1. 07 1月, 2016 1 次提交
    • D
      btrfs: allocate root item at snapshot ioctl time · b0c0ea63
      David Sterba 提交于
      The actual snapshot creation is delayed until transaction commit. If we
      cannot get enough memory for the root item there, we have to fail the
      whole transaction commit which is bad. So we'll allocate the memory at
      the ioctl call and pass it along with the pending_snapshot struct. The
      potential ENOMEM will be returned to the caller of snapshot ioctl.
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      b0c0ea63
  2. 10 12月, 2015 1 次提交
    • F
      Btrfs: fix unprotected list move from unused_bgs to deleted_bgs list · 348a0013
      Filipe Manana 提交于
      As of my previous change titled "Btrfs: fix scrub preventing unused block
      groups from being deleted", the following warning at
      extent-tree.c:btrfs_delete_unused_bgs() can be hit when we mount the a
      filesysten with "-o discard":
      
       10263  void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
       10264  {
       (...)
       10405                  if (trimming) {
       10406                          WARN_ON(!list_empty(&block_group->bg_list));
       10407                          spin_lock(&trans->transaction->deleted_bgs_lock);
       10408                          list_move(&block_group->bg_list,
       10409                                    &trans->transaction->deleted_bgs);
       10410                          spin_unlock(&trans->transaction->deleted_bgs_lock);
       10411                          btrfs_get_block_group(block_group);
       10412                  }
       (...)
      
      This happens because scrub can now add back the block group to the list of
      unused block groups (fs_info->unused_bgs). This is dangerous because we
      are moving the block group from the unused block groups list to the list
      of deleted block groups without holding the lock that protects the source
      list (fs_info->unused_bgs_lock).
      
      The following diagram illustrates how this happens:
      
                  CPU 1                                     CPU 2
      
       cleaner_kthread()
         btrfs_delete_unused_bgs()
      
           sees bg X in list
            fs_info->unused_bgs
      
           deletes bg X from list
            fs_info->unused_bgs
      
                                                  scrub_enumerate_chunks()
      
                                                    searches device tree using
                                                    its commit root
      
                                                    finds device extent for
                                                    block group X
      
                                                    gets block group X from the tree
                                                    fs_info->block_group_cache_tree
                                                    (via btrfs_lookup_block_group())
      
                                                    sets bg X to RO (again)
      
                                                    scrub_chunk(bg X)
      
                                                    sets bg X back to RW mode
      
                                                    adds bg X to the list
                                                    fs_info->unused_bgs again,
                                                    since it's still unused and
                                                    currently not in that list
      
           sets bg X to RO mode
      
           btrfs_remove_chunk(bg X)
      
           --> discard is enabled and bg X
               is in the fs_info->unused_bgs
               list again so the warning is
               triggered
           --> we move it from that list into
               the transaction's delete_bgs
               list, but we can have another
               task currently manipulating
               the first list (fs_info->unused_bgs)
      
      Fix this by using the same lock (fs_info->unused_bgs_lock) to protect both
      the list of unused block groups and the list of deleted block groups. This
      makes it safe and there's not much worry for more lock contention, as this
      lock is seldom used and only the cleaner kthread adds elements to the list
      of deleted block groups. The warning goes away too, as this was previously
      an impossible case (and would have been better a BUG_ON/ASSERT) but it's
      not impossible anymore.
      Reproduced with fstest btrfs/073 (using MOUNT_OPTIONS="-o discard").
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      348a0013
  3. 25 11月, 2015 1 次提交
    • F
      Btrfs: use global reserve when deleting unused block group after ENOSPC · 8eab77ff
      Filipe Manana 提交于
      It's possible to reach a state where the cleaner kthread isn't able to
      start a transaction to delete an unused block group due to lack of enough
      free metadata space and due to lack of unallocated device space to allocate
      a new metadata block group as well. If this happens try to use space from
      the global block group reserve just like we do for unlink operations, so
      that we don't reach a permanent state where starting a transaction for
      filesystem operations (file creation, renames, etc) keeps failing with
      -ENOSPC. Such an unfortunate state was observed on a machine where over
      a dozen unused data block groups existed and the cleaner kthread was
      failing to delete them due to ENOSPC error when attempting to start a
      transaction, and even running balance with a -dusage=0 filter failed with
      ENOSPC as well. Also unmounting and mounting again the filesystem didn't
      help. Allowing the cleaner kthread to use the global block reserve to
      delete the unused data block groups fixed the problem.
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      8eab77ff
  4. 22 10月, 2015 5 次提交
  5. 06 10月, 2015 1 次提交
    • F
      Btrfs: fix deadlock when finalizing block group creation · d9a0540a
      Filipe Manana 提交于
      Josef ran into a deadlock while a transaction handle was finalizing the
      creation of its block groups, which produced the following trace:
      
