- 12 9月, 2013 9 次提交
-
-
由 Joonsoo Kim 提交于
Now, Checking condition of decrement_hugepage_resv_vma() and vma_has_reserves() is same, so we can clean-up this function with vma_has_reserves(). Additionally, decrement_hugepage_resv_vma() has only one call site, so we can remove function and embed it into dequeue_huge_page_vma() directly. This patch implement it. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NHillf Danton <dhillf@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
If we map the region with MAP_NORESERVE and MAP_SHARED, we can skip to check reserve counting and eventually we cannot be ensured to allocate a huge page in fault time. With following example code, you can easily find this situation. Assume 2MB, nr_hugepages = 100 fd = hugetlbfs_unlinked_fd(); if (fd < 0) return 1; size = 200 * MB; flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } size = 2 * MB; flag = MAP_ANONYMOUS | MAP_SHARED | MAP_HUGETLB | MAP_NORESERVE; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, -1, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); } p[0] = '0'; sleep(10); During executing sleep(10), run 'cat /proc/meminfo' on another process. HugePages_Free: 99 HugePages_Rsvd: 100 Number of free should be higher or equal than number of reserve, but this aren't. This represent that non reserved shared mapping steal a reserved page. Non reserved shared mapping should not eat into reserve space. If we consider VM_NORESERVE in vma_has_reserve() and return 0 which mean that we don't have reserved pages, then we check that we have enough free pages in dequeue_huge_page_vma(). This prevent to steal a reserved page. With this change, above test generate a SIGBUG which is correct, because all free pages are reserved and non reserved shared mapping can't get a free page. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NHillf Danton <dhillf@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Currently, we use a page with mapped count 1 in page cache for cow optimization. If we find this condition, we don't allocate a new page and copy contents. Instead, we map this page directly. This may introduce a problem that writting to private mapping overwrite hugetlb file directly. You can find this situation with following code. size = 20 * MB; flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } p[0] = 's'; fprintf(stdout, "BEFORE STEAL PRIVATE WRITE: %c\n", p[0]); munmap(p, size); flag = MAP_PRIVATE; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); } p[0] = 'c'; munmap(p, size); flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } fprintf(stdout, "AFTER STEAL PRIVATE WRITE: %c\n", p[0]); munmap(p, size); We can see that "AFTER STEAL PRIVATE WRITE: c", not "AFTER STEAL PRIVATE WRITE: s". If we turn off this optimization to a page in page cache, the problem is disappeared. So, I change the trigger condition of optimization. If this page is not AnonPage, we don't do optimization. This makes this optimization turning off for a page cache. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
If list is empty, list_for_each_entry_safe() doesn't do anything. So, this check is redundant. Remove it. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Current node iteration code have a minor problem which do one more node rotation if we can't succeed to allocate. For example, if we start to allocate at node 0, we stop to iterate at node 0. Then we start to allocate at node 1 for next allocation. I introduce new macros "for_each_node_mask_to_[alloc|free]" and fix and clean-up node iteration code to alloc or free. This makes code more understandable. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Unify successful allocation paths to make the code more readable. There are no functional changes. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
The name of the mutex written in comment is wrong. Fix it. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NHillf Danton <dhillf@gmail.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
In this time we are holding a hugetlb_lock, so hstate values can't be changed. If we don't have any usable free huge page in this time, we don't need to proceed with the processing. So move this code up. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jingoo Han 提交于
The use of strict_strtoul() is not preferred, because strict_strtoul() is obsolete. Thus, kstrtoul() should be used. Signed-off-by: NJingoo Han <jg1.han@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 8月, 2013 1 次提交
-
-
由 Linus Torvalds 提交于
