- 12 10月, 2016 23 次提交
-
-
The limit checking in alloc_pipe_info() (used by pipe(2) and when opening a FIFO) has the following problems: (1) When checking capacity required for the new pipe, the checks against the limit in /proc/sys/fs/pipe-user-pages-{soft,hard} are made against existing consumption, and exclude the memory required for the new pipe capacity. As a consequence: (1) the memory allocation throttling provided by the soft limit does not kick in quite as early as it should, and (2) the user can overrun the hard limit. (2) As currently implemented, accounting and checking against the limits is done as follows: (a) Test whether the user has exceeded the limit. (b) Make new pipe buffer allocation. (c) Account new allocation against the limits. This is racey. Multiple processes may pass point (a) simultaneously, and then allocate pipe buffers that are accