1. 07 1月, 2006 4 次提交
  2. 29 11月, 2005 2 次提交
    • H
      [PATCH] m32r: M3A-2170(Mappi-III) IDE support · ad09d583
      Hirokazu Takata 提交于
      This patch is for supporting IDE interface for M3A-2170(Mappi-III) board.
      Signed-off-by: NMamoru Sakugawa <sakugawa@linux-m32r.org>
      Signed-off-by: NHirokazu Takata <takata@linux-m32r.org>
      Cc: Bartlomiej Zolnierkiewicz <B.Zolnierkiewicz@elka.pw.edu.pl>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      ad09d583
    • H
      [PATCH] m32r: Fix sys_tas() syscall · 91f4ab05
      Hirokazu Takata 提交于
      This patch fixes a deadlock problem of the m32r SMP kernel.
      
      In the m32r kernel, sys_tas() system call is provided as a test-and-set
      function for userspace, for backward compatibility.
      
      In some multi-threading application program, deadlocks were rarely caused
      at sys_tas() funcion.  Such a deadlock was caused due to a collision of
      __pthread_lock() and __pthread_unlock() operations.
      
      The "tas" syscall is repeatedly called by pthread_mutex_lock() to get a
      lock, while a lock variable's value is not 0.  On the other hand,
      pthead_mutex_unlock() sets the lock variable to 0 for unlocking.
      
      In the previous implementation of sys_tas() routine, there was a
      possibility that a unlock operation was ignored in the following case:
      
      - Assume a lock variable (*addr) was equal to 1 before sys_tas() execution.
      - __pthread_unlock() operation is executed by the other processor
        and the lock variable (*addr) is set to 0, between a read operation
        ("oldval = *addr;") and the following write operation ("*addr = 1;")
        during a execution of sys_tas().
      
      In this case, the following write operation ("*addr = 1;") overwrites the
      __pthread_unlock() result, and sys_tas() fails to get a lock in the next
      turn and after that.
      
      According to the attatched patch, sys_tas() returns 0 value in the next
      turn and deadlocks never happen.
      Signed-off-by: NHitoshi Yamamoto <Yamamoto.Hitoshi@ap.MitsubishiElectric.co.jp>
      Signed-off-by: NHirokazu Takata <takata@linux-m32r.org>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      91f4ab05
  3. 09 11月, 2005 1 次提交
    • N
      [PATCH] sched: disable preempt in idle tasks · 5bfb5d69
      Nick Piggin 提交于
      Run idle threads with preempt disabled.
      
      Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()).
      How did it ever work before?
      
      Might fix the CPU hotplugging hang which Nigel Cunningham noted.
      
      We think the bug hits if the idle thread is preempted after checking
      need_resched() and before going to sleep, then the CPU offlined.
      
      After calling stop_machine_run, the CPU eventually returns from preemption and
      into the idle thread and goes to sleep.  The CPU will continue executing
      previous idle and have no chance to call play_dead.
      
      By disabling preemption until we are ready to explicitly schedule, this bug is
      fixed and the idle threads generally become more robust.
      
      From: alexs <ashepard@u.washington.edu>
      
        PPC build fix
      
      From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
      
        MIPS build fix
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Signed-off-by: NYoichi Yuasa <yuasa@hh.iij4u.or.jp>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      5bfb5d69
  4. 31 10月, 2005 6 次提交
  5. 30 10月, 2005 1 次提交
  6. 15 10月, 2005 1 次提交
  7. 12 10月, 2005 1 次提交
  8. 11 9月, 2005 1 次提交
    • I
      [PATCH] spinlock consolidation · fb1c8f93
      Ingo Molnar 提交于
      This patch (written by me and also containing many suggestions of Arjan van
      de Ven) does a major cleanup of the spinlock code.  It does the following
      things:
      
       - consolidates and enhances the spinlock/rwlock debugging code
      
       - simplifies the asm/spinlock.h files
      
       - encapsulates the raw spinlock type and moves generic spinlock
         features (such as ->break_lock) into the generic code.
      
       - cleans up the spinlock code hierarchy to get rid of the spaghetti.
      
