1. 22 2月, 2014 1 次提交
  2. 09 2月, 2014 2 次提交
  3. 17 1月, 2014 1 次提交
  4. 16 1月, 2014 5 次提交
    • R
      perf/x86/amd/ibs: Fix waking up from S3 for AMD family 10h · bee09ed9
      Robert Richter 提交于
      On AMD family 10h we see following error messages while waking up from
      S3 for all non-boot CPUs leading to a failed IBS initialization:
      
       Enabling non-boot CPUs ...
       smpboot: Booting Node 0 Processor 1 APIC 0x1
       [Firmware Bug]: cpu 1, try to use APIC500 (LVT offset 0) for vector 0x400, but the register is already in use for vector 0xf9 on another cpu
       perf: IBS APIC setup failed on cpu #1
       process: Switch to broadcast mode on CPU1
       CPU1 is up
       ...
       ACPI: Waking up from system sleep state S3
      
      Reason for this is that during suspend the LVT offset for the IBS
      vector gets lost and needs to be reinialized while resuming.
      
      The offset is read from the IBSCTL msr. On family 10h the offset needs
      to be 1 as offset 0 is used for the MCE threshold interrupt, but
      firmware assings it for IBS to 0 too. The kernel needs to reprogram
      the vector. The msr is a readonly node msr, but a new value can be
      written via pci config space access. The reinitialization is
      implemented for family 10h in setup_ibs_ctl() which is forced during
      IBS setup.
      
      This patch fixes IBS setup after waking up from S3 by adding
      resume/supend hooks for the boot cpu which does the offset
      reinitialization.
      
      Marking it as stable to let distros pick up this fix.
      Signed-off-by: NRobert Richter <rric@kernel.org>
      Signed-off-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: <stable@vger.kernel.org> v3.2..
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Link: http://lkml.kernel.org/r/1389797849-5565-1-git-send-email-rric.net@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      bee09ed9
    • B
      x86, tsc: Add static (MSR) TSC calibration on Intel Atom SoCs · 7da7c156
      Bin Gao 提交于
      On SoCs that have the calibration MSRs available, either there is no
      PIT, HPET or PMTIMER to calibrate against, or the PIT/HPET/PMTIMER is
      driven from the same clock as the TSC, so calibration is redundant and
      just slows down the boot.
      
      TSC rate is caculated by this formula:
      <maximum core-clock to bus-clock ratio> * <maximum resolved frequency>
      The ratio and the resolved frequency ID can be obtained from MSR.
      See Intel 64 and IA-32 System Programming Guid section 16.12 and 30.11.5
      for details.
      Signed-off-by: NBin Gao <bin.gao@intel.com>
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      Link: http://lkml.kernel.org/n/tip-rgm7xmg7k6qnjlw3ynkcjsmh@git.kernel.org
      7da7c156
    • P
      x86: Add check for number of available vectors before CPU down · da6139e4
      Prarit Bhargava 提交于
      Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=64791
      
      When a cpu is downed on a system, the irqs on the cpu are assigned to
      other cpus.  It is possible, however, that when a cpu is downed there
      aren't enough free vectors on the remaining cpus to account for the
      vectors from the cpu that is being downed.
      
      This results in an interesting "overflow" condition where irqs are
      "assigned" to a CPU but are not handled.
      
      For example, when downing cpus on a 1-64 logical processor system:
      
