1. 25 5月, 2015 3 次提交
  2. 23 5月, 2015 4 次提交
  3. 22 5月, 2015 3 次提交
    • A
      bpf: allow bpf programs to tail-call other bpf programs · 04fd61ab
      Alexei Starovoitov 提交于
      introduce bpf_tail_call(ctx, &jmp_table, index) helper function
      which can be used from BPF programs like:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        bpf_tail_call(ctx, &jmp_table, index);
        ...
      }
      that is roughly equivalent to:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        if (jmp_table[index])
          return (*jmp_table[index])(ctx);
        ...
      }
      The important detail that it's not a normal call, but a tail call.
      The kernel stack is precious, so this helper reuses the current
      stack frame and jumps into another BPF program without adding
      extra call frame.
      It's trivially done in interpreter and a bit trickier in JITs.
      In case of x64 JIT the bigger part of generated assembler prologue
      is common for all programs, so it is simply skipped while jumping.
      Other JITs can do similar prologue-skipping optimization or
      do stack unwind before jumping into the next program.
      
      bpf_tail_call() arguments:
      ctx - context pointer
      jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
      index - index in the jump table
      
      Since all BPF programs are idenitified by file descriptor, user space
      need to populate the jmp_table with FDs of other BPF programs.
      If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
      and program execution continues as normal.
      
      New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
      populate this jmp_table array with FDs of other bpf programs.
      Programs can share the same jmp_table array or use multiple jmp_tables.
      
      The chain of tail calls can form unpredictable dynamic loops therefore
      tail_call_cnt is used to limit the number of calls and currently is set to 32.
      
      Use cases:
      Acked-by: NDaniel Borkmann <daniel@iogearbox.net>
      
      ==========
      - simplify complex programs by splitting them into a sequence of small programs
      
      - dispatch routine
        For tracing and future seccomp the program may be triggered on all system
        calls, but processing of syscall arguments will be different. It's more
        efficient to implement them as:
        int syscall_entry(struct seccomp_data *ctx)
        {
           bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
           ... default: process unknown syscall ...
        }
        int sys_write_event(struct seccomp_data *ctx) {...}
        int sys_read_event(struct seccomp_data *ctx) {...}
        syscall_jmp_table[__NR_write] = sys_write_event;
        syscall_jmp_table[__NR_read] = sys_read_event;
      
        For networking the program may call into different parsers depending on
        packet format, like:
        int packet_parser(struct __sk_buff *skb)
        {
           ... parse L2, L3 here ...
           __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
           bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
           ... default: process unknown protocol ...
        }
        int parse_tcp(struct __sk_buff *skb) {...}
        int parse_udp(struct __sk_buff *skb) {...}
        ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
        ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
      
      - for TC use case, bpf_tail_call() allows to implement reclassify-like logic
      
      - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
        are atomic, so user space can build chains of BPF programs on the fly
      
      Implementation details:
      =======================
      - high performance of bpf_tail_call() is the goal.
        It could have been implemented without JIT changes as a wrapper on top of
        BPF_PROG_RUN() macro, but with two downsides:
        . all programs would have to pay performance penalty for this feature and
          tail call itself would be slower, since mandatory stack unwind, return,
          stack allocate would be done for every tailcall.
        . tailcall would be limited to programs running preempt_disabled, since
          generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
          need to be either global per_cpu variable accessed by helper and by wrapper
          or global variable protected by locks.
      
        In this implementation x64 JIT bypasses stack unwind and jumps into the
        callee program after prologue.
      
      - bpf_prog_array_compatible() ensures that prog_type of callee and caller
        are the same and JITed/non-JITed flag is the same, since calling JITed
        program from non-JITed is invalid, since stack frames are different.
        Similarly calling kprobe type program from socket type program is invalid.
      
      - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
        abstraction, its user space API and all of verifier logic.
        It's in the existing arraymap.c file, since several functions are
        shared with regular array map.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      04fd61ab
    • D
      net: dev: reduce both ingress hook ifdefs · e7582bab
      Daniel Borkmann 提交于
      Reduce ifdef pollution slightly, no functional change. We can simply
      remove the extra alternative definition of handle_ing() and nf_ingress().
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NPablo Neira Ayuso <pablo@netfilter.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e7582bab
    • E
      neigh: Better handling of transition to NUD_PROBE state · 765c9c63
      Erik Kline 提交于
      [1] When entering NUD_PROBE state via neigh_update(), perhaps received
          from userspace, correctly (re)initialize the probes count to zero.
      
          This is useful for forcing revalidation of a neighbor (for example
          if the host is attempting to do DNA [IPv4 4436, IPv6 6059]).
      
      [2] Notify listeners when a neighbor goes into NUD_PROBE state.
      
          By sending notifications on entry to NUD_PROBE state listeners get
          more timely warnings of imminent connectivity issues.
      
          The current notifications on entry to NUD_STALE have somewhat
          limited usefulness: NUD_STALE is a perfectly normal state, as is
          NUD_DELAY, whereas notifications on entry to NUD_FAILURE come after
          a neighbor reachability problem has been confirmed (typically after
          three probes).
      Signed-off-by: NErik Kline <ek@google.com>
      Acked-By: NLorenzo Colitti <lorenzo@google.com>
      Acked-by: NHannes Frederic Sowa <hannes@stressinduktion.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      765c9c63
  4. 18 5月, 2015 4 次提交
  5. 15 5月, 2015 2 次提交
  6. 14 5月, 2015 15 次提交
  7. 13 5月, 2015 6 次提交
  8. 12 5月, 2015 3 次提交