- 05 9月, 2012 14 次提交
-
-
由 Pekka Enberg 提交于
This reverts commit 96d17b7b which caused the following errors at boot: [ 1.114885] kobject (ffff88001a802578): tried to init an initialized object, something is seriously wrong. [ 1.114885] Pid: 1, comm: swapper/0 Tainted: G W 3.6.0-rc1+ #6 [ 1.114885] Call Trace: [ 1.114885] [<ffffffff81273f37>] kobject_init+0x87/0xa0 [ 1.115555] [<ffffffff8127426a>] kobject_init_and_add+0x2a/0x90 [ 1.115555] [<ffffffff8127c870>] ? sprintf+0x40/0x50 [ 1.115555] [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210 [ 1.115555] [<ffffffff81100175>] kmem_cache_create+0xa5/0x250 [ 1.115555] [<ffffffff81cf24cd>] ? md_init+0x144/0x144 [ 1.115555] [<ffffffff81cf25b6>] local_init+0xa4/0x11b [ 1.115555] [<ffffffff81cf24e1>] dm_init+0x14/0x45 [ 1.115836] [<ffffffff810001ba>] do_one_initcall+0x3a/0x160 [ 1.116834] [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7 [ 1.117835] [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86 [ 1.117835] [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10 [ 1.118401] [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f [ 1.119832] [<ffffffff8171aff0>] ? gs_change+0xb/0xb [ 1.120325] ------------[ cut here ]------------ [ 1.120835] WARNING: at fs/sysfs/dir.c:536 sysfs_add_one+0xc1/0xf0() [ 1.121437] sysfs: cannot create duplicate filename '/kernel/slab/:t-0000016' [ 1.121831] Modules linked in: [ 1.122138] Pid: 1, comm: swapper/0 Tainted: G W 3.6.0-rc1+ #6 [ 1.122831] Call Trace: [ 1.123074] [<ffffffff81195ce1>] ? sysfs_add_one+0xc1/0xf0 [ 1.123833] [<ffffffff8103adfa>] warn_slowpath_common+0x7a/0xb0 [ 1.124405] [<ffffffff8103aed1>] warn_slowpath_fmt+0x41/0x50 [ 1.124832] [<ffffffff81195ce1>] sysfs_add_one+0xc1/0xf0 [ 1.125337] [<ffffffff81195eb3>] create_dir+0x73/0xd0 [ 1.125832] [<ffffffff81196221>] sysfs_create_dir+0x81/0xe0 [ 1.126363] [<ffffffff81273d3d>] kobject_add_internal+0x9d/0x210 [ 1.126832] [<ffffffff812742a3>] kobject_init_and_add+0x63/0x90 [ 1.127406] [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210 [ 1.127832] [<ffffffff81100175>] kmem_cache_create+0xa5/0x250 [ 1.128384] [<ffffffff81cf24cd>] ? md_init+0x144/0x144 [ 1.128833] [<ffffffff81cf25b6>] local_init+0xa4/0x11b [ 1.129831] [<ffffffff81cf24e1>] dm_init+0x14/0x45 [ 1.130305] [<ffffffff810001ba>] do_one_initcall+0x3a/0x160 [ 1.130831] [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7 [ 1.131351] [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86 [ 1.131830] [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10 [ 1.132392] [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f [ 1.132830] [<ffffffff8171aff0>] ? gs_change+0xb/0xb [ 1.133315] ---[ end trace 2703540871c8fab7 ]--- [ 1.133830] ------------[ cut here ]------------ [ 1.134274] WARNING: at lib/kobject.c:196 kobject_add_internal+0x1f5/0x210() [ 1.134829] kobject_add_internal failed for :t-0000016 with -EEXIST, don't try to register things with the same name in the same directory. [ 1.135829] Modules linked in: [ 1.136135] Pid: 1, comm: swapper/0 Tainted: G W 3.6.0-rc1+ #6 [ 1.136828] Call Trace: [ 1.137071] [<ffffffff81273e95>] ? kobject_add_internal+0x1f5/0x210 [ 1.137830] [<ffffffff8103adfa>] warn_slowpath_common+0x7a/0xb0 [ 1.138402] [<ffffffff8103aed1>] warn_slowpath_fmt+0x41/0x50 [ 1.138830] [<ffffffff811955a3>] ? release_sysfs_dirent+0x73/0xf0 [ 1.139419] [<ffffffff81273e95>] kobject_add_internal+0x1f5/0x210 [ 1.139830] [<ffffffff812742a3>] kobject_init_and_add+0x63/0x90 [ 1.140429] [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210 [ 1.140830] [<ffffffff81100175>] kmem_cache_create+0xa5/0x250 [ 1.141829] [<ffffffff81cf24cd>] ? md_init+0x144/0x144 [ 1.142307] [<ffffffff81cf25b6>] local_init+0xa4/0x11b [ 1.142829] [<ffffffff81cf24e1>] dm_init+0x14/0x45 [ 1.143307] [<ffffffff810001ba>] do_one_initcall+0x3a/0x160 [ 1.143829] [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7 [ 1.144352] [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86 [ 1.144829] [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10 [ 1.145405] [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f [ 1.145828] [<ffffffff8171aff0>] ? gs_change+0xb/0xb [ 1.146313] ---[ end trace 2703540871c8fab8 ]--- Conflicts: mm/slub.c Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Get rid of the refcount stuff in the allocators and do that part of kmem_cache management in the common code. