1. 25 4月, 2014 1 次提交
    • C
      blk-mq: respect rq_affinity · 38535201
      Christoph Hellwig 提交于
      The blk-mq code is using it's own version of the I/O completion affinity
      tunables, which causes a few issues:
      
       - the rq_affinity sysfs file doesn't work for blk-mq devices, even if it
         still is present, thus breaking existing tuning setups.
       - the rq_affinity = 1 mode, which is the defauly for legacy request based
         drivers isn't implemented at all.
       - blk-mq drivers don't implement any completion affinity with the default
         flag settings.
      
      This patches removes the blk-mq ipi_redirect flag and sysfs file, as well
      as the internal BLK_MQ_F_SHOULD_IPI flag and replaces it with code that
      respects the queue-wide rq_affinity flags and also implements the
      rq_affinity = 1 mode.
      
      This means I/O completion affinity can now only be tuned block-queue wide
      instead of per context, which seems more sensible to me anyway.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      38535201
  2. 24 4月, 2014 1 次提交
    • J
      blk-mq: fix race with timeouts and requeue events · 87ee7b11
      Jens Axboe 提交于
      If a requeue event races with a timeout, we can get into the
      situation where we attempt to complete a request from the
      timeout handler when it's not start anymore. This causes a crash.
      So have the timeout handler check that REQ_ATOM_STARTED is still
      set on the request - if not, we ignore the event. If this happens,
      the request has now been marked as complete. As a consequence, we
      need to ensure to clear REQ_ATOM_COMPLETE in blk_mq_start_request(),
      as to maintain proper request state.
      Signed-off-by: NJens Axboe <axboe@fb.com>
      87ee7b11
  3. 16 4月, 2014 3 次提交
  4. 21 3月, 2014 2 次提交
  5. 22 2月, 2014 1 次提交
  6. 11 2月, 2014 2 次提交
    • C
      blk-mq: rework flush sequencing logic · 18741986
      Christoph Hellwig 提交于
      Witch to using a preallocated flush_rq for blk-mq similar to what's done
      with the old request path.  This allows us to set up the request properly
      with a tag from the actually allowed range and ->rq_disk as needed by
      some drivers.  To make life easier we also switch to dynamic allocation
      of ->flush_rq for the old path.
      
      This effectively reverts most of
      
          "blk-mq: fix for flush deadlock"
      
      and
      
          "blk-mq: Don't reserve a tag for flush request"
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      18741986
    • C
      blk-mq: rework I/O completions · 30a91cb4
      Christoph Hellwig 提交于
      Rework I/O completions to work more like the old code path.  blk_mq_end_io
      now stays out of the business of deferring completions to others CPUs
      and calling blk_mark_rq_complete.  The latter is very important to allow
      completing requests that have timed out and thus are already marked completed,
      the former allows using the IPI callout even for driver specific completions
      instead of having to reimplement them.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      30a91cb4
  7. 09 1月, 2014 1 次提交
  8. 01 1月, 2014 2 次提交
  9. 25 10月, 2013 1 次提交
    • J
      blk-mq: new multi-queue block IO queueing mechanism · 320ae51f
      Jens Axboe 提交于
      Linux currently has two models for block devices:
      
      - The classic request_fn based approach, where drivers use struct
        request units for IO. The block layer provides various helper
        functionalities to let drivers share code, things like tag
        management, timeout handling, queueing, etc.
      
      - The "stacked" approach, where a driver squeezes in between the
        block layer and IO submitter. Since this bypasses the IO stack,
        driver generally have to manage everything themselves.
      
      With drivers being written for new high IOPS devices, the classic
      request_fn based driver doesn't work well enough. The design dates
      back to when both SMP and high IOPS was rare. It has problems with
      scaling to bigger machines, and runs into scaling issues even on
      smaller machines when you have IOPS in the hundreds of thousands
      per device.
      
      The stacked approach is then most often selected as the model
      for the driver. But this means that everybody has to re-invent
      everything, and along with that we get all the problems again
      that the shared approach solved.
      
      This commit introduces blk-mq, block multi queue support. The
      design is centered around per-cpu queues for queueing IO, which
      then funnel down into x number of hardware submission queues.
      We might have a 1:1 mapping between the two, or it might be
      an N:M mapping. That all depends on what the hardware supports.
      
      blk-mq provides various helper functions, which include:
      
      - Scalable support for request tagging. Most devices need to
        be able to uniquely identify a request both in the driver and
        to the hardware. The tagging uses per-cpu caches for freed
        tags, to enable cache hot reuse.
      
      - Timeout handling without tracking request on a per-device
        basis. Basically the driver should be able to get a notification,
        if a request happens to fail.
      
      - Optional support for non 1:1 mappings between issue and
        submission queues. blk-mq can redirect IO completions to the
        desired location.
      
      - Support for per-request payloads. Drivers almost always need
        to associate a request structure with some driver private
        command structure. Drivers can tell blk-mq this at init time,
        and then any request handed to the driver will have the
        required size of memory associated with it.
      
      - Support for merging of IO, and plugging. The stacked model
        gets neither of these. Even for high IOPS devices, merging
        sequential IO reduces per-command overhead and thus
        increases bandwidth.
      
      For now, this is provided as a potential 3rd queueing model, with
      the hope being that, as it matures, it can replace both the classic
      and stacked model. That would get us back to having just 1 real
      model for block devices, leaving the stacked approach to dm/md
      devices (as it was originally intended).
      
      Contributions in this patch from the following people:
      
      Shaohua Li <shli@fusionio.com>
      Alexander Gordeev <agordeev@redhat.com>
      Christoph Hellwig <hch@infradead.org>
      Mike Christie <michaelc@cs.wisc.edu>
      Matias Bjorling <m@bjorling.me>
      Jeff Moyer <jmoyer@redhat.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJens Axboe <axboe@kernel.dk>
      320ae51f