        [260445.593112] fio             D ffff88022a9df468     0  8924   4518 0x00000084
        [260445.593119]  ffff88022a9df468 ffffffff81c134c0 ffff880429693c00 ffff88022a9df488
        [260445.593126]  ffff88022a9e0000 ffff8803490d7b00 ffff8803490d7b18 ffff88022a9df4b0
        [260445.593132]  ffff8803490d7af8 ffff88022a9df488 ffffffff8175a437 ffff8803490d7b00
        [260445.593137] Call Trace:
        [260445.593145]  [<ffffffff8175a437>] schedule+0x37/0x80
        [260445.593189]  [<ffffffffa0850f37>] btrfs_tree_lock+0xa7/0x1f0 [btrfs]
        [260445.593197]  [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0
        [260445.593225]  [<ffffffffa07eac44>] btrfs_lock_root_node+0x34/0x50 [btrfs]
        [260445.593253]  [<ffffffffa07eff6b>] btrfs_search_slot+0x88b/0xa00 [btrfs]
        [260445.593295]  [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs]
        [260445.593324]  [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
        [260445.593351]  [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
        [260445.593394]  [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs]
        [260445.593427]  [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs]
        [260445.593459]  [<ffffffffa0800964>] do_chunk_alloc+0x2a4/0x2e0 [btrfs]
        [260445.593491]  [<ffffffffa0803815>] find_free_extent+0xa55/0xd90 [btrfs]
        [260445.593524]  [<ffffffffa0803c22>] btrfs_reserve_extent+0xd2/0x220 [btrfs]
        [260445.593532]  [<ffffffff8119fe5d>] ? account_page_dirtied+0xdd/0x170
        [260445.593564]  [<ffffffffa0803e78>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs]
        [260445.593597]  [<ffffffffa080c9de>] ? btree_set_page_dirty+0xe/0x10 [btrfs]
        [260445.593626]  [<ffffffffa07eb5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs]
        [260445.593654]  [<ffffffffa07ebbff>] btrfs_cow_block+0x11f/0x1c0 [btrfs]
        [260445.593682]  [<ffffffffa07ef8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs]
        [260445.593724]  [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs]
        [260445.593752]  [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
        [260445.593830]  [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
        [260445.593905]  [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs]
        [260445.593946]  [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs]
        [260445.593990]  [<ffffffffa0815798>] btrfs_commit_transaction+0xa8/0xb40 [btrfs]
        [260445.594042]  [<ffffffffa085abcd>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs]
        [260445.594089]  [<ffffffffa082bc84>] btrfs_sync_file+0x294/0x350 [btrfs]
        [260445.594115]  [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0
        [260445.594133]  [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180
        [260445.594149]  [<ffffffff8123e35d>] do_fsync+0x3d/0x70
        [260445.594169]  [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110
        [260445.594187]  [<ffffffff8123e600>] SyS_fsync+0x10/0x20
        [260445.594204]  [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71
      
      This happened because the same transaction handle created a large number
      of block groups and while finalizing their creation (inserting new items
      and updating existing items in the chunk and device trees) a new metadata
      extent had to be allocated and no free space was found in the current
      metadata block groups, which made find_free_extent() attempt to allocate
      a new block group via do_chunk_alloc(). However at do_chunk_alloc() we
      ended up allocating a new system chunk too and exceeded the threshold
      of 2Mb of reserved chunk bytes, which makes do_chunk_alloc() enter the
      final part of block group creation again (at
      btrfs_create_pending_block_groups()) and attempt to lock again the root
      of the chunk tree when it's already write locked by the same task.
      
      Similarly we can deadlock on extent tree nodes/leafs if while we are
      running delayed references we end up creating a new metadata block group
      in order to allocate a new node/leaf for the extent tree (as part of
      a CoW operation or growing the tree), as btrfs_create_pending_block_groups
      inserts items into the extent tree as well. In this case we get the
      following trace:
      
        [14242.773581] fio             D ffff880428ca3418     0  3615   3100 0x00000084
        [14242.773588]  ffff880428ca3418 ffff88042d66b000 ffff88042a03c800 ffff880428ca3438
        [14242.773594]  ffff880428ca4000 ffff8803e4b20190 ffff8803e4b201a8 ffff880428ca3460
        [14242.773600]  ffff8803e4b20188 ffff880428ca3438 ffffffff8175a437 ffff8803e4b20190
        [14242.773606] Call Trace:
        [14242.773613]  [<ffffffff8175a437>] schedule+0x37/0x80
        [14242.773656]  [<ffffffffa057ff07>] btrfs_tree_lock+0xa7/0x1f0 [btrfs]
        [14242.773664]  [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0
        [14242.773692]  [<ffffffffa0519c44>] btrfs_lock_root_node+0x34/0x50 [btrfs]
        [14242.773720]  [<ffffffffa051ef6b>] btrfs_search_slot+0x88b/0xa00 [btrfs]
        [14242.773750]  [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
        [14242.773758]  [<ffffffff811ef4a2>] ? kmem_cache_alloc+0x1d2/0x200
        [14242.773786]  [<ffffffffa0520ad1>] btrfs_insert_item+0x71/0xf0 [btrfs]
        [14242.773818]  [<ffffffffa052f292>] btrfs_create_pending_block_groups+0x102/0x200 [btrfs]
        [14242.773850]  [<ffffffffa052f96e>] do_chunk_alloc+0x2ae/0x2f0 [btrfs]
        [14242.773934]  [<ffffffffa0532825>] find_free_extent+0xa55/0xd90 [btrfs]
        [14242.773998]  [<ffffffffa0532c22>] btrfs_reserve_extent+0xc2/0x1d0 [btrfs]
        [14242.774041]  [<ffffffffa0532e38>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs]
        [14242.774078]  [<ffffffffa051a5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs]
        [14242.774118]  [<ffffffffa051abff>] btrfs_cow_block+0x11f/0x1c0 [btrfs]
        [14242.774155]  [<ffffffffa051e8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs]
        [14242.774194]  [<ffffffffa0528021>] ? __btrfs_free_extent.isra.70+0x2e1/0xcb0 [btrfs]
        [14242.774235]  [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
        [14242.774274]  [<ffffffffa051994a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
        [14242.774318]  [<ffffffffa052c433>] __btrfs_run_delayed_refs+0xbb3/0x1020 [btrfs]
        [14242.774358]  [<ffffffffa052f404>] btrfs_run_delayed_refs.part.78+0x74/0x280 [btrfs]
        [14242.774391]  [<ffffffffa052f627>] btrfs_run_delayed_refs+0x17/0x20 [btrfs]
        [14242.774432]  [<ffffffffa05be236>] commit_cowonly_roots+0x8d/0x2bd [btrfs]
        [14242.774474]  [<ffffffffa059d07f>] ? __btrfs_run_delayed_items+0x1cf/0x210 [btrfs]
        [14242.774516]  [<ffffffffa05adac3>] ? btrfs_qgroup_account_extents+0x83/0x130 [btrfs]
        [14242.774558]  [<ffffffffa0544c40>] btrfs_commit_transaction+0x590/0xb40 [btrfs]
        [14242.774599]  [<ffffffffa0589b9d>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs]
        [14242.774642]  [<ffffffffa055ac54>] btrfs_sync_file+0x294/0x350 [btrfs]
        [14242.774650]  [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0
        [14242.774657]  [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180
        [14242.774663]  [<ffffffff8123e35d>] do_fsync+0x3d/0x70
        [14242.774669]  [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110
        [14242.774675]  [<ffffffff8123e600>] SyS_fsync+0x10/0x20
        [14242.774681]  [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71
      