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Do the initial settings of the fields in common code. This will allow us to push more processing into common code later and improve readability. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Shift the allocations to common code. That way the allocation and freeing of the kmem_cache structures is handled by common code. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Simplify locking by moving the slab_add_sysfs after all locks have been dropped. Eases the upcoming move to provide sysfs support for all allocators. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The slab aliasing logic causes some strange contortions in slub. So add a call to deal with aliases to slab_common.c but disable it for other slab allocators by providng stubs that fail to create aliases. Full general support for aliases will require additional cleanup passes and more standardization of fields in kmem_cache. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Duping of the slabname has to be done by each slab. Moving this code to slab_common avoids duplicate implementations. With this patch we have common string handling for all slab allocators. Strings passed to kmem_cache_create() are copied internally. Subsystems can create temporary strings to create slab caches. Slabs allocated in early states of bootstrap will never be freed (and those can never be freed since they are essential to slab allocator operations). During bootstrap we therefore do not have to worry about duping names. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
What is done there can be done in __kmem_cache_shutdown. This affects RCU handling somewhat. On rcu free all slab allocators do not refer to other management structures than the kmem_cache structure. Therefore these other structures can be freed before the rcu deferred free to the page allocator occurs. Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The freeing action is basically the same in all slab allocators. Move to the common kmem_cache_destroy() function. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Make all allocators use the "kmem_cache" slabname for the "kmem_cache" structure. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
kmem_cache_destroy does basically the same in all allocators. Extract common code which is easy since we already have common mutex handling. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Move the code to append the new kmem_cache to the list of slab caches to the kmem_cache_create code in the shared code. This is possible now since the acquisition of the mutex was moved into kmem_cache_create(). Acked-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Do not use kmalloc() but kmem_cache_alloc() for the allocation of the kmem_cache structures in slub. Reviewed-by: NGlauber Costa <glommer@parallels.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Add additional debugging to check that the objects is actually from the cache the caller claims. Doing so currently trips up some other debugging code. It takes a lot to infer from that what was happening. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> [ penberg@kernel.org: Use pr_err() ] Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 16 8月, 2012 3 次提交
-
-
由 Joonsoo Kim 提交于
In current implementation, after unfreezing, we doesn't touch oldpage, so it remain 'NOT NULL'. When we call this_cpu_cmpxchg() with this old oldpage, this_cpu_cmpxchg() is mostly be failed. We can change value of oldpage to NULL after unfreezing, because unfreeze_partial() ensure that all the cpu partial slabs is removed from cpu partial list. In this time, we could expect that this_cpu_cmpxchg is mostly succeed. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Only applies to scenarios where debugging is on: Validation of slabs can currently occur while debugging information is updated from the fast paths of the allocator. This results in various races where we get false reports about slab metadata not being in order. This patch makes the fast paths take the node lock so that serialization with slab validation will occur. Causes additional slowdown in debug scenarios. Reported-by: NWaiman Long <Waiman.Long@hp.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Glauber Costa 提交于