Ben Tebulin reported: "Since v3.7.2 on two independent machines a very specific Git repository fails in 9/10 cases on git-fsck due to an SHA1/memory failures. This only occurs on a very specific repository and can be reproduced stably on two independent laptops. Git mailing list ran out of ideas and for me this looks like some very exotic kernel issue" and bisected the failure to the backport of commit 53a59fc6 ("mm: limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT"). That commit itself is not actually buggy, but what it does is to make it much more likely to hit the partial TLB invalidation case, since it introduces a new case in tlb_next_batch() that previously only ever happened when running out of memory. The real bug is that the TLB gather virtual memory range setup is subtly buggered. It was introduced in commit 597e1c35 ("mm/mmu_gather: enable tlb flush range in generic mmu_gather"), and the range handling was already fixed at least once in commit e6c495a9 ("mm: fix the TLB range flushed when __tlb_remove_page() runs out of slots"), but that fix was not complete. The problem with the TLB gather virtual address range is that it isn't set up by the initial tlb_gather_mmu() initialization (which didn't get the TLB range information), but it is set up ad-hoc later by the functions that actually flush the TLB. And so any such case that forgot to update the TLB range entries would potentially miss TLB invalidates. Rather than try to figure out exactly which particular ad-hoc range setup was missing (I personally suspect it's the hugetlb case in zap_huge_pmd(), which didn't have the same logic as zap_pte_range() did), this patch just gets rid of the problem at the source: make the TLB range information available to tlb_gather_mmu(), and initialize it when initializing all the other tlb gather fields. This makes the patch larger, but conceptually much simpler. And the end result is much more understandable; even if you want to play games with partial ranges when invalidating the TLB contents in chunks, now the range information is always there, and anybody who doesn't want to bother with it won't introduce subtle bugs. Ben verified that this fixes his problem. Reported-bisected-and-tested-by: NBen Tebulin <tebulin@googlemail.com> Build-testing-by: NStephen Rothwell <sfr@canb.auug.org.au> Build-testing-by: NRichard Weinberger <richard.weinberger@gmail.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 7月, 2013 2 次提交
-
-
由 Jiang Liu 提交于
Enhance adjust_managed_page_count() to adjust totalhigh_pages for highmem pages. And change code which directly adjusts totalram_pages to use adjust_managed_page_count() because it adjusts totalram_pages, totalhigh_pages and zone->managed_pages altogether in a safe way. Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon driver bacause adjust_managed_page_count() has already adjusted totalhigh_pages. This patch also fixes two bugs: 1) enhances virtio_balloon driver to adjust totalhigh_pages when reserve/unreserve pages. 2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing memory. We still need to deal with modifications of totalram_pages in file arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts. [akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei] [akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c] Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wanpeng Li 提交于
Use the already existing interface huge_page_shift instead of h->order + PAGE_SHIFT. Signed-off-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 6月, 2013 1 次提交
-
-
由 Zhang Yi 提交于
The futex_keys of process shared futexes are generated from the page offset, the mapping host and the mapping index of the futex user space address. This should result in an unique identifier for each futex. Though this is not true when futexes are located in different subpages of an hugepage. The reason is, that the mapping index for all those futexes evaluates to the index of the base page of the hugetlbfs mapping. So a futex at offset 0 of the hugepage mapping and another one at offset PAGE_SIZE of the same hugepage mapping have identical futex_keys. This happens because the futex code blindly uses page->index. Steps to reproduce the bug: 1. Map a file from hugetlbfs. Initialize pthread_mutex1 at offset 0 and pthread_mutex2 at offset PAGE_SIZE of the hugetlbfs mapping. The mutexes must be initialized as PTHREAD_PROCESS_SHARED because PTHREAD_PROCESS_PRIVATE mutexes are not affected by this issue as their keys solely depend on the user space address. 2. Lock mutex1 and mutex2 3. Create thread1 and in the thread function lock mutex1, which results in thread1 blocking on the locked mutex1. 4. Create thread2 and in the thread function lock mutex2, which results in thread2 blocking on the locked mutex2. 5. Unlock mutex2. Despite the fact that mutex2 got unlocked, thread2 still blocks on mutex2 because the futex_key points to mutex1. To solve this issue we need to take the normal page index of the page which contains the futex into account, if the futex is in an hugetlbfs mapping. In other words, we calculate the normal page mapping index of the subpage in the hugetlbfs mapping. Mappings which are not based on hugetlbfs are not affected and still use page->index. Thanks to Mel Gorman who provided a patch for adding proper evaluation functions to the hugetlbfs code to avoid exposing hugetlbfs specific details to the futex code. [ tglx: Massaged changelog ] Signed-off-by: NZhang Yi <zhang.yi20@zte.com.cn> Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn> Tested-by: NMa Chenggong <ma.chenggong@zte.com.cn> Reviewed-by: N'Mel Gorman' <mgorman@suse.de> Acked-by: N'Darren Hart' <dvhart@linux.intel.com> Cc: 'Peter Zijlstra' <peterz@infradead.org> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/000101ce71a6%24a83c5880%24f8b50980%24@comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 14 6月, 2013 2 次提交
