1. 04 10月, 2013 12 次提交
  2. 28 9月, 2013 1 次提交
  3. 25 9月, 2013 9 次提交
  4. 20 9月, 2013 2 次提交
  5. 18 9月, 2013 1 次提交
  6. 17 9月, 2013 1 次提交
  7. 13 9月, 2013 14 次提交
    • K
      HID: provide a helper for validating hid reports · 331415ff
      Kees Cook 提交于
      Many drivers need to validate the characteristics of their HID report
      during initialization to avoid misusing the reports. This adds a common
      helper to perform validation of the report exisitng, the field existing,
      and the expected number of values within the field.
      Signed-off-by: NKees Cook <keescook@chromium.org>
      Cc: stable@vger.kernel.org
      Reviewed-by: NBenjamin Tissoires <benjamin.tissoires@redhat.com>
      Signed-off-by: NJiri Kosina <jkosina@suse.cz>
      331415ff
    • M
      Remove GENERIC_HARDIRQ config option · 0244ad00
      Martin Schwidefsky 提交于
      After the last architecture switched to generic hard irqs the config
      options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code
      for !CONFIG_GENERIC_HARDIRQS can be removed.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      0244ad00
    • K
      thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page() · c0292554
      Kirill A. Shutemov 提交于
      do_huge_pmd_anonymous_page() has copy-pasted piece of handle_mm_fault()
      to handle fallback path.
      
      Let's consolidate code back by introducing VM_FAULT_FALLBACK return
      code.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NHillf Danton <dhillf@gmail.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c0292554
    • K
      truncate: drop 'oldsize' truncate_pagecache() parameter · 7caef267
      Kirill A. Shutemov 提交于
      truncate_pagecache() doesn't care about old size since commit
      cedabed4 ("vfs: Fix vmtruncate() regression").  Let's drop it.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7caef267
    • C
      mm: make lru_add_drain_all() selective · 5fbc4616
      Chris Metcalf 提交于
      make lru_add_drain_all() only selectively interrupt the cpus that have
      per-cpu free pages that can be drained.
      
      This is important in nohz mode where calling mlockall(), for example,
      otherwise will interrupt every core unnecessarily.
      
      This is important on workloads where nohz cores are handling 10 Gb traffic
      in userspace.  Those CPUs do not enter the kernel and place pages into LRU
      pagevecs and they really, really don't want to be interrupted, or they
      drop packets on the floor.
      Signed-off-by: NChris Metcalf <cmetcalf@tilera.com>
      Reviewed-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5fbc4616
    • S
      memcg: add per cgroup writeback pages accounting · 3ea67d06
      Sha Zhengju 提交于
      Add memcg routines to count writeback pages, later dirty pages will also
      be accounted.
      
      After Kame's commit 89c06bd5 ("memcg: use new logic for page stat
      accounting"), we can use 'struct page' flag to test page state instead
      of per page_cgroup flag.  But memcg has a feature to move a page from a
      cgroup to another one and may have race between "move" and "page stat
      accounting".  So in order to avoid the race we have designed a new lock:
      
               mem_cgroup_begin_update_page_stat()
               modify page information        -->(a)
               mem_cgroup_update_page_stat()  -->(b)
               mem_cgroup_end_update_page_stat()
      
      It requires both (a) and (b)(writeback pages accounting) to be pretected
      in mem_cgroup_{begin/end}_update_page_stat().  It's full no-op for
      !CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu
      read lock in the most cases (no task is moving), and spin_lock_irqsave
      on top in the slow path.
      