      <snip>
      [  232.021745] smpboot: CPU 61 is now offline
      [  238.480275] smpboot: CPU 62 is now offline
      [  245.991080] ------------[ cut here ]------------
      [  245.996270] WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:264 dev_watchdog+0x246/0x250()
      [  246.005688] NETDEV WATCHDOG: p786p1 (ixgbe): transmit queue 0 timed out
      [  246.013070] Modules linked in: lockd sunrpc iTCO_wdt iTCO_vendor_support sb_edac ixgbe microcode e1000e pcspkr joydev edac_core lpc_ich ioatdma ptp mdio mfd_core i2c_i801 dca pps_core i2c_core wmi acpi_cpufreq isci libsas scsi_transport_sas
      [  246.037633] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.12.0+ #14
      [  246.044451] Hardware name: Intel Corporation S4600LH ........../SVRBD-ROW_T, BIOS SE5C600.86B.01.08.0003.022620131521 02/26/2013
      [  246.057371]  0000000000000009 ffff88081fa03d40 ffffffff8164fbf6 ffff88081fa0ee48
      [  246.065728]  ffff88081fa03d90 ffff88081fa03d80 ffffffff81054ecc ffff88081fa13040
      [  246.074073]  0000000000000000 ffff88200cce0000 0000000000000040 0000000000000000
      [  246.082430] Call Trace:
      [  246.085174]  <IRQ>  [<ffffffff8164fbf6>] dump_stack+0x46/0x58
      [  246.091633]  [<ffffffff81054ecc>] warn_slowpath_common+0x8c/0xc0
      [  246.098352]  [<ffffffff81054fb6>] warn_slowpath_fmt+0x46/0x50
      [  246.104786]  [<ffffffff815710d6>] dev_watchdog+0x246/0x250
      [  246.110923]  [<ffffffff81570e90>] ? dev_deactivate_queue.constprop.31+0x80/0x80
      [  246.119097]  [<ffffffff8106092a>] call_timer_fn+0x3a/0x110
      [  246.125224]  [<ffffffff8106280f>] ? update_process_times+0x6f/0x80
      [  246.132137]  [<ffffffff81570e90>] ? dev_deactivate_queue.constprop.31+0x80/0x80
      [  246.140308]  [<ffffffff81061db0>] run_timer_softirq+0x1f0/0x2a0
      [  246.146933]  [<ffffffff81059a80>] __do_softirq+0xe0/0x220
      [  246.152976]  [<ffffffff8165fedc>] call_softirq+0x1c/0x30
      [  246.158920]  [<ffffffff810045f5>] do_softirq+0x55/0x90
      [  246.164670]  [<ffffffff81059d35>] irq_exit+0xa5/0xb0
      [  246.170227]  [<ffffffff8166062a>] smp_apic_timer_interrupt+0x4a/0x60
      [  246.177324]  [<ffffffff8165f40a>] apic_timer_interrupt+0x6a/0x70
      [  246.184041]  <EOI>  [<ffffffff81505a1b>] ? cpuidle_enter_state+0x5b/0xe0
      [  246.191559]  [<ffffffff81505a17>] ? cpuidle_enter_state+0x57/0xe0
      [  246.198374]  [<ffffffff81505b5d>] cpuidle_idle_call+0xbd/0x200
      [  246.204900]  [<ffffffff8100b7ae>] arch_cpu_idle+0xe/0x30
      [  246.210846]  [<ffffffff810a47b0>] cpu_startup_entry+0xd0/0x250
      [  246.217371]  [<ffffffff81646b47>] rest_init+0x77/0x80
      [  246.223028]  [<ffffffff81d09e8e>] start_kernel+0x3ee/0x3fb
      [  246.229165]  [<ffffffff81d0989f>] ? repair_env_string+0x5e/0x5e
      [  246.235787]  [<ffffffff81d095a5>] x86_64_start_reservations+0x2a/0x2c
      [  246.242990]  [<ffffffff81d0969f>] x86_64_start_kernel+0xf8/0xfc
      [  246.249610] ---[ end trace fb74fdef54d79039 ]---
      [  246.254807] ixgbe 0000:c2:00.0 p786p1: initiating reset due to tx timeout
      [  246.262489] ixgbe 0000:c2:00.0 p786p1: Reset adapter
      Last login: Mon Nov 11 08:35:14 from 10.18.17.119
      [root@(none) ~]# [  246.792676] ixgbe 0000:c2:00.0 p786p1: detected SFP+: 5
      [  249.231598] ixgbe 0000:c2:00.0 p786p1: NIC Link is Up 10 Gbps, Flow Control: RX/TX
      [  246.792676] ixgbe 0000:c2:00.0 p786p1: detected SFP+: 5
      [  249.231598] ixgbe 0000:c2:00.0 p786p1: NIC Link is Up 10 Gbps, Flow Control: RX/TX
      
      (last lines keep repeating.  ixgbe driver is dead until module reload.)
      
      If the downed cpu has more vectors than are free on the remaining cpus on the
      system, it is possible that some vectors are "orphaned" even though they are
      assigned to a cpu.  In this case, since the ixgbe driver had a watchdog, the
      watchdog fired and notified that something was wrong.
      