-
-
由 Steve Capper 提交于
The huge_pte_alloc, huge_pte_offset and follow_huge_p[mu]d functions in x86/mm/hugetlbpage.c do not rely on any architecture specific knowledge other than the fact that pmds and puds can be treated as huge ptes. To allow other architectures to use this code (and reduce the need for code duplication), this patch copies these functions into mm, replaces the use of pud_large with pud_huge and provides a config flag to activate them: CONFIG_ARCH_WANT_GENERAL_HUGETLB If CONFIG_ARCH_WANT_HUGE_PMD_SHARE is also active then the huge_pmd_share code will be called by huge_pte_alloc (othewise we call pmd_alloc and skip the sharing code). Signed-off-by: NSteve Capper <steve.capper@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Steve Capper 提交于
Under x86, multiple puds can be made to reference the same bank of huge pmds provided that they represent a full PUD_SIZE of shared huge memory that is aligned to a PUD_SIZE boundary. The code to share pmds does not require any architecture specific knowledge other than the fact that pmds can be indexed, thus can be beneficial to some other architectures. This patch copies the huge pmd sharing (and unsharing) logic from x86/ to mm/ and introduces a new config option to activate it: CONFIG_ARCH_WANTS_HUGE_PMD_SHARE Signed-off-by: NSteve Capper <steve.capper@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 13 6月, 2013 1 次提交
-
-
由 Naoya Horiguchi 提交于
When we have a page fault for the address which is backed by a hugepage under migration, the kernel can't wait correctly and do busy looping on hugepage fault until the migration finishes. As a result, users who try to kick hugepage migration (via soft offlining, for example) occasionally experience long delay or soft lockup. This is because pte_offset_map_lock() can't get a correct migration entry or a correct page table lock for hugepage. This patch introduces migration_entry_wait_huge() to solve this. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: NRik van Riel <riel@redhat.com> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <andi@firstfloor.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <stable@vger.kernel.org> [2.6.35+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 4月, 2013 2 次提交
-
-
由 David Rientjes 提交于
Particularly in oom conditions, it's troublesome that hugetlb memory is not displayed. All other meminfo that is emitted will not add up to what is expected, and there is no artifact left in the kernel log to show that a potentially significant amount of memory is actually allocated as hugepages which are not available to be reclaimed. Booting with hugepages=8192 on the command line, this memory is now shown in oom conditions. For example, with echo m > /proc/sysrq-trigger: Node 0 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB Node 1 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB Node 2 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB Node 3 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gerald Schaefer 提交于
Commit abf09bed ("s390/mm: implement software dirty bits") introduced another difference in the pte layout vs. the pmd layout on s390, thoroughly breaking the s390 support for hugetlbfs. This requires replacing some more pte_xxx functions in mm/hugetlbfs.c with a huge_pte_xxx version. This patch introduces those huge_pte_xxx functions and their generic implementation in asm-generic/hugetlb.h, which will now be included on all architectures supporting hugetlbfs apart from s390. This change will be a no-op for those architectures. [akpm@linux-foundation.org: fix warning] Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Hillf Danton <dhillf@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> [for !s390 parts] Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 4月, 2013 1 次提交
-
-
由 Naoya Horiguchi 提交于
With applying the previous patch "hugetlbfs: stop setting VM_DONTDUMP in initializing vma(VM_HUGETLB)" to reenable hugepage coredump, if a memory error happens on a hugepage and the affected processes try to access the error hugepage, we hit VM_BUG_ON(atomic_read(&page->_count) <= 0) in get_page(). The reason for this bug is that coredump-related code doesn't recognise "hugepage hwpoison entry" with which a pmd entry is replaced when a memory error occurs on a hugepage. In other words, physical address information is stored in different bit layout between hugepage hwpoison entry and pmd entry, so follow_hugetlb_page() which is called in get_dump_page() returns a wrong page from a given address. The expected behavior is like this: absent is_swap_pte FOLL_DUMP Expected behavior ------------------------------------------------------------------- true false false hugetlb_fault false true false hugetlb_fault false false false return page true false true skip page (to avoid allocation) false true true hugetlb_fault false false true return page With this patch, we can call hugetlb_fault() and take proper actions (we wait for migration entries, fail with VM_FAULT_HWPOISON_LARGE for hwpoisoned entries,) and as the result we can dump all hugepages except for hwpoisoned ones. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [2.6.34+?] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 3月, 2013 1 次提交