      There're two writeback interfaces to modify: test_{clear/set}_page_writeback().
      And the lock order is:
      	--> memcg->move_lock
      	  --> mapping->tree_lock
      Signed-off-by: NSha Zhengju <handai.szj@taobao.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NGreg Thelen <gthelen@google.com>
      Cc: Fengguang Wu <fengguang.wu@intel.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3ea67d06
    • S
      memcg: remove MEMCG_NR_FILE_MAPPED · 68b4876d
      Sha Zhengju 提交于
      While accounting memcg page stat, it's not worth to use
      MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the
      complexity and presumed performance overhead.  We can use
      MEM_CGROUP_STAT_FILE_MAPPED directly.
      Signed-off-by: NSha Zhengju <handai.szj@taobao.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NFengguang Wu <fengguang.wu@intel.com>
      Reviewed-by: NGreg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      68b4876d
    • S
      memcg: rename RESOURCE_MAX to RES_COUNTER_MAX · 6de5a8bf
      Sha Zhengju 提交于
      RESOURCE_MAX is far too general name, change it to RES_COUNTER_MAX.
      Signed-off-by: NSha Zhengju <handai.szj@taobao.com>
      Signed-off-by: NQiang Huang <h.huangqiang@huawei.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Cc: Jeff Liu <jeff.liu@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6de5a8bf
    • S
      memcg: correct RESOURCE_MAX to ULLONG_MAX · 34ff8dc0
      Sha Zhengju 提交于
      Current RESOURCE_MAX is ULONG_MAX, but the value we used to set resource
      limit is unsigned long long, so we can set bigger value than that which is
      strange.  The XXX_MAX should be reasonable max value, bigger than that
      should be overflow.
      
      Notice that this change will affect user output of default *.limit_in_bytes:
      before change:
      
        $ cat /cgroup/memory/memory.limit_in_bytes
        9223372036854775807
      
      after change:
      
        $ cat /cgroup/memory/memory.limit_in_bytes
        18446744073709551615
      
      But it doesn't alter the API in term of input - we can still use "echo -1
      > *.limit_in_bytes" to reset the numbers to "unlimited".
      Signed-off-by: NSha Zhengju <handai.szj@taobao.com>
      Signed-off-by: NQiang Huang <h.huangqiang@huawei.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Cc: Jeff Liu <jeff.liu@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      34ff8dc0
    • J
      mm: memcg: do not trap chargers with full callstack on OOM · 3812c8c8
      Johannes Weiner 提交于
      The memcg OOM handling is incredibly fragile and can deadlock.  When a
      task fails to charge memory, it invokes the OOM killer and loops right
      there in the charge code until it succeeds.  Comparably, any other task
      that enters the charge path at this point will go to a waitqueue right
      then and there and sleep until the OOM situation is resolved.  The problem
      is that these tasks may hold filesystem locks and the mmap_sem; locks that
      the selected OOM victim may need to exit.
      
      For example, in one reported case, the task invoking the OOM killer was
      about to charge a page cache page during a write(), which holds the
      i_mutex.  The OOM killer selected a task that was just entering truncate()
      and trying to acquire the i_mutex:
      
      OOM invoking task:
        mem_cgroup_handle_oom+0x241/0x3b0
        mem_cgroup_cache_charge+0xbe/0xe0
        add_to_page_cache_locked+0x4c/0x140
        add_to_page_cache_lru+0x22/0x50
        grab_cache_page_write_begin+0x8b/0xe0
        ext3_write_begin+0x88/0x270
        generic_file_buffered_write+0x116/0x290
        __generic_file_aio_write+0x27c/0x480
        generic_file_aio_write+0x76/0xf0           # takes ->i_mutex
        do_sync_write+0xea/0x130
        vfs_write+0xf3/0x1f0
        sys_write+0x51/0x90
        system_call_fastpath+0x18/0x1d
      
      OOM kill victim:
        do_truncate+0x58/0xa0              # takes i_mutex
        do_last+0x250/0xa30
        path_openat+0xd7/0x440
        do_filp_open+0x49/0xa0
        do_sys_open+0x106/0x240
        sys_open+0x20/0x30
        system_call_fastpath+0x18/0x1d
      
      The OOM handling task will retry the charge indefinitely while the OOM
      killed task is not releasing any resources.
      
      A similar scenario can happen when the kernel OOM killer for a memcg is
      disabled and a userspace task is in charge of resolving OOM situations.
      In this case, ALL tasks that enter the OOM path will be made to sleep on
      the OOM waitqueue and wait for userspace to free resources or increase
      the group's limit.  But a userspace OOM handler is prone to deadlock
      itself on the locks held by the waiting tasks.  For example one of the
      sleeping tasks may be stuck in a brk() call with the mmap_sem held for
      writing but the userspace handler, in order to pick an optimal victim,
      may need to read files from /proc/<pid>, which tries to acquire the same
      mmap_sem for reading and deadlocks.
      