      Fix this by never recursing into the finalization phase of block group
      creation and making sure we never trigger the finalization of block group
      creation while running delayed references.
      Reported-by: NJosef Bacik <jbacik@fb.com>
      Fixes: 00d80e34 ("Btrfs: fix quick exhaustion of the system array in the superblock")
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      d9a0540a
  6. 23 9月, 2015 1 次提交
    • J
      Btrfs: keep dropped roots in cache until transaction commit · 2b9dbef2
      Josef Bacik 提交于
      When dropping a snapshot we need to account for the qgroup changes.  If we drop
      the snapshot in all one go then the backref code will fail to find blocks from
      the snapshot we dropped since it won't be able to find the root in the fs root
      cache.  This can lead to us failing to find refs from other roots that pointed
      at blocks in the now deleted root.  To handle this we need to not remove the fs
      roots from the cache until after we process the qgroup operations.  Do this by
      adding dropped roots to a list on the transaction, and letting the transaction
      remove the roots at the same time it drops the commit roots.  This will keep all
      of the backref searching code in sync properly, and fixes a problem Mark was
      seeing with snapshot delete and qgroups.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Tested-by: NHolger Hoffstätte <holger.hoffstaette@googlemail.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      2b9dbef2
  7. 29 7月, 2015 1 次提交
  8. 11 6月, 2015 1 次提交
  9. 03 6月, 2015 1 次提交
    • F
      Btrfs: fix -ENOSPC when finishing block group creation · 4fbcdf66
      Filipe Manana 提交于
      While creating a block group, we often end up getting ENOSPC while updating
      the chunk tree, which leads to a transaction abortion that produces a trace
      like the following:
      
      [30670.116368] WARNING: CPU: 4 PID: 20735 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x106 [btrfs]()
      [30670.117777] BTRFS: Transaction aborted (error -28)
      (...)
      [30670.163567] Call Trace:
      [30670.163906]  [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
      [30670.164522]  [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
      [30670.165171]  [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
      [30670.166323]  [<ffffffffa035daa7>] ? __btrfs_abort_transaction+0x52/0x106 [btrfs]
      [30670.167213]  [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
      [30670.167862]  [<ffffffffa035daa7>] __btrfs_abort_transaction+0x52/0x106 [btrfs]
      [30670.169116]  [<ffffffffa03743d7>] btrfs_create_pending_block_groups+0x101/0x130 [btrfs]
      [30670.170593]  [<ffffffffa038426a>] __btrfs_end_transaction+0x84/0x366 [btrfs]
      [30670.171960]  [<ffffffffa038455c>] btrfs_end_transaction+0x10/0x12 [btrfs]
      [30670.174649]  [<ffffffffa036eb6b>] btrfs_check_data_free_space+0x11f/0x27c [btrfs]
      [30670.176092]  [<ffffffffa039450d>] btrfs_fallocate+0x7c8/0xb96 [btrfs]
      [30670.177218]  [<ffffffff812459f2>] ? __this_cpu_preempt_check+0x13/0x15
      [30670.178622]  [<ffffffff81152447>] vfs_fallocate+0x14c/0x1de
      [30670.179642]  [<ffffffff8116b915>] ? __fget_light+0x2d/0x4f
      [30670.180692]  [<ffffffff81152863>] SyS_fallocate+0x47/0x62
      [30670.186737]  [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
      [30670.187792] ---[ end trace 0373e6b491c4a8cc ]---
      
      This is because we don't do proper space reservation for the chunk block
      reserve when we have multiple tasks allocating chunks in parallel.
      
      So block group creation has 2 phases, and the first phase essentially
      checks if there is enough space in the system space_info, allocating a
      new system chunk if there isn't, while the second phase updates the
      device, extent and chunk trees. However, because the updates to the
      chunk tree happen in the second phase, if we have N tasks, each with
      its own transaction handle, allocating new chunks in parallel and if
      there is only enough space in the system space_info to allocate M chunks,
      where M < N, none of the tasks ends up allocating a new system chunk in
      the first phase and N - M tasks will get -ENOSPC when attempting to
      update the chunk tree in phase 2 if they need to COW any nodes/leafs
      from the chunk tree.
      
      Fix this by doing proper reservation in the chunk block reserve.
      
      The issue could be reproduced by running fstests generic/038 in a loop,
      which eventually triggered the problem.
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      4fbcdf66
  10. 11 4月, 2015 2 次提交
    • C
      Btrfs: allow block group cache writeout outside critical section in commit · 1bbc621e
      Chris Mason 提交于
      We loop through all of the dirty block groups during commit and write
      the free space cache.  In order to make sure the cache is currect, we do
      this while no other writers are allowed in the commit.
      
      If a large number of block groups are dirty, this can introduce long
      stalls during the final stages of the commit, which can block new procs
      trying to change the filesystem.
      