      Most notably there's now only a single variant of the debugging code,
      located in lib/spinlock_debug.c.  (previously we had one SMP debugging
      variant per architecture, plus a separate generic one for UP builds)
      
      Also, i've enhanced the rwlock debugging facility, it will now track
      write-owners.  There is new spinlock-owner/CPU-tracking on SMP builds too.
      All locks have lockup detection now, which will work for both soft and hard
      spin/rwlock lockups.
      
      The arch-level include files now only contain the minimally necessary
      subset of the spinlock code - all the rest that can be generalized now
      lives in the generic headers:
      
       include/asm-i386/spinlock_types.h       |   16
       include/asm-x86_64/spinlock_types.h     |   16
      
      I have also split up the various spinlock variants into separate files,
      making it easier to see which does what. The new layout is:
      
         SMP                         |  UP
         ----------------------------|-----------------------------------
         asm/spinlock_types_smp.h    |  linux/spinlock_types_up.h
         linux/spinlock_types.h      |  linux/spinlock_types.h
         asm/spinlock_smp.h          |  linux/spinlock_up.h
         linux/spinlock_api_smp.h    |  linux/spinlock_api_up.h
         linux/spinlock.h            |  linux/spinlock.h
      
      /*
       * here's the role of the various spinlock/rwlock related include files:
       *
       * on SMP builds:
       *
       *  asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
       *                        initializers
       *
       *  linux/spinlock_types.h:
       *                        defines the generic type and initializers
       *
       *  asm/spinlock.h:       contains the __raw_spin_*()/etc. lowlevel
       *                        implementations, mostly inline assembly code
       *
       *   (also included on UP-debug builds:)
       *
       *  linux/spinlock_api_smp.h:
       *                        contains the prototypes for the _spin_*() APIs.
       *
       *  linux/spinlock.h:     builds the final spin_*() APIs.
       *
       * on UP builds:
       *
       *  linux/spinlock_type_up.h:
       *                        contains the generic, simplified UP spinlock type.
       *                        (which is an empty structure on non-debug builds)
       *
       *  linux/spinlock_types.h:
       *                        defines the generic type and initializers
       *
       *  linux/spinlock_up.h:
       *                        contains the __raw_spin_*()/etc. version of UP
       *                        builds. (which are NOPs on non-debug, non-preempt
       *                        builds)
       *
       *   (included on UP-non-debug builds:)
       *
       *  linux/spinlock_api_up.h:
       *                        builds the _spin_*() APIs.
       *
       *  linux/spinlock.h:     builds the final spin_*() APIs.
       */
      
      All SMP and UP architectures are converted by this patch.
      
      arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
      crosscompilers.  m32r, mips, sh, sparc, have not been tested yet, but should
      be mostly fine.
      
      From: Grant Grundler <grundler@parisc-linux.org>
      
        Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
        Builds 32-bit SMP kernel (not booted or tested).  I did not try to build
        non-SMP kernels.  That should be trivial to fix up later if necessary.
      
        I converted bit ops atomic_hash lock to raw_spinlock_t.  Doing so avoids
        some ugly nesting of linux/*.h and asm/*.h files.  Those particular locks
        are well tested and contained entirely inside arch specific code.  I do NOT
        expect any new issues to arise with them.
      
       If someone does ever need to use debug/metrics with them, then they will
        need to unravel this hairball between spinlocks, atomic ops, and bit ops
        that exist only because parisc has exactly one atomic instruction: LDCW
        (load and clear word).
      
      From: "Luck, Tony" <tony.luck@intel.com>
      
         ia64 fix
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      Signed-off-by: NArjan van de Ven <arjanv@infradead.org>
      Signed-off-by: NGrant Grundler <grundler@parisc-linux.org>
      Cc: Matthew Wilcox <willy@debian.org>
      Signed-off-by: NHirokazu Takata <takata@linux-m32r.org>
      Signed-off-by: NMikael Pettersson <mikpe@csd.uu.se>
      Signed-off-by: NBenoit Boissinot <benoit.boissinot@ens-lyon.org>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      fb1c8f93
  9. 10 9月, 2005 1 次提交
  10. 08 9月, 2005 1 次提交
  11. 30 8月, 2005 1 次提交
    • S
      [PATCH] convert signal handling of NODEFER to act like other Unix boxes. · 69be8f18
      Steven Rostedt 提交于
      It has been reported that the way Linux handles NODEFER for signals is
      not consistent with the way other Unix boxes handle it.  I've written a
      program to test the behavior of how this flag affects signals and had
      several reports from people who ran this on various Unix boxes,
      confirming that Linux seems to be unique on the way this is handled.
      