      This patch changes the way tasks behave after detecting a memcg OOM and
      makes sure nobody loops or sleeps with locks held:
      
      1. When OOMing in a user fault, invoke the OOM killer and restart the
         fault instead of looping on the charge attempt.  This way, the OOM
         victim can not get stuck on locks the looping task may hold.
      
      2. When OOMing in a user fault but somebody else is handling it
         (either the kernel OOM killer or a userspace handler), don't go to
         sleep in the charge context.  Instead, remember the OOMing memcg in
         the task struct and then fully unwind the page fault stack with
         -ENOMEM.  pagefault_out_of_memory() will then call back into the
         memcg code to check if the -ENOMEM came from the memcg, and then
         either put the task to sleep on the memcg's OOM waitqueue or just
         restart the fault.  The OOM victim can no longer get stuck on any
         lock a sleeping task may hold.
      
      Debugged by Michal Hocko.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reported-by: NazurIt <azurit@pobox.sk>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: David Rientjes <rientjes@google.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3812c8c8
    • J
      mm: memcg: enable memcg OOM killer only for user faults · 519e5247
      Johannes Weiner 提交于
      System calls and kernel faults (uaccess, gup) can handle an out of memory
      situation gracefully and just return -ENOMEM.
      
      Enable the memcg OOM killer only for user faults, where it's really the
      only option available.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: David Rientjes <rientjes@google.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: azurIt <azurit@pobox.sk>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      519e5247
    • J
      arch: mm: pass userspace fault flag to generic fault handler · 759496ba
      Johannes Weiner 提交于
      Unlike global OOM handling, memory cgroup code will invoke the OOM killer
      in any OOM situation because it has no way of telling faults occuring in
      kernel context - which could be handled more gracefully - from
      user-triggered faults.
      
      Pass a flag that identifies faults originating in user space from the
      architecture-specific fault handlers to generic code so that memcg OOM
      handling can be improved.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Cc: David Rientjes <rientjes@google.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: azurIt <azurit@pobox.sk>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      759496ba
    • M
      memcg: enhance memcg iterator to support predicates · de57780d
      Michal Hocko 提交于
      The caller of the iterator might know that some nodes or even subtrees
      should be skipped but there is no way to tell iterators about that so the
      only choice left is to let iterators to visit each node and do the
      selection outside of the iterating code.  This, however, doesn't scale
      well with hierarchies with many groups where only few groups are
      interesting.
      
      This patch adds mem_cgroup_iter_cond variant of the iterator with a
      callback which gets called for every visited node.  There are three
      possible ways how the callback can influence the walk.  Either the node is
      visited, it is skipped but the tree walk continues down the tree or the
      whole subtree of the current group is skipped.
      
      [hughd@google.com: fix memcg-less page reclaim]
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: Glauber Costa <glommer@openvz.org>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Ying Han <yinghan@google.com>
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      de57780d
    • M
      vmscan, memcg: do softlimit reclaim also for targeted reclaim · a5b7c87f
      Michal Hocko 提交于
      Soft reclaim has been done only for the global reclaim (both background
      and direct).  Since "memcg: integrate soft reclaim tighter with zone
      shrinking code" there is no reason for this limitation anymore as the soft
      limit reclaim doesn't use any special code paths and it is a part of the
      zone shrinking code which is used by both global and targeted reclaims.
      
      From the semantic point of view it is natural to consider soft limit
      before touching all groups in the hierarchy tree which is touching the
      hard limit because soft limit tells us where to push back when there is a
      memory pressure.  It is not important whether the pressure comes from the
      limit or imbalanced zones.
      
      This patch simply enables soft reclaim unconditionally in
      mem_cgroup_should_soft_reclaim so it is enabled for both global and
      targeted reclaim paths.  mem_cgroup_soft_reclaim_eligible needs to learn
      about the root of the reclaim to know where to stop checking soft limit
      state of parents up the hierarchy.  Say we have
      
      A (over soft limit)
       \
        B (below s.l., hit the hard limit)
       / \
      C   D (below s.l.)
      
      B is the source of the outside memory pressure now for D but we shouldn't
      soft reclaim it because it is behaving well under B subtree and we can
      still reclaim from C (pressumably it is over the limit).
      mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the
      hierarchy at B (root of the memory pressure).
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NGlauber Costa <glommer@openvz.org>
      Reviewed-by: NTejun Heo <tj@kernel.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: Ying Han <yinghan@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a5b7c87f