      This commit changes the block group cache writeout to take appropriate
      locks and allow it to run earlier in the commit.  We'll still have to
      redo some of the block groups, but it means we can get most of the work
      out of the way without blocking the entire FS.
      Signed-off-by: NChris Mason <clm@fb.com>
      1bbc621e
    • J
      Btrfs: reserve space for block groups · cb723e49
      Josef Bacik 提交于
      This changes our delayed refs calculations to include the space needed
      to write back dirty block groups.
      Signed-off-by: NChris Mason <clm@fb.com>
      cb723e49
  11. 27 3月, 2015 1 次提交
    • F
      Btrfs: fix metadata inconsistencies after directory fsync · 2f2ff0ee
      Filipe Manana 提交于
      We can get into inconsistency between inodes and directory entries
      after fsyncing a directory. The issue is that while a directory gets
      the new dentries persisted in the fsync log and replayed at mount time,
      the link count of the inode that directory entries point to doesn't
      get updated, staying with an incorrect link count (smaller then the
      correct value). This later leads to stale file handle errors when
      accessing (including attempt to delete) some of the links if all the
      other ones are removed, which also implies impossibility to delete the
      parent directories, since the dentries can not be removed.
      
      Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2),
      when fsyncing a directory, new files aren't logged (their metadata and
      dentries) nor any child directories. So this patch fixes this issue too,
      since it has the same resolution as the incorrect inode link count issue
      mentioned before.
      
      This is very easy to reproduce, and the following excerpt from my test
      case for xfstests shows how:
      
        _scratch_mkfs >> $seqres.full 2>&1
        _init_flakey
        _mount_flakey
      
        # Create our main test file and directory.
        $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io
        mkdir $SCRATCH_MNT/mydir
      
        # Make sure all metadata and data are durably persisted.
        sync
      
        # Add a hard link to 'foo' inside our test directory and fsync only the
        # directory. The btrfs fsync implementation had a bug that caused the new
        # directory entry to be visible after the fsync log replay but, the inode
        # of our file remained with a link count of 1.
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2
      
        # Add a few more links and new files.
        # This is just to verify nothing breaks or gives incorrect results after the
        # fsync log is replayed.
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3
        $XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io
        ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2
      
        # Add some subdirectories and new files and links to them. This is to verify
        # that after fsyncing our top level directory 'mydir', all the subdirectories
        # and their files/links are registered in the fsync log and exist after the
        # fsync log is replayed.
        mkdir -p $SCRATCH_MNT/mydir/x/y/z
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link
        touch $SCRATCH_MNT/mydir/x/y/z/qwerty
      
        # Now fsync only our top directory.
        $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir
      
        # And fsync now our new file named 'hello', just to verify later that it has
        # the expected content and that the previous fsync on the directory 'mydir' had
        # no bad influence on this fsync.
        $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello
      
        # Simulate a crash/power loss.
        _load_flakey_table $FLAKEY_DROP_WRITES
        _unmount_flakey
      
        _load_flakey_table $FLAKEY_ALLOW_WRITES
        _mount_flakey
      
        # Verify the content of our file 'foo' remains the same as before, 8192 bytes,
        # all with the value 0xaa.
        echo "File 'foo' content after log replay:"
        od -t x1 $SCRATCH_MNT/foo
      
        # Remove the first name of our inode. Because of the directory fsync bug, the
        # inode's link count was 1 instead of 5, so removing the 'foo' name ended up
        # deleting the inode and the other names became stale directory entries (still
        # visible to applications). Attempting to remove or access the remaining
        # dentries pointing to that inode resulted in stale file handle errors and
        # made it impossible to remove the parent directories since it was impossible
        # for them to become empty.
        echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)"
        rm -f $SCRATCH_MNT/foo
      
        # Now verify that all files, links and directories created before fsyncing our
        # directory exist after the fsync log was replayed.
        [ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing"
        [ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing"
        [ -f $SCRATCH_MNT/hello ] || echo "File hello is missing"
        [ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing"
        [ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \
            echo "Link mydir/x/y/foo_y_link is missing"
        [ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \
            echo "Link mydir/x/y/z/foo_z_link is missing"
        [ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \
            echo "File mydir/x/y/z/qwerty is missing"
      
        # We expect our file here to have a size of 64Kb and all the bytes having the
        # value 0xff.
        echo "file 'hello' content after log replay:"
        od -t x1 $SCRATCH_MNT/hello
      
        # Now remove all files/links, under our test directory 'mydir', and verify we
        # can remove all the directories.
        rm -f $SCRATCH_MNT/mydir/x/y/z/*
        rmdir $SCRATCH_MNT/mydir/x/y/z
        rm -f $SCRATCH_MNT/mydir/x/y/*
        rmdir $SCRATCH_MNT/mydir/x/y
        rmdir $SCRATCH_MNT/mydir/x
        rm -f $SCRATCH_MNT/mydir/*
        rmdir $SCRATCH_MNT/mydir
      
        # An fsck, run by the fstests framework everytime a test finishes, also detected
        # the inconsistency and printed the following error message:
        #
        # root 5 inode 257 errors 2001, no inode item, link count wrong
        #    unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
        #    unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref
      
        status=0
        exit
      
      The expected golden output for the test is:
      
        wrote 8192/8192 bytes at offset 0
        XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
        wrote 65536/65536 bytes at offset 0
        XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
        File 'foo' content after log replay:
        0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
        *
        0020000
        file 'foo' link count after log replay: 5
        file 'hello' content after log replay:
        0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
        *
        0200000
      
      Which is the output after this patch and when running the test against
      ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's
      output is:
      
        wrote 8192/8192 bytes at offset 0
        XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
        wrote 65536/65536 bytes at offset 0
        XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
        File 'foo' content after log replay:
        0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
        *
        0020000
        file 'foo' link count after log replay: 1
        Link mydir/foo_2 is missing
        Link mydir/foo_3 is missing
        Link mydir/x/y/foo_y_link is missing
        Link mydir/x/y/z/foo_z_link is missing
        File mydir/x/y/z/qwerty is missing
        file 'hello' content after log replay:
        0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
        *
        0200000
        rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory
        rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory
        rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory
        rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle
        rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle
        rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty
      
      Fsck, without this fix, also complains about the wrong link count:
      
        root 5 inode 257 errors 2001, no inode item, link count wrong
            unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
            unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref
      
      So fix this by logging the inodes that the dentries point to when
      fsyncing a directory.
      
