- 29 5月, 2009 1 次提交
-
-
由 Mark A. Greer 提交于
The current gpio code needs to know the number of gpio irqs there are and what the bank irq number is. To determine those values, it checks the SoC type. It also assumes that the base address and the number of irqs the interrupt controller uses is fixed. To clean up the SoC checks and make it support different base addresses and interrupt controllers, have the SoC-specific code set those values in the soc_info structure and have the gpio code reference them there. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
- 26 5月, 2009 9 次提交
-
-
由 Mark A. Greer 提交于
The watchdog code currently hardcodes the base address of the timer its using. To support new SoCs, make it support timers at any address. Use the soc_info structure to do this. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
The davinci timer code currently hardcodes the timer register base addresses, the timer irq numbers, and the timers to use for clock events and clocksource. This won't work for some a new SoC so put those values into the soc_info structure and set them up in the SoC-specific files. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
Use the SoC infrastructure to hold the interrupt controller information (i.e., base address, default priorities, interrupt controller type, and the number of IRQs). The interrupt controller base, although initially put in the soc_info structure's intc_base field, is eventually put in the global 'davinci_intc_base' so the low-level interrupt code can access it without a dereference. These changes enable the SoC default irq priorities to be put in the SoC-specific files, and the interrupt controller to be at any base address. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
The pinmux register base and setup can be different for different SoCs so move the pinmux reg base, pinmux table (and its size) to the SoC infrastructure. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
The current code to support the DaVinci Power and Sleep Controller (PSC) assumes that there is only one controller. This assumption is no longer valid so expand the support to allow greater than one PSC. To accomplish this, put the base addresses for the PSCs in the SoC infrastructure so it can be referenced by the PSC code. This also requires adding an extra parameter to davinci_psc_config() to specify the PSC that is to be enabled/disabled. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
All of the davinci SoCs need to call davinci_clk_init() so put the call in the common init routine. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
The Davinci cpu_is_davinci_*() macros use the SoC part number and variant retrieved from the JTAG ID register to determine the type of cpu that the kernel is running on. Currently, the code to read the JTAG ID register assumes that the register is always at the same base address. This isn't true on some newer SoCs. To solve this, have the SoC-specific code set the JTAG ID register base address in soc_info structure and add a 'cpu_id' member to it. 'cpu_id' will be used by the cpu_is_davinci_*() macros to match the cpu id. Also move the info used to identify the cpu type into the SoC-specific code to keep all SoC-specific code together. The common code will read the JTAG ID register, search through an array of davinci_id structures to identify the cpu type. Once identified, it will set the 'cpu_id' member of the soc_info structure to the proper value and the cpu_is_davinci_*() macros will now work. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Mark A. Greer 提交于
Create a structure to encapsulate SoC-specific information. This will assist in generalizing code so it can be used by different SoCs that have similar hardware but with minor differences such as having a different base address. The idea is that the code for each SoC fills out a structure with the correct information. The board-specific code then calls the SoC init routine which in turn will call a common init routine that makes a copy of the structure, maps in I/O regions, etc. After initialization, code can get a pointer to the structure by calling davinci_get_soc_info(). Eventually, the common init routine will make a copy of all of the data pointed to by the structure so the original data can be made __init_data. That way the data for SoC's that aren't being used won't consume memory for the entire life of the kernel. The structure will be extended in subsequent patches but initially, it holds the map_desc structure for any I/O regions the SoC/board wants statically mapped. Signed-off-by: NMark A. Greer <mgreer@mvista.com> Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
由 Kevin Hilman 提交于
Add SoC and platform-specific data and init for DaVinci EMAC network driver. Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-
- 28 4月, 2009 1 次提交
-
-
由 Kevin Hilman 提交于
Rework DM644x code into SoC specific and board specific parts. This is also to generalize the structure a bit so it's easier to add support for new SoCs in the DaVinci family. Signed-off-by: NKevin Hilman <khilman@deeprootsystems.com>
-