-
-
由 Wanpeng Li 提交于
hugetlb_total_pages is used for overcommit calculations but the current implementation considers only the default hugetlb page size (which is either the first defined hugepage size or the one specified by default_hugepagesz kernel boot parameter). If the system is configured for more than one hugepage size, which is possible since commit a137e1cc ("hugetlbfs: per mount huge page sizes") then the overcommit estimation done by __vm_enough_memory() (resp. shown by meminfo_proc_show) is not precise - there is an impression of more available/allowed memory. This can lead to an unexpected ENOMEM/EFAULT resp. SIGSEGV when memory is accounted. Testcase: boot: hugepagesz=1G hugepages=1 the default overcommit ratio is 50 before patch: egrep 'CommitLimit' /proc/meminfo CommitLimit: 55434168 kB after patch: egrep 'CommitLimit' /proc/meminfo CommitLimit: 54909880 kB [akpm@linux-foundation.org: coding-style tweak] Signed-off-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: <stable@vger.kernel.org> [3.0+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 3月, 2013 1 次提交
-
-
由 Claudiu Ghioc 提交于
Removed the following sparse warnings: * mm/hugetlb.c:1764:6: warning: symbol 'hugetlb_unregister_node' was not declared. Should it be static? * mm/hugetlb.c:1808:6: warning: symbol 'hugetlb_register_node' was not declared. Should it be static? Signed-off-by: NClaudiu Ghioc <claudiu.ghioc@gmail.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 24 2月, 2013 2 次提交
-
-
由 Michel Lespinasse 提交于
Use long type for page counts in mm_populate() so as to avoid integer overflow when running the following test code: int main(void) { void *p = mmap(NULL, 0x100000000000, PROT_READ, MAP_PRIVATE | MAP_ANON, -1, 0); printf("p: %p\n", p); mlockall(MCL_CURRENT); printf("done\n"); return 0; } Signed-off-by: NMichel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 2月, 2013 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 05 2月, 2013 1 次提交
-
-
由 Tony Lu 提交于
When setting a huge PTE, besides calling pte_mkhuge(), we also need to call arch_make_huge_pte(), which we indeed do in make_huge_pte(), but we forget to do in hugetlb_change_protection() and remove_migration_pte(). Signed-off-by: NZhigang Lu <zlu@tilera.com> Signed-off-by: NChris Metcalf <cmetcalf@tilera.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 12月, 2012 1 次提交
-
-
由 Jianguo Wu 提交于
Build kernel with CONFIG_HUGETLBFS=y,CONFIG_HUGETLB_PAGE=y and CONFIG_CGROUP_HUGETLB=y, then specify hugepagesz=xx boot option, system will fail to boot. This failure is caused by following code path: setup_hugepagesz hugetlb_add_hstate hugetlb_cgroup_file_init cgroup_add_cftypes kzalloc <--slab is *not available* yet For this path, slab is not available yet, so memory allocated will be failed, and cause WARN_ON() in hugetlb_cgroup_file_init(). So I move hugetlb_cgroup_file_init() into hugetlb_init(). [akpm@linux-foundation.org: tweak coding-style, remove pointless __init on inlined function] [akpm@linux-foundation.org: fix warning] Signed-off-by: NJianguo Wu <wujianguo@huawei.com> Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 12月, 2012 3 次提交
-
-
由 Naoya Horiguchi 提交于
Fix the warning from __list_del_entry() which is triggered when a process tries to do free_huge_page() for a hwpoisoned hugepage. free_huge_page() can be called for hwpoisoned hugepage from unpoison_memory(). This function gets refcount once and clears PageHWPoison, and then puts refcount twice to return the hugepage back to free pool. The second put_page() finally reaches free_huge_page(). Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
When a process which used a hwpoisoned hugepage tries to exit() or munmap(), the kernel can print out "bad pmd" message because page table walker in free_pgtables() encounters 'hwpoisoned entry' on pmd. This is because currently we fail to clear the hwpoisoned entry in __unmap_hugepage_range(), so this patch simply does it. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Lai Jiangshan 提交于
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Acked-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NWen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 12月, 2012 1 次提交
-
-
由 Wen Congyang 提交于
We use a static array to store struct node. In many cases, we don't have too many nodes, and some memory will be unused. Convert it to per-device dynamically allocated memory. Signed-off-by: NWen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
This will be used for three kinds of purposes: - to optimize mprotect() - to speed up working set scanning for working set areas that have not been touched - to more accurately scan per real working set No change in functionality from this patch. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 12月, 2012 1 次提交
-
-
由 Nadia Yvette Chambers 提交于