When freeing objects, the slub allocator will most of the time free empty pages by calling __free_pages(). But high-order kmalloc will be diposed by means of put_page() instead. It makes no sense to call put_page() in kernel pages that are provided by the object allocators, so we shouldn't be doing this ourselves. Aside from the consistency change, we don't change the flow too much. put_page()'s would call its dtor function, which is __free_pages. We also already do all of the Compound page tests ourselves, and the Mlock test we lose don't really matter. Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> CC: David Rientjes <rientjes@google.com> CC: Pekka Enberg <penberg@kernel.org> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 01 8月, 2012 2 次提交
-
-
由 Christoph Lameter 提交于
This patch removes the check for pfmemalloc from the alloc hotpath and puts the logic after the election of a new per cpu slab. For a pfmemalloc page we do not use the fast path but force the use of the slow path which is also used for the debug case. This has the side-effect of weakening pfmemalloc processing in the following way; 1. A process that is allocating for network swap calls __slab_alloc. pfmemalloc_match is true so the freelist is loaded and c->freelist is now pointing to a pfmemalloc page. 2. A process that is attempting normal allocations calls slab_alloc, finds the pfmemalloc page on the freelist and uses it because it did not check pfmemalloc_match() The patch allows non-pfmemalloc allocations to use pfmemalloc pages with the kmalloc slabs being the most vunerable caches on the grounds they are most likely to have a mix of pfmemalloc and !pfmemalloc requests. A later patch will still protect the system as processes will get throttled if the pfmemalloc reserves get depleted but performance will not degrade as smoothly. [mgorman@suse.de: Expanded changelog] Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. Swap over the network is considered as an option in diskless systems. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap according to the manual at https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download There is also documentation and tutorials on how to setup swap over NBD at places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The nbd-client also documents the use of NBD as swap. Despite this, the fact is that a machine using NBD for swap can deadlock within minutes if swap is used intensively. This patch series addresses the problem. The core issue is that network block devices do not use mempools like normal block devices do. As the host cannot control where they receive packets from, they cannot reliably work out in advance how much memory they might need. Some years ago, Peter Zijlstra developed a series of patches that supported swap over an NFS that at least one distribution is carrying within their kernels. This patch series borrows very heavily from Peter's work to support swapping over NBD as a pre-requisite to supporting swap-over-NFS. The bulk of the complexity is concerned with preserving memory that is allocated from the PFMEMALLOC reserves for use by the network layer which is needed for both NBD and NFS. Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to preserve access to pages allocated under low memory situations to callers that are freeing memory. Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC reserves without setting PFMEMALLOC. Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves for later use by network packet processing. Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set. Patches 7-12 allows network processing to use PFMEMALLOC reserves when the socket has been marked as being used by the VM to clean pages. If packets are received and stored in pages that were allocated under low-memory situations and are unrelated to the VM, the packets are dropped. Patch 11 reintroduces __skb_alloc_page which the networking folk may object to but is needed in some cases to propogate pfmemalloc from a newly allocated page to an skb. If there is a strong objection, this patch can be dropped with the impact being that swap-over-network will be slower in some cases but it should not fail. Patch 13 is a micro-optimisation to avoid a function call in the common case. Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use PFMEMALLOC if necessary. Patch 15 notes that it is still possible for the PFMEMALLOC reserve to be depleted. To prevent this, direct reclaimers get throttled on a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is expected that kswapd and the direct reclaimers already running will clean enough pages for the low watermark to be reached and the throttled processes are woken up. Patch 16 adds a statistic to track how often processes get throttled Some basic performance testing was run using kernel builds, netperf on loopback for UDP and TCP, hackbench (pipes and sockets), iozone and sysbench. Each of them were expected to use the sl*b allocators reasonably heavily but there did not appear to be significant performance variances. For testing swap-over-NBD, a machine was booted with 2G of RAM with a swapfile backed by NBD. 8*NUM_CPU processes were started that create anonymous memory mappings and read them linearly in a loop. The total size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under memory pressure. Without the patches and using SLUB, the machine locks up within minutes and runs to completion with them applied. With SLAB, the story is different as an unpatched kernel run to completion. However, the patched kernel completed the test 45% faster. MICRO 3.5.0-rc2 3.5.0-rc2 vanilla swapnbd Unrecognised test vmscan-anon-mmap-write MMTests Statistics: duration Sys Time Running Test (seconds) 197.80 173.07 User+Sys Time Running Test (seconds) 206.96 182.03 Total Elapsed Time (seconds) 3240.70 1762.09 This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages Allocations of pages below the min watermark run a risk of the machine hanging due to a lack of memory. To prevent this, only callers who have PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to a slab though, nothing prevents other callers consuming free objects within those slabs. This patch limits access to slab pages that were alloced from the PFMEMALLOC reserves. When this patch is applied, pages allocated from below the low watermark are returned with page->pfmemalloc set and it is up to the caller to determine how the page should be protected. SLAB restricts access to any page with page->pfmemalloc set to callers which are known to able to access the PFMEMALLOC reserve. If one is not available, an attempt is made to allocate a new page rather than use a reserve. SLUB is a bit more relaxed in that it only records if the current per-CPU page was allocated from PFMEMALLOC reserve and uses another partial slab if the caller does not have the necessary GFP or process flags. This was found to be sufficient in tests to avoid hangs due to SLUB generally maintaining smaller lists than SLAB. In low-memory conditions it does mean that !PFMEMALLOC allocators can fail a slab allocation even though free objects are available because they are being preserved for callers that are freeing pages. [a.p.zijlstra@chello.nl: Original implementation] [sebastian@breakpoint.cc: Correct order of page flag clearing] Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 7月, 2012 1 次提交
-
-
由 David Rientjes 提交于
kmemcheck_alloc_shadow() requires irqs to be enabled, so wait to disable them until after its called for __GFP_WAIT allocations. This fixes a warning for such allocations: WARNING: at kernel/lockdep.c:2739 lockdep_trace_alloc+0x14e/0x1c0() Acked-by: NFengguang Wu <fengguang.wu@intel.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Tested-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 09 7月, 2012 5 次提交
-
-
由 Christoph Lameter 提交于
Move the mutex handling into the common kmem_cache_create() function. Then we can also move more checks out of SLAB's kmem_cache_create() into the common code. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Use the mutex definition from SLAB and make it the common way to take a sleeping lock. This has the effect of using a mutex instead of a rw semaphore for SLUB. SLOB gains the use of a mutex for kmem_cache_create serialization. Not needed now but SLOB may acquire some more features later (like slabinfo / sysfs support) through the expansion of the common code that will need this. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
All allocators have some sort of support for the bootstrap status. Setup a common definition for the boot states and make all slab allocators use that definition. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Kmem_cache_create() does a variety of sanity checks but those vary depending on the allocator. Use the strictest tests and put them into a slab_common file. Make the tests conditional on CONFIG_DEBUG_VM. This patch has the effect of adding sanity checks for SLUB and SLOB under CONFIG_DEBUG_VM and removes the checks in SLAB for !CONFIG_DEBUG_VM. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Julia Lawall 提交于