      The way NODEFER affects signals on other Unix boxes is as follows:
      
      1) If NODEFER is set, other signals in sa_mask are still blocked.
      
      2) If NODEFER is set and the signal is in sa_mask, then the signal is
      still blocked. (Note: this is the behavior of all tested but Linux _and_
      NetBSD 2.0 *).
      
      The way NODEFER affects signals on Linux:
      
      1) If NODEFER is set, other signals are _not_ blocked regardless of
      sa_mask (Even NetBSD doesn't do this).
      
      2) If NODEFER is set and the signal is in sa_mask, then the signal being
      handled is not blocked.
      
      The patch converts signal handling in all current Linux architectures to
      the way most Unix boxes work.
      
      Unix boxes that were tested:  DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU
      3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX.
      
      * NetBSD was the only other Unix to behave like Linux on point #2. The
      main concern was brought up by point #1 which even NetBSD isn't like
      Linux.  So with this patch, we leave NetBSD as the lonely one that
      behaves differently here with #2.
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      69be8f18
  12. 24 8月, 2005 2 次提交
  13. 02 8月, 2005 1 次提交
    • H
      [PATCH] m32r: Fix local-timer event handling · 2757a71c
      Hirokazu Takata 提交于
      There was a scheduling problem of the m32r SMP kernel; A process rarely
      stopped and gave no responding but the other process have been handled by
      the other CPU still lives, then if we did something in the other terminal
      or something like that, the stopped process came back to life and continued
      its operation...  (ex.  LMbench: lat_sig)
      
      In the m32r SMP kernel, a local-timer event is delivered by using an
      IPI(inter processor interrupts); LOCAL_TIMER_IPI.  And a function
      smp_send_timer() is prepared to send the LOCAL_TIMER_IPI from the current
      CPU to the other CPUs.
      
      The funtion smp_send_timer() was placed and used in do_IRQ() in
      former times (before 2.6.10-rc3-mm1 kernel), however, it was
      unintentionally removed when arch/m32r/kernel/irq.c was modified to
      employ the generic hardirq framework (CONFIG_GENERIC_HARDIRQ) in
      my previous patch.
      
        [PATCH 2.6.10-rc3-mm1] m32r: Use generic hardirq framework
        http://www.ussg.iu.edu/hypermail/linux/kernel/0412.2/0358.html
      
      The following patch fixes the above problem.
      Signed-off-by: NHitoshi Yamamoto <hitoshiy@isl.melco.co.jp>
      Signed-off-by: NHirokazu Takata <takata@linux-m32r.org>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      2757a71c
  14. 27 7月, 2005 1 次提交
  15. 08 7月, 2005 1 次提交
  16. 26 6月, 2005 1 次提交
    • C
      [PATCH] Cleanup patch for process freezing · 3e1d1d28
      Christoph Lameter 提交于
      1. Establish a simple API for process freezing defined in linux/include/sched.h:
      
         frozen(process)		Check for frozen process
         freezing(process)		Check if a process is being frozen
         freeze(process)		Tell a process to freeze (go to refrigerator)
         thaw_process(process)	Restart process
         frozen_process(process)	Process is frozen now
      
      2. Remove all references to PF_FREEZE and PF_FROZEN from all
         kernel sources except sched.h
      
      3. Fix numerous locations where try_to_freeze is manually done by a driver
      
      4. Remove the argument that is no longer necessary from two function calls.
      
      5. Some whitespace cleanup
      
      6. Clear potential race in refrigerator (provides an open window of PF_FREEZE
         cleared before setting PF_FROZEN, recalc_sigpending does not check
         PF_FROZEN).
      
      This patch does not address the problem of freeze_processes() violating the rule
      that a task may only modify its own flags by setting PF_FREEZE. This is not clean
      in an SMP environment. freeze(process) is therefore not SMP safe!
      Signed-off-by: NChristoph Lameter <christoph@lameter.com>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      3e1d1d28
  17. 22 6月, 2005 2 次提交
  18. 01 5月, 2005 1 次提交
  19. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4