      This patch adds a function, check_vectors(), to compare the number of vectors
      on the CPU going down and compares it to the number of vectors available on
      the system.  If there aren't enough vectors for the CPU to go down, an
      error is returned and propogated back to userspace.
      
      v2: Do not need to look at percpu irqs
      v3: Need to check affinity to prevent counting of MSIs in IOAPIC Lowest
          Priority Mode
      v4: Additional changes suggested by Gong Chen.
      v5/v6/v7/v8: Updated comment text
      Signed-off-by: NPrarit Bhargava <prarit@redhat.com>
      Link: http://lkml.kernel.org/r/1389613861-3853-1-git-send-email-prarit@redhat.comReviewed-by: NGong Chen <gong.chen@linux.intel.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: Seiji Aguchi <seiji.aguchi@hds.com>
      Cc: Yang Zhang <yang.z.zhang@Intel.com>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Janet Morgan <janet.morgan@intel.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Ruiv Wang <ruiv.wang@gmail.com>
      Cc: Gong Chen <gong.chen@linux.intel.com>
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      Cc: <stable@vger.kernel.org>
      da6139e4
    • H
      x86, apic: Make disabled_cpu_apicid static read_mostly, fix typos · 5b4d1dbc
      H. Peter Anvin 提交于
      Make disabled_cpu_apicid static and read_mostly, and fix a couple of
      typos.
      Reported-by: NIngo Molnar <mingo@kernel.org>
      Link: http://lkml.kernel.org/r/20140115182511.GA22737@gmail.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
      5b4d1dbc
    • H
      x86, apic, kexec: Add disable_cpu_apicid kernel parameter · 151e0c7d
      HATAYAMA Daisuke 提交于
      Add disable_cpu_apicid kernel parameter. To use this kernel parameter,
      specify an initial APIC ID of the corresponding CPU you want to
      disable.
      
      This is mostly used for the kdump 2nd kernel to disable BSP to wake up
      multiple CPUs without causing system reset or hang due to sending INIT
      from AP to BSP.
      
      Kdump users first figure out initial APIC ID of the BSP, CPU0 in the
      1st kernel, for example from /proc/cpuinfo and then set up this kernel
      parameter for the 2nd kernel using the obtained APIC ID.
      
      However, doing this procedure at each boot time manually is awkward,
      which should be automatically done by user-land service scripts, for
      example, kexec-tools on fedora/RHEL distributions.
      
      This design is more flexible than disabling BSP in kernel boot time
      automatically in that in kernel boot time we have no choice but
      referring to ACPI/MP table to obtain initial APIC ID for BSP, meaning
      that the method is not applicable to the systems without such BIOS
      tables.
      
      One assumption behind this design is that users get initial APIC ID of
      the BSP in still healthy state and so BSP is uniquely kept in
      CPU0. Thus, through the kernel parameter, only one initial APIC ID can
      be specified.
      
      In a comparison with disabled_cpu_apicid, we use read_apic_id(), not
      boot_cpu_physical_apicid, because on some platforms, the variable is
      modified to the apicid reported as BSP through MP table and this
      function is executed with the temporarily modified
      boot_cpu_physical_apicid. As a result, disabled_cpu_apicid kernel
      parameter doesn't work well for apicids of APs.
      
      Fixing the wrong handling of boot_cpu_physical_apicid requires some
      reviews and tests beyond some platforms and it could take some
      time. The fix here is a kind of workaround to focus on the main topic
      of this patch.
      Signed-off-by: NHATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
      Link: http://lkml.kernel.org/r/20140115064458.1545.38775.stgit@localhost6.localdomain6Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      151e0c7d
  5. 15 1月, 2014 2 次提交
  6. 14 1月, 2014 5 次提交
  7. 13 1月, 2014 5 次提交
  8. 12 1月, 2014 3 次提交
  9. 10 1月, 2014 1 次提交
  10. 09 1月, 2014 1 次提交
    • D
      arch: x86: New MailBox support driver for Intel SOC's · 46184415
      David E. Box 提交于
      Current Intel SOC cores use a MailBox Interface (MBI) to provide access to
      configuration registers on devices (called units) connected to the system
      fabric. This is a support driver that implements access to this interface on
      those platforms that can enumerate the device using PCI. Initial support is for
      BayTrail, for which port definitons are provided. This is a requirement for
      implementing platform specific features (e.g. RAPL driver requires this to
      perform platform specific power management using the registers in PUNIT).
      Dependant modules should select IOSF_MBI in their respective Kconfig
      configuraiton. Serialized access is handled by all exported routines with
      spinlocks.
      