If list_for_each_entry, etc complete a traversal of the list, the iterator variable ends up pointing to an address at an offset from the list head, and not a meaningful structure. Thus this value should not be used after the end of the iterator. The patch replaces s->name by al->name, which is referenced nearby. This problem was found using Coccinelle (http://coccinelle.lip6.fr/). Signed-off-by: NJulia Lawall <Julia.Lawall@lip6.fr> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 20 6月, 2012 3 次提交
-
-
由 Joonsoo Kim 提交于
Current implementation of unfreeze_partials() is so complicated, but benefit from it is insignificant. In addition many code in do {} while loop have a bad influence to a fail rate of cmpxchg_double_slab. Under current implementation which test status of cpu partial slab and acquire list_lock in do {} while loop, we don't need to acquire a list_lock and gain a little benefit when front of the cpu partial slab is to be discarded, but this is a rare case. In case that add_partial is performed and cmpxchg_double_slab is failed, remove_partial should be called case by case. I think that these are disadvantages of current implementation, so I do refactoring unfreeze_partials(). Minimizing code in do {} while loop introduce a reduced fail rate of cmpxchg_double_slab. Below is output of 'slabinfo -r kmalloc-256' when './perf stat -r 33 hackbench 50 process 4000 > /dev/null' is done. ** before ** Cmpxchg_double Looping ------------------------ Locked Cmpxchg Double redos 182685 Unlocked Cmpxchg Double redos 0 ** after ** Cmpxchg_double Looping ------------------------ Locked Cmpxchg Double redos 177995 Unlocked Cmpxchg Double redos 1 We can see cmpxchg_double_slab fail rate is improved slightly. Bolow is output of './perf stat -r 30 hackbench 50 process 4000 > /dev/null'. ** before ** Performance counter stats for './hackbench 50 process 4000' (30 runs): 108517.190463 task-clock # 7.926 CPUs utilized ( +- 0.24% ) 2,919,550 context-switches # 0.027 M/sec ( +- 3.07% ) 100,774 CPU-migrations # 0.929 K/sec ( +- 4.72% ) 124,201 page-faults # 0.001 M/sec ( +- 0.15% ) 401,500,234,387 cycles # 3.700 GHz ( +- 0.24% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 250,576,913,354 instructions # 0.62 insns per cycle ( +- 0.13% ) 45,934,956,860 branches # 423.297 M/sec ( +- 0.14% ) 188,219,787 branch-misses # 0.41% of all branches ( +- 0.56% ) 13.691837307 seconds time elapsed ( +- 0.24% ) ** after ** Performance counter stats for './hackbench 50 process 4000' (30 runs): 107784.479767 task-clock # 7.928 CPUs utilized ( +- 0.22% ) 2,834,781 context-switches # 0.026 M/sec ( +- 2.33% ) 93,083 CPU-migrations # 0.864 K/sec ( +- 3.45% ) 123,967 page-faults # 0.001 M/sec ( +- 0.15% ) 398,781,421,836 cycles # 3.700 GHz ( +- 0.22% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 250,189,160,419 instructions # 0.63 insns per cycle ( +- 0.09% ) 45,855,370,128 branches # 425.436 M/sec ( +- 0.10% ) 169,881,248 branch-misses # 0.37% of all branches ( +- 0.43% ) 13.596272341 seconds time elapsed ( +- 0.22% ) No regression is found, but rather we can see slightly better result. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Joonsoo Kim 提交于
get_freelist(), unfreeze_partials() are only called with interrupt disabled, so __cmpxchg_double_slab() is suitable. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Andi Kleen 提交于
slab_node() could access current->mempolicy from interrupt context. However there's a race condition during exit where the mempolicy is first freed and then the pointer zeroed. Using this from interrupts seems bogus anyways. The interrupt will interrupt a random process and therefore get a random mempolicy. Many times, this will be idle's, which noone can change. Just disable this here and always use local for slab from interrupts. I also cleaned up the callers of slab_node a bit which always passed the same argument. I believe the original mempolicy code did that in fact, so it's likely a regression. v2: send version with correct logic v3: simplify. fix typo. Reported-by: NArun Sharma <asharma@fb.com> Cc: penberg@kernel.org Cc: cl@linux.com Signed-off-by: NAndi Kleen <ak@linux.intel.com> [tdmackey@twitter.com: Rework control flow based on feedback from cl@linux.com, fix logic, and cleanup current task_struct reference] Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NDavid Mackey <tdmackey@twitter.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 14 6月, 2012 1 次提交