      A test case for xfstests follows.
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      2f2ff0ee
  12. 15 2月, 2015 1 次提交
    • Z
      btrfs: Fix out-of-space bug · 13212b54
      Zhao Lei 提交于
      Btrfs will report NO_SPACE when we create and remove files for several times,
      and we can't write to filesystem until mount it again.
      
      Steps to reproduce:
       1: Create a single-dev btrfs fs with default option
       2: Write a file into it to take up most fs space
       3: Delete above file
       4: Wait about 100s to let chunk removed
       5: goto 2
      
      Script is like following:
       #!/bin/bash
      
       # Recommend 1.2G space, too large disk will make test slow
       DEV="/dev/sda16"
       MNT="/mnt/tmp"
      
       dev_size="$(lsblk -bn -o SIZE "$DEV")" || exit 2
       file_size_m=$((dev_size * 75 / 100 / 1024 / 1024))
      
       echo "Loop write ${file_size_m}M file on $((dev_size / 1024 / 1024))M dev"
      
       for ((i = 0; i < 10; i++)); do umount "$MNT" 2>/dev/null; done
       echo "mkfs $DEV"
       mkfs.btrfs -f "$DEV" >/dev/null || exit 2
       echo "mount $DEV $MNT"
       mount "$DEV" "$MNT" || exit 2
      
       for ((loop_i = 0; loop_i < 20; loop_i++)); do
           echo
           echo "loop $loop_i"
      
           echo "dd file..."
           cmd=(dd if=/dev/zero of="$MNT"/file0 bs=1M count="$file_size_m")
           "${cmd[@]}" 2>/dev/null || {
               # NO_SPACE error triggered
               echo "dd failed: ${cmd[*]}"
               exit 1
           }
      
           echo "rm file..."
           rm -f "$MNT"/file0 || exit 2
      
           for ((i = 0; i < 10; i++)); do
               df "$MNT" | tail -1
               sleep 10
           done
       done
      
      Reason:
       It is triggered by commit: 47ab2a6c
       which is used to remove empty block groups automatically, but the
       reason is not in that patch. Code before works well because btrfs
       don't need to create and delete chunks so many times with high
       complexity.
       Above bug is caused by many reason, any of them can trigger it.
      
      Reason1:
       When we remove some continuous chunks but leave other chunks after,
       these disk space should be used by chunk-recreating, but in current
       code, only first create will successed.
       Fixed by Forrest Liu <forrestl@synology.com> in:
       Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
      
      Reason2:
       contains_pending_extent() return wrong value in calculation.
       Fixed by Forrest Liu <forrestl@synology.com> in:
       Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
      
      Reason3:
       btrfs_check_data_free_space() try to commit transaction and retry
       allocating chunk when the first allocating failed, but space_info->full
       is set in first allocating, and prevent second allocating in retry.
       Fixed in this patch by clear space_info->full in commit transaction.
      
       Tested for severial times by above script.
      
      Changelog v3->v4:
       use light weight int instead of atomic_t to record have_remove_bgs in
       transaction, suggested by:
       Josef Bacik <jbacik@fb.com>
      
      Changelog v2->v3:
       v2 fixed the bug by adding more commit-transaction, but we
       only need to reclaim space when we are really have no space for
       new chunk, noticed by:
       Filipe David Manana <fdmanana@gmail.com>
      
       Actually, our code already have this type of commit-and-retry,
       we only need to make it working with removed-bgs.
       v3 fixed the bug with above way.
      
      Changelog v1->v2:
       v1 will introduce a new bug when delete and create chunk in same disk
       space in same transaction, noticed by:
       Filipe David Manana <fdmanana@gmail.com>
       V2 fix this bug by commit transaction after remove block grops.
      Reported-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Suggested-by: NFilipe David Manana <fdmanana@gmail.com>
      Suggested-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      13212b54
  13. 22 1月, 2015 1 次提交
    • J
      Btrfs: track dirty block groups on their own list · ce93ec54
      Josef Bacik 提交于
      Currently any time we try to update the block groups on disk we will walk _all_
      block groups and check for the ->dirty flag to see if it is set.  This function
      can get called several times during a commit.  So if you have several terabytes
      of data you will be a very sad panda as we will loop through _all_ of the block
      groups several times, which makes the commit take a while which slows down the
      rest of the file system operations.
      
      This patch introduces a dirty list for the block groups that we get added to
      when we dirty the block group for the first time.  Then we simply update any
      block groups that have been dirtied since the last time we called
      btrfs_write_dirty_block_groups.  This allows us to clean up how we write the
      free space cache out so it is much cleaner.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      ce93ec54
  14. 22 11月, 2014 1 次提交
    • J
      Btrfs: make sure logged extents complete in the current transaction V3 · 50d9aa99
      Josef Bacik 提交于
      Liu Bo pointed out that my previous fix would lose the generation update in the
      scenario I described.  It is actually much worse than that, we could lose the
      entire extent if we lose power right after the transaction commits.  Consider
      the following
      
      write extent 0-4k
      log extent in log tree
      commit transaction
      	< power fail happens here
      ordered extent completes
      
      We would lose the 0-4k extent because it hasn't updated the actual fs tree, and
      the transaction commit will reset the log so it isn't replayed.  If we lose
      power before the transaction commit we are save, otherwise we are not.
      
