ->completed fields to wrap. For example, consider the following sequence of events: o CPU 1 encounters a quiescent state while waiting for grace period 5 to complete, but then enters dyntick-idle mode. o While CPU 1 is in dyntick-idle mode, the grace-period counters wrap around so that the grace period number is now 4. o Just as CPU 1 exits dyntick-idle mode, grace period 4 completes and grace period 5 begins. o The quiescent state that CPU 1 passed through during the old grace period 5 looks like it applies to the new grace period 5. Therefore, the new grace period 5 completes without CPU 1 having passed through a quiescent state. This could clearly be a fatal surprise to any long-running RCU read-side critical section that happened to be running on CPU 1 at the time. At one time, this was not a problem, given that it takes significant time for the grace-period counters to overflow even on 32-bit systems. However, with the advent of NO_HZ_FULL and SMP embedded systems, arbitrarily long idle periods are now becoming quite feasible. It is therefore time to close this race. This commit therefore avoids this race condition by having the quiescent-state forcing code detect when a CPU is falling too far behind, and setting a new rcu_data field ->gpwrap when this happens. Whenever this new ->gpwrap field is set, the CPU's ->gpnum and ->completed fields are known to be untrustworthy, and can be ignored, along with any associated quiescent states. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
One way that an RCU CPU stall warning can happen is if the grace-period kthread is not allowed to execute. One proxy for this kthread's forward progress is the number of force-quiescent-state (fqs) scans. This commit therefore adds the number of fqs scans to the RCU CPU stall warning printouts when CONFIG_RCU_CPU_STALL_INFO=y. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Lai Jiangshan 提交于
The patch dfeb9765 ("Allow post-unlock reference for rt_mutex") ensured rcu-boost safe even the rt_mutex has post-unlock reference. But rt_mutex allowing post-unlock reference is definitely a bug and it was fixed by the commit 27e35715 ("rtmutex: Plug slow unlock race"). This fix made the previous patch (dfeb9765) useless. And even worse, the priority-inversion introduced by the the previous patch still exists. rcu_read_unlock_special() { rt_mutex_unlock(&rnp->boost_mtx); /* Priority-Inversion: * the current task had been deboosted and preempted as a low * priority task immediately, it could wait long before reschedule in, * and the rcu-booster also waits on this low priority task and sleeps. * This priority-inversion makes rcu-booster can't work * as expected. */ complete(&rnp->boost_completion); } Just revert the patch to avoid it. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
When rcu_boost_kthread_setaffinity() sees that all CPUs for a given rcu_node structure are now offline, it affinities the corresponding RCU-boost ("rcub") kthread away from those CPUs. This is pointless because the kthread cannot run on those offline CPUs in any case. This commit therefore removes this unneeded code. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Now that offlining CPUs no longer moves leaf rcu_node structures' ->blkd_tasks lists to the root, there is no way for the root rcu_node structure's ->blkd_task list to be nonempty, unless the root node is also the sole leaf node. This commit therefore refrains from creating an rcub kthread for the root rcu_node structure unless it is also the sole leaf. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Given that there is now arcu_preempt_has_tasks() function that checks to see if the ->blkd_tasks list is non-empty, this commit makes use of it. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
When the last CPU associated with a given leaf rcu_node structure goes offline, something must be done about the tasks queued on that rcu_node structure. Each of these tasks has been preempted on one of the leaf rcu_node structure's CPUs while in an RCU read-side critical section that it have not yet exited. Handling these tasks is the job of rcu_preempt_offline_tasks(), which migrates them from the leaf rcu_node structure to the root rcu_node structure. Unfortunately, this migration has to be done one task at a time because each tasks allegiance must be shifted from the original leaf rcu_node to the root, so that future attempts to deal with these tasks will acquire the root rcu_node structure's ->lock rather than that of the leaf. Worse yet, this migration must be done with interrupts disabled, which is not so good for realtime response, especially given that there is no bound on the number of tasks on a given rcu_node structure's list. (OK, OK, there is a bound, it is just that it is unreasonably large, especially on 64-bit systems.) This was not considered a problem back when rcu_preempt_offline_tasks() was first written because realtime systems were assumed not to do CPU-hotplug operations while real-time applications were running. This assumption has proved of dubious validity given that people are starting to run multiple realtime applications on a single SMP system and that it is common practice to offline then online a CPU before starting its real-time application in order to clear extraneous processing off of that CPU. So we now need CPU hotplug operations to avoid undue latencies. This commit therefore avoids migrating these tasks, instead letting them be dequeued one by one from the original leaf rcu_node structure by rcu_read_unlock_special(). This means that the clearing of bits from the upper-level rcu_node structures must be deferred until the last such task has been dequeued, because otherwise subsequent grace periods won't wait on them. This commit has the beneficial side effect of simplifying the CPU-hotplug code for TREE_PREEMPT_RCU, especially in CONFIG_RCU_BOOST builds. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit causes rcu_read_unlock_special() to propagate ->qsmaskinit bit clearing up the rcu_node tree once a given rcu_node structure's blkd_tasks list becomes empty. This is the final commit in preparation for the rework of RCU priority boosting: It enables preempted tasks to remain queued on their rcu_node structure even after all of that rcu_node structure's CPUs have gone offline. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit abstracts rcu_cleanup_dead_rnp() from rcu_cleanup_dead_cpu() in preparation for the rework of RCU priority boosting. This new function will be invoked from rcu_read_unlock_special() in the reworked scheme, which is why rcu_cleanup_dead_rnp() assumes that the leaf rcu_node structure's ->qsmaskinit field has already been updated. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit undertakes a simple variable renaming to make way for some rework of RCU priority boosting. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit prevents random compiler optimizations by applying ACCESS_ONCE() to lockless accesses. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The rcu_barrier() no-callbacks check for no-CBs CPUs has race conditions. It checks a given CPU's lists of callbacks, and if all three no-CBs lists are empty, ignores that CPU. However, these three lists could potentially be empty even when callbacks are present if the check executed just as the callbacks were being moved from one list to another. It turns out that recent versions of rcutorture can spot this race. This commit plugs this hole by consolidating the per-list counts of no-CBs callbacks into a single count, which is incremented before the corresponding callback is posted and after it is invoked. Then rcu_barrier() checks this single count to reliably determine whether the corresponding CPU has no-CBs callbacks. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 04 11月, 2014 6 次提交
-
-
由 Paul E. McKenney 提交于
The "cpu" argument to rcu_cleanup_after_idle() is always the current CPU, so drop it. This moves the smp_processor_id() from the caller to rcu_cleanup_after_idle(), saving argument-passing overhead. Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPranith Kumar <bobby.prani@gmail.com>
-
由 Paul E. McKenney 提交于
The "cpu" argument to rcu_prepare_for_idle() is always the current CPU, so drop it. This in turn allows two of the uses of "cpu" in this function to be replaced with a this_cpu_ptr() and the third by smp_processor_id(), replacing that of the call to rcu_prepare_for_idle(). Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPranith Kumar <bobby.prani@gmail.com>
-
由 Paul E. McKenney 提交于
The "cpu" argument to rcu_needs_cpu() is always the current CPU, so drop it. This in turn allows the "cpu" argument to rcu_cpu_has_callbacks() to be removed, which allows the uses of "cpu" in both functions to be replaced with a this_cpu_ptr(). Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPranith Kumar <bobby.prani@gmail.com>
-
由 Paul E. McKenney 提交于
The "cpu" argument to rcu_note_context_switch() is always the current CPU, so drop it. This in turn allows the "cpu" argument to rcu_preempt_note_context_switch() to be removed, which allows the sole use of "cpu" in both functions to be replaced with a this_cpu_ptr(). Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPranith Kumar <bobby.prani@gmail.com>
-
由 Paul E. McKenney 提交于
Because rcu_preempt_check_callbacks()'s argument is guaranteed to always be the current CPU, drop the argument and replace per_cpu() with __this_cpu_read(). Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPranith Kumar <bobby.prani@gmail.com>
-
由 Christoph Lameter 提交于
For some functions in kernel/rcu/tree* the rdtp parameter is always this_cpu_ptr(rdtp). Remove the parameter if constant and calculate the pointer in function. This will have the advantage that it is obvious that the address are all per cpu offsets and thus it will enable the use of this_cpu_ops in the future. Signed-off-by: NChristoph Lameter <cl@linux.com> [ paulmck: Forward-ported to rcu/dev, whitespace adjustment. ] Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPranith Kumar <bobby.prani@gmail.com>
-
- 30 10月, 2014 1 次提交
-
-
由 Paul E. McKenney 提交于
Commit 35ce7f29 (rcu: Create rcuo kthreads only for onlined CPUs) contains checks for the case where CPUs are brought online out of order, re-wiring the rcuo leader-follower relationships as needed. Unfortunately, this rewiring was broken. This apparently went undetected due to the tendency of systems to bring CPUs online in order. This commit nevertheless fixes the rewiring. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-