      The API includes 3 functions for access to unit registers:
      
      int iosf_mbi_read(u8 port, u8 opcode, u32 offset, u32 *mdr)
      int iosf_mbi_write(u8 port, u8 opcode, u32 offset, u32 mdr)
      int iosf_mbi_modify(u8 port, u8 opcode, u32 offset, u32 mdr, u32 mask)
      
      port:	indicating the unit being accessed
      opcode:	the read or write port specific opcode
      offset:	the register offset within the port
      mdr:	the register data to be read, written, or modified
      mask:	bit locations in mdr to change
      
      Returns nonzero on error
      
      Note: GPU code handles access to the GFX unit. Therefore access to that unit
      with this driver is disallowed to avoid conflicts.
      Signed-off-by: NDavid E. Box <david.e.box@linux.intel.com>
      Link: http://lkml.kernel.org/r/1389216471-734-1-git-send-email-david.e.box@linux.intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      46184415
  11. 07 1月, 2014 1 次提交
  12. 04 1月, 2014 1 次提交
  13. 03 1月, 2014 1 次提交
    • D
      x86: ksysfs.c build fix · 41a34cec
      Dave Young 提交于
      kbuild test robot report below error for randconfig:
      
        arch/x86/kernel/ksysfs.c: In function 'get_setup_data_paddr':
        arch/x86/kernel/ksysfs.c:81:3: error: implicit declaration of function 'ioremap_cache' [-Werror=implicit-function-declaration]
        arch/x86/kernel/ksysfs.c:86:3: error: implicit declaration of function 'iounmap' [-Werror=implicit-function-declaration]
      
      Fix it by including <asm/io.h> in ksysfs.c
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      41a34cec
  14. 29 12月, 2013 3 次提交
    • D
      x86: Reserve setup_data ranges late after parsing memmap cmdline · 77ea8c94
      Dave Young 提交于
      Currently e820_reserve_setup_data() is called before parsing early
      params, it works in normal case. But for memmap=exactmap, the final
      memory ranges are created after parsing memmap= cmdline params, so the
      previous e820_reserve_setup_data() has no effect. For example,
      setup_data ranges will still be marked as normal system ram, thus when
      later sysfs driver ioremap them kernel will warn about mapping normal
      ram.
      
      This patch fix it by moving the e820_reserve_setup_data() callback after
      parsing early params so they can be set as reserved ranges and later
      ioremap will be fine with it.
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Acked-by: NBorislav Petkov <bp@suse.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      77ea8c94
    • D
      x86: Export x86 boot_params to sysfs · 5039e316
      Dave Young 提交于
      kexec-tools use boot_params for getting the 1st kernel hardware_subarch,
      the kexec kernel EFI runtime support also needs to read the old efi_info
      from boot_params. Currently it exists in debugfs which is not a good
      place for such infomation. Per HPA, we should avoid "sploit debugfs".
      
      In this patch /sys/kernel/boot_params are exported, also the setup_data is
      exported as a subdirectory. kexec-tools is using debugfs for hardware_subarch
      for a long time now so we're not removing it yet.
      
      Structure is like below:
      
      /sys/kernel/boot_params
      |__ data                /* boot_params in binary*/
      |__ setup_data
      |   |__ 0               /* the first setup_data node */
      |   |   |__ data        /* setup_data node 0 in binary*/
      |   |   |__ type        /* setup_data type of setup_data node 0, hex string */
      [snip]
      |__ version             /* boot protocal version (in hex, "0x" prefixed)*/
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Acked-by: NBorislav Petkov <bp@suse.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      5039e316
    • D
      x86/efi: Pass necessary EFI data for kexec via setup_data · 1fec0533
      Dave Young 提交于
      Add a new setup_data type SETUP_EFI for kexec use.  Passing the saved
      fw_vendor, runtime, config tables and EFI runtime mappings.
      
      When entering virtual mode, directly mapping the EFI runtime regions
      which we passed in previously. And skip the step to call
      SetVirtualAddressMap().
      
      Specially for HP z420 workstation we need save the smbios physical
      address.  The kernel boot sequence proceeds in the following order.
      Step 2 requires efi.smbios to be the physical address.  However, I found
      that on HP z420 EFI system table has a virtual address of SMBIOS in step
      1.  Hence, we need set it back to the physical address with the smbios
      in efi_setup_data.  (When it is still the physical address, it simply
      sets the same value.)
      
      1. efi_init() - Set efi.smbios from EFI system table
      2. dmi_scan_machine() - Temporary map efi.smbios to access SMBIOS table
      3. efi_enter_virtual_mode() - Map EFI ranges
      
      Tested on ovmf+qemu, lenovo thinkpad, a dell laptop and an
      HP z420 workstation.
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      1fec0533
  15. 21 12月, 2013 1 次提交
  16. 20 12月, 2013 3 次提交
  17. 17 12月, 2013 1 次提交
  18. 12 12月, 2013 1 次提交
  19. 07 12月, 2013 1 次提交
  20. 05 12月, 2013 1 次提交