      Fix this by keeping track of all extents we logged in this transaction.  Then
      when we go to commit the transaction make sure we wait for all of those ordered
      extents to complete before proceeding.  This will make sure that if we lose
      power after the transaction commit we still have our data.  This also fixes the
      problem of the improperly updated extent generation.  Thanks,
      
      cc: stable@vger.kernel.org
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      50d9aa99
  15. 21 11月, 2014 1 次提交
    • F
      Btrfs: deal with convert_extent_bit errors to avoid fs corruption · 663dfbb0
      Filipe Manana 提交于
      When committing a transaction or a log, we look for btree extents that
      need to be durably persisted by searching for ranges in a io tree that
      have some bits set (EXTENT_DIRTY or EXTENT_NEW). We then attempt to clear
      those bits and set the EXTENT_NEED_WAIT bit, with calls to the function
      convert_extent_bit, and then start writeback for the extents.
      
      That function however can return an error (at the moment only -ENOMEM
      is possible, specially when it does GFP_ATOMIC allocation requests
      through alloc_extent_state_atomic) - that means the ranges didn't got
      the EXTENT_NEED_WAIT bit set (or at least not for the whole range),
      which in turn means a call to btrfs_wait_marked_extents() won't find
      those ranges for which we started writeback, causing a transaction
      commit or a log commit to persist a new superblock without waiting
      for the writeback of extents in that range to finish first.
      
      Therefore if a crash happens after persisting the new superblock and
      before writeback finishes, we have a superblock pointing to roots that
      weren't fully persisted or roots that point to nodes or leafs that weren't
      fully persisted, causing all sorts of unexpected/bad behaviour as we endup
      reading garbage from disk or the content of some node/leaf from a past
      generation that got cowed or deleted and is no longer valid (for this later
      case we end up getting error messages like "parent transid verify failed on
      X wanted Y found Z" when reading btree nodes/leafs from disk).
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      663dfbb0
  16. 12 11月, 2014 1 次提交
    • D
      btrfs: add support for processing pending changes · 572d9ab7
      David Sterba 提交于
      There are some actions that modify global filesystem state but cannot be
      performed at the time of request, but later at the transaction commit
      time when the filesystem is in a known state.
      
      For example enabling new incompat features on-the-fly or issuing
      transaction commit from unsafe contexts (sysfs handlers).
      Signed-off-by: NDavid Sterba <dsterba@suse.cz>
      572d9ab7
  17. 02 10月, 2014 1 次提交
  18. 15 8月, 2014 1 次提交
    • C
      btrfs: disable strict file flushes for renames and truncates · 8d875f95
      Chris Mason 提交于
      Truncates and renames are often used to replace old versions of a file
      with new versions.  Applications often expect this to be an atomic
      replacement, even if they haven't done anything to make sure the new
      version is fully on disk.
      
      Btrfs has strict flushing in place to make sure that renaming over an
      old file with a new file will fully flush out the new file before
      allowing the transaction commit with the rename to complete.
      
      This ordering means the commit code needs to be able to lock file pages,
      and there are a few paths in the filesystem where we will try to end a
      transaction with the page lock held.  It's rare, but these things can
      deadlock.
      
      This patch removes the ordered flushes and switches to a best effort
      filemap_flush like ext4 uses. It's not perfect, but it should fix the
      deadlocks.
      Signed-off-by: NChris Mason <clm@fb.com>
      8d875f95
  19. 10 6月, 2014 1 次提交
    • J
      Btrfs: add sanity tests for new qgroup accounting code · faa2dbf0
      Josef Bacik 提交于
      This exercises the various parts of the new qgroup accounting code.  We do some
      basic stuff and do some things with the shared refs to make sure all that code
      works.  I had to add a bunch of infrastructure because I needed to be able to
      insert items into a fake tree without having to do all the hard work myself,
      hopefully this will be usefull in the future.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      faa2dbf0
  20. 07 4月, 2014 2 次提交
    • J
      Btrfs: remove transaction from send · 9e351cc8
      Josef Bacik 提交于
      Lets try this again.  We can deadlock the box if we send on a box and try to
      write onto the same fs with the app that is trying to listen to the send pipe.
      This is because the writer could get stuck waiting for a transaction commit
      which is being blocked by the send.  So fix this by making sure looking at the
      commit roots is always going to be consistent.  We do this by keeping track of
      which roots need to have their commit roots swapped during commit, and then
      taking the commit_root_sem and swapping them all at once.  Then make sure we
      take a read lock on the commit_root_sem in cases where we search the commit root
      to make sure we're always looking at a consistent view of the commit roots.
      Previously we had problems with this because we would swap a fs tree commit root
      and then swap the extent tree commit root independently which would cause the
      backref walking code to screw up sometimes.  With this patch we no longer
      deadlock and pass all the weird send/receive corner cases.  Thanks,
      Reportedy-by: NHugo Mills <hugo@carfax.org.uk>
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      9e351cc8
    • J
      Btrfs: don't clear uptodate if the eb is under IO · a26e8c9f
      Josef Bacik 提交于
      So I have an awful exercise script that will run snapshot, balance and
      send/receive in parallel.  This sometimes would crash spectacularly and when it
      came back up the fs would be completely hosed.  Turns out this is because of a
      bad interaction of balance and send/receive.  Send will hold onto its entire
      path for the whole send, but its blocks could get relocated out from underneath
      it, and because it doesn't old tree locks theres nothing to keep this from
      happening.  So it will go to read in a slot with an old transid, and we could
      have re-allocated this block for something else and it could have a completely
      different transid.  But because we think it is invalid we clear uptodate and
      re-read in the block.  If we do this before we actually write out the new block
      we could write back stale data to the fs, and boom we're screwed.
      