I've legally changed my name with New York State, the US Social Security Administration, et al. This patch propagates the name change and change in initials and login to comments in the kernel source as well. Signed-off-by: NNadia Yvette Chambers <nyc@holomorphy.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 09 10月, 2012 6 次提交
-
-
由 Andrew Morton 提交于
Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sagi Grimberg 提交于
In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com> Signed-off-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NHaggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Commit 0c176d52 ("mm: hugetlb: fix pgoff computation when unmapping page from vma") fixed pgoff calculation but it has replaced it by vma_hugecache_offset() which is not approapriate for offsets used for vma_prio_tree_foreach() because that one expects index in page units rather than in huge_page_shift. Johannes said: : The resulting index may not be too big, but it can be too small: assume : hpage size of 2M and the address to unmap to be 0x200000. This is regular : page index 512 and hpage index 1. If you have a VMA that maps the file : only starting at the second huge page, that VMAs vm_pgoff will be 512 but : you ask for offset 1 and miss it even though it does map the page of : interest. hugetlb_cow() will try to unmap, miss the vma, and retry the : cow until the allocation succeeds or the skipped vma(s) go away. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sachin Kamat 提交于
Signed-off-by: NSachin Kamat <sachin.kamat@linaro.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michel Lespinasse 提交于
Implement an interval tree as a replacement for the VMA prio_tree. The algorithms are similar to lib/interval_tree.c; however that code can't be directly reused as the interval endpoints are not explicitly stored in the VMA. So instead, the common algorithm is moved into a template and the details (node type, how to get interval endpoints from the node, etc) are filled in using the C preprocessor. Once the interval tree functions are available, using them as a replacement to the VMA prio tree is a relatively simple, mechanical job. Signed-off-by: NMichel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Will Deacon 提交于
The core page allocator ensures that page flags are zeroed when freeing pages via free_pages_check. A number of architectures (ARM, PPC, MIPS) rely on this property to treat new pages as dirty with respect to the data cache and perform the appropriate flushing before mapping the pages into userspace. This can lead to cache synchronisation problems when using hugepages, since the allocator keeps its own pool of pages above the usual page allocator and does not reset the page flags when freeing a page into the pool. This patch adds a new architecture hook, arch_clear_hugepage_flags, so that architectures which rely on the page flags being in a particular state for fresh allocations can adjust the flags accordingly when a page is freed into the pool. Signed-off-by: NWill Deacon <will.deacon@arm.com> Cc: Michal Hocko <mhocko@suse.cz> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 8月, 2012 2 次提交
-
-
由 Mel Gorman 提交于
If a process creates a large hugetlbfs mapping that is eligible for page table sharing and forks heavily with children some of whom fault and others which destroy the mapping then it is possible for page tables to get corrupted. Some teardowns of the mapping encounter a "bad pmd" and output a message to the kernel log. The final teardown will trigger a BUG_ON in mm/filemap.c. This was reproduced in 3.4 but is known to have existed for a long time and goes back at least as far as 2.6.37. It was probably was introduced in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages look like this; [ ..........] Lots of bad pmd messages followed by this [ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7). [ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7). [ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7). [ 127.186778] ------------[ cut here ]------------ [ 127.186781] kernel BUG at mm/filemap.c:134! [ 127.186782] invalid opcode: 0000 [#1] SMP [ 127.186783] CPU 7 [ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod [ 127.186801] [ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR [ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002 [ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0 [ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00 [ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003 [ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8 [ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8 [ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000 [ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0 [ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0) [ 127.186821] Stack: [ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b [ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98 [ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000 [ 127.186827] Call Trace: [ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80 [ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220 [ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30 [ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0 [ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0 [ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50 [ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130 [ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0 [ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230 [ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150 [ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30 [ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80 [ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360 [ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170 [ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b [ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0 [ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186870] RSP <ffff8804144b5c08> [ 127.186871] ---[ end trace 7cbac5d1db69f426 ]--- The bug is a race and not always easy to reproduce. To reproduce it I was doing the following on a single socket I7-based machine with 16G of RAM. $ hugeadm --pool-pages-max DEFAULT:13G $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall $ for i in `seq 1 9000`; do ./hugetlbfs-test; done On my particular machine, it usually triggers within 10 minutes but enabling debug options can change the timing such that it never hits. Once the bug is triggered, the machine is in trouble and needs to be rebooted. The machine will respond but processes accessing proc like "ps aux" will hang due to the BUG_ON. shutdown will also hang and needs a hard reset or a sysrq-b. The basic problem is a race between page table sharing and teardown. For the most part page table sharing depends on i_mmap_mutex. In some cases, it is also taking the mm->page_table_lock for the PTE updates but with shared page tables, it is the i_mmap_mutex that is more important. Unfortunately it appears to be also insufficient. Consider the following situation Process A Process B --------- --------- hugetlb_fault shmdt LockWrite(mmap_sem) do_munmap unmap_region unmap_vmas unmap_single_vma unmap_hugepage_range Lock(i_mmap_mutex) Lock(mm->page_table_lock) huge_pmd_unshare/unmap tables <--- (1) Unlock(mm->page_table_lock) Unlock(i_mmap_mutex) huge_pte_alloc ... Lock(i_mmap_mutex) ... vma_prio_walk, find svma, spte ... Lock(mm->page_table_lock) ... share spte ... Unlock(mm->page_table_lock) ... Unlock(i_mmap_mutex) ... hugetlb_no_page <--- (2) free_pgtables unlink_file_vma hugetlb_free_pgd_range remove_vma_list In this scenario, it is possible for Process A to share page tables with Process B that is trying to tear them down. The i_mmap_mutex on its own does not prevent Process A walking Process B's page tables. At (1) above, the page tables are not shared yet so it unmaps the PMDs. Process A sets up page table sharing and at (2) faults a new entry. Process B then trips up on it in free_pgtables. This patch fixes the problem by adding a new function __unmap_hugepage_range_final that is only called when the VMA is about to be destroyed. This function clears VM_MAYSHARE during unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA ineligible for sharing and avoids the race. Superficially this looks like it would then be vunerable to truncate and madvise issues but hugetlbfs has its own truncate handlers so does not use unmap_mapping_range() and does not support madvise(DONTNEED). This should be treated as a -stable candidate if it is merged. Test program is as follows. The test case was mostly written by Michal Hocko with a few minor changes to reproduce this bug. ==== CUT HERE ==== static size_t huge_page_size = (2UL << 20); static size_t nr_huge_page_A = 512; static size_t nr_huge_page_B = 5632; unsigned int get_random(unsigned int max) { struct timeval tv; gettimeofday(&tv, NULL); srandom(tv.tv_usec); return random() % max; } static void play(void *addr, size_t size) { unsigned char *start = addr, *end = start + size, *a; start += get_random(size/2); /* we could itterate on huge pages but let's give it more time. */ for (a = start; a < end; a += 4096) *a = 0; } int main(int argc, char **argv) { key_t key = IPC_PRIVATE; size_t sizeA = nr_huge_page_A * huge_page_size; size_t sizeB = nr_huge_page_B * huge_page_size; int shmidA, shmidB; void *addrA = NULL, *addrB = NULL; int nr_children = 300, n = 0; if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } fork_child: switch(fork()) { case 0: switch (n%3) { case 0: play(addrA, sizeA); break; case 1: play(addrB, sizeB); break; case 2: break; } break; case -1: perror("fork:"); break; default: if (++n < nr_children) goto fork_child; play(addrA, sizeA); break; } shmdt(addrA); shmdt(addrB); do { wait(NULL); } while (--n > 0); shmctl(shmidA, IPC_RMID, NULL); shmctl(shmidB, IPC_RMID, NULL); return 0; } [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build] Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
A page's hugetlb cgroup assignment and movement to the active list should occur with hugetlb_lock held. Otherwise when we remove the hugetlb cgroup we will iterate the active list and find pages with NULL hugetlb cgroup values. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-