-
-
由 Christoph Lameter 提交于
Define a struct that describes common fields used in all slab allocators. A slab allocator either uses the common definition (like SLOB) or is required to provide members of kmem_cache with the definition given. After that it will be possible to share code that only operates on those fields of kmem_cache. The patch basically takes the slob definition of kmem cache and uses the field namees for the other allocators. It also standardizes the names used for basic object lengths in allocators: object_size Struct size specified at kmem_cache_create. Basically the payload expected to be used by the subsystem. size The size of memory allocator for each object. This size is larger than object_size and includes padding, alignment and extra metadata for each object (f.e. for debugging and rcu). Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 01 6月, 2012 9 次提交
-
-
由 Christoph Lameter 提交于
Avoid passing the kmem_cache_cpu pointer to node_match. This makes the node_match function more generic and easier to understand. Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Store the value of c->page to avoid additional fetches from per cpu data. Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Processing on fields of kmem_cache_cpu is cleaner if code working on fields of this struct is taken out of deactivate_slab(). Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The node field is always page_to_nid(c->page). So its rather easy to replace. Note that there maybe slightly more overhead in various hot paths due to the need to shift the bits from page->flags. However, that is mostly compensated for by a smaller footprint of the kmem_cache_cpu structure (this patch reduces that to 3 words per cache) which allows better caching. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Moving the attempt to get a slab page from the partial lists simplifies __slab_alloc which is rather complicated. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Simplify control flow a bit avoiding nesting. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Avoid the loop in acquire slab and simply fail if there is a conflict. This will cause the next page on the list to be considered. Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Verify that objects returned from __slab_alloc come from slab pages in the correct state. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The variable "object" really refers to a list of objects that we are handling. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 18 5月, 2012 2 次提交
-
-
由 Joonsoo Kim 提交于
To set page-flag, using SetPageXXXX() and __SetPageXXXX() is more understandable and maintainable. So change it. Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Joonsoo Kim 提交于
In the case which is below, 1. acquire slab for cpu partial list 2. free object to it by remote cpu 3. page->freelist = t then memory leak is occurred. Change acquire_slab() not to zap freelist when it works for cpu partial list. I think it is a sufficient solution for fixing a memory leak. Below is output of 'slabinfo -r kmalloc-256' when './perf stat -r 30 hackbench 50 process 4000 > /dev/null' is done. ***Vanilla*** Sizes (bytes) Slabs Debug Memory ------------------------------------------------------------------------ Object : 256 Total : 468 Sanity Checks : Off Total: 3833856 SlabObj: 256 Full : 111 Redzoning : Off Used : 2004992 SlabSiz: 8192 Partial: 302 Poisoning : Off Loss : 1828864 Loss : 0 CpuSlab: 55 Tracking : Off Lalig: 0 Align : 8 Objects: 32 Tracing : Off Lpadd: 0 ***Patched*** Sizes (bytes) Slabs Debug Memory ------------------------------------------------------------------------ Object : 256 Total : 300 Sanity Checks : Off Total: 2457600 SlabObj: 256 Full : 204 Redzoning : Off Used : 2348800 SlabSiz: 8192 Partial: 33 Poisoning : Off Loss : 108800 Loss : 0 CpuSlab: 63 Tracking : Off Lalig: 0 Align : 8 Objects: 32 Tracing : Off Lpadd: 0 Total and loss number is the impact of this patch. Cc: <stable@vger.kernel.org> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-