      Now we definitely need to fix this disconnect between send and balance, but we
      really really need to not allow ourselves to accidently read in stale data over
      new data.  So make sure we check if the extent buffer is not under io before
      clearing uptodate, this will kick back EIO to the caller instead of reading in
      stale data and keep us from corrupting the fs.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      a26e8c9f
  21. 29 1月, 2014 2 次提交
    • J
      Btrfs: make fsync latency less sucky · 5039eddc
      Josef Bacik 提交于
      Looking into some performance related issues with large amounts of metadata
      revealed that we can have some pretty huge swings in fsync() performance.  If we
      have a lot of delayed refs backed up (as you will tend to do with lots of
      metadata) fsync() will wander off and try to run some of those delayed refs
      which can result in reading from disk and such.  Since the actual act of fsync()
      doesn't create any delayed refs there is no need to make it throttle on delayed
      ref stuff, that will be handled by other people.  With this patch we get much
      smoother fsync performance with large amounts of metadata.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      5039eddc
    • M
      Btrfs: remove btrfs_end_transaction_dmeta() · a56dbd89
      Miao Xie 提交于
      Two reasons:
      - btrfs_end_transaction_dmeta() is the same as btrfs_end_transaction_throttle()
        so it is unnecessary.
      - All the delayed items should be dealt in the current transaction, so the
        workers should not commit the transaction, instead, deal with the delayed
        items as many as possible.
      
      So we can remove btrfs_end_transaction_dmeta()
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      a56dbd89
  22. 12 11月, 2013 2 次提交
    • M
      Btrfs: fix BUG_ON() casued by the reserved space migration · 20dd2cbf
      Miao Xie 提交于
      When we did space balance and snapshot creation at the same time, we might
      meet the following oops:
       kernel BUG at fs/btrfs/inode.c:3038!
       [SNIP]
       Call Trace:
       [<ffffffffa0411ec7>] btrfs_orphan_cleanup+0x293/0x407 [btrfs]
       [<ffffffffa042dc45>] btrfs_mksubvol.isra.28+0x259/0x373 [btrfs]
       [<ffffffffa042de85>] btrfs_ioctl_snap_create_transid+0x126/0x156 [btrfs]
       [<ffffffffa042dff1>] btrfs_ioctl_snap_create_v2+0xd0/0x121 [btrfs]
       [<ffffffffa0430b2c>] btrfs_ioctl+0x414/0x1854 [btrfs]
       [<ffffffff813b60b7>] ? __do_page_fault+0x305/0x379
       [<ffffffff811215a9>] vfs_ioctl+0x1d/0x39
       [<ffffffff81121d7c>] do_vfs_ioctl+0x32d/0x3e2
       [<ffffffff81057fe7>] ? finish_task_switch+0x80/0xb8
       [<ffffffff81121e88>] SyS_ioctl+0x57/0x83
       [<ffffffff813b39ff>] ? do_device_not_available+0x12/0x14
       [<ffffffff813b99c2>] system_call_fastpath+0x16/0x1b
       [SNIP]
       RIP  [<ffffffffa040da40>] btrfs_orphan_add+0xc3/0x126 [btrfs]
      
      The reason of the problem is that the relocation root creation stole
      the reserved space, which was reserved for orphan item deletion.
      
      There are several ways to fix this problem, one is to increasing
      the reserved space size of the space balace, and then we can use
      that space to create the relocation tree for each fs/file trees.
      But it is hard to calculate the suitable size because we doesn't
      know how many fs/file trees we need relocate.
      
      We fixed this problem by reserving the space for relocation root creation
      actively since the space it need is very small (one tree block, used for
      root node copy), then we use that reserved space to create the
      relocation tree. If we don't reserve space for relocation tree creation,
      we will use the reserved space of the balance.
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      Signed-off-by: NChris Mason <chris.mason@fusionio.com>
      20dd2cbf
    • J
      Btrfs: fix two use-after-free bugs with transaction cleanup · 724e2315
      Josef Bacik 提交于
      I was noticing the slab redzone stuff going off every once and a while during
      transaction aborts.  This was caused by two things
      
      1) We would walk the pending snapshots and set their error to -ECANCELED.  We
      don't need to do this, the snapshot stuff waits for a transaction commit and if
      there is a problem we just free our pending snapshot object and exit.  Doing
      this was causing us to touch the pending snapshot object after the thing had
      already been freed.
      
      2) We were freeing the transaction manually with wanton disregard for it's
      use_count reference counter.  To fix this I cleaned up the transaction freeing
      loop to either wait for the transaction commit to finish if it was in the middle
      of that (since it will be cleaned and freed up there) or to do the cleanup
      oursevles.
      
      I also moved the global "kill all things dirty everywhere" stuff outside of the
      transaction cleanup loop since that only needs to be done once.  With this patch
      I'm no longer seeing slab corruption because of use after frees.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      Signed-off-by: NChris Mason <chris.mason@fusionio.com>
      724e2315
  23. 01 9月, 2013 1 次提交
  24. 10 8月, 2013 1 次提交
  25. 02 7月, 2013 1 次提交
    • J
      Btrfs: make the chunk allocator completely tree lockless · 6df9a95e
      Josef Bacik 提交于
      When adjusting the enospc rules for relocation I ran into a deadlock because we
      were relocating the only system chunk and that forced us to try and allocate a
      new system chunk while holding locks in the chunk tree, which caused us to
      deadlock.  To fix this I've moved all of the dev extent addition and chunk
      addition out to the delayed chunk completion stuff.  We still keep the in-memory
      stuff which makes sure everything is consistent.
      
      One change I had to make was to search the commit root of the device tree to
      find a free dev extent, and hold onto any chunk em's that we allocated in that
      transaction so we do not allocate the same dev extent twice.  This has the side
      effect of fixing a bug with balance that has been there ever since balance
      existed.  Basically you can free a block group and it's dev extent and then
      immediately allocate that dev extent for a new block group and write stuff to
      that dev extent, all within the same transaction.  So if you happen to crash
      during a balance you could come back to a completely broken file system.  This
      patch should keep these sort of things from happening in the future since we
      won't be able to allocate free'd dev extents until after the transaction
      commits.  This has passed all of the xfstests and my super annoying stress test
      followed by a balance.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      6df9a95e
  26. 14 6月, 2013 3 次提交
    • M
      Btrfs: make the state of the transaction more readable · 4a9d8bde
      Miao Xie 提交于
      We used 3 variants to track the state of the transaction, it was complex
      and wasted the memory space. Besides that, it was hard to understand that
      which types of the transaction handles should be blocked in each transaction
      state, so the developers often made mistakes.
      
      This patch improved the above problem. In this patch, we define 6 states
      for the transaction,
        enum btrfs_trans_state {
      	TRANS_STATE_RUNNING		= 0,
      	TRANS_STATE_BLOCKED		= 1,
      	TRANS_STATE_COMMIT_START	= 2,
      	TRANS_STATE_COMMIT_DOING	= 3,
      	TRANS_STATE_UNBLOCKED		= 4,
      	TRANS_STATE_COMPLETED		= 5,
      	TRANS_STATE_MAX			= 6,
        }
      and just use 1 variant to track those state.
      
      In order to make the blocked handle types for each state more clear,
      we introduce a array:
        unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
      	[TRANS_STATE_RUNNING]		= 0U,
      	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
      					   __TRANS_START),
      	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
      					   __TRANS_START |
      					   __TRANS_ATTACH),
      	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
      					   __TRANS_START |
      					   __TRANS_ATTACH |
      					   __TRANS_JOIN),
      	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
      					   __TRANS_START |
      					   __TRANS_ATTACH |
      					   __TRANS_JOIN |
      					   __TRANS_JOIN_NOLOCK),
      	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
      					   __TRANS_START |
      					   __TRANS_ATTACH |
      					   __TRANS_JOIN |
      					   __TRANS_JOIN_NOLOCK),
        }
      it is very intuitionistic.
      
      Besides that, because we remove ->in_commit in transaction structure, so
      the lock ->commit_lock which was used to protect it is unnecessary, remove
      ->commit_lock.
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      4a9d8bde
    • M
      Btrfs: remove unnecessary varient ->num_joined in btrfs_transaction structure · 3f1e3fa6
      Miao Xie 提交于
      We used ->num_joined track if there were some writers which join the current
      transaction when the committer was sleeping. If some writers joined the current
      transaction, we has to continue the while loop to do some necessary stuff, such
      as flush the ordered operations. But it is unnecessary because we will do it
      after the while loop.
      
      Besides that, tracking ->num_joined would make the committer drop into the while
      loop when there are lots of internal writers(TRANS_JOIN).
      
      So we remove ->num_joined and don't track if there are some writers which join
      the current transaction when the committer is sleeping.
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      3f1e3fa6
    • M
      Btrfs: don't wait for all the writers circularly during the transaction commit · 0860adfd
      Miao Xie 提交于
      btrfs_commit_transaction has the following loop before we commit the
      transaction.
      
      do {
          // attempt to do some useful stuff and/or sleep
      } while (atomic_read(&cur_trans->num_writers) > 1 ||
      	 (should_grow && cur_trans->num_joined != joined));
      
      This is used to prevent from the TRANS_START to get in the way of a
      committing transaction. But it does not prevent from TRANS_JOIN, that
      is we would do this loop for a long time if some writers JOIN the
      current transaction endlessly.
      
      Because we need join the current transaction to do some useful stuff,
      we can not block TRANS_JOIN here. So we introduce a external writer
      counter, which is used to count the TRANS_USERSPACE/TRANS_START writers.
      If the external writer counter is zero, we can break the above loop.
      
      In order to make the code more clear, we don't use enum variant
      to define the type of the transaction handle, use bitmask instead.
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      0860adfd
  27. 07 5月, 2013 2 次提交
    • E
      btrfs: make static code static & remove dead code · 48a3b636
      Eric Sandeen 提交于
      Big patch, but all it does is add statics to functions which
      are in fact static, then remove the associated dead-code fallout.
      
      removed functions:
      
      btrfs_iref_to_path()
      __btrfs_lookup_delayed_deletion_item()
      __btrfs_search_delayed_insertion_item()
      __btrfs_search_delayed_deletion_item()
      find_eb_for_page()
      btrfs_find_block_group()
      range_straddles_pages()
      extent_range_uptodate()
      btrfs_file_extent_length()
      btrfs_scrub_cancel_devid()
      btrfs_start_transaction_lflush()
      
      btrfs_print_tree() is left because it is used for debugging.
      btrfs_start_transaction_lflush() and btrfs_reada_detach() are
      left for symmetry.
      
      ulist.c functions are left, another patch will take care of those.
      Signed-off-by: NEric Sandeen <sandeen@redhat.com>
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      48a3b636
    • D
      btrfs: clean snapshots one by one · 9d1a2a3a
      David Sterba 提交于
      Each time pick one dead root from the list and let the caller know if
      it's needed to continue. This should improve responsiveness during
      umount and balance which at some point waits for cleaning all currently
      queued dead roots.
      
      A new dead root is added to the end of the list, so the snapshots
      disappear in the order of deletion.
      
      The snapshot cleaning work is now done only from the cleaner thread and the
      others wake it if needed.
      Signed-off-by: NDavid Sterba <dsterba@suse.cz>
      Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
      9d1a2a3a
  28. 01 3月, 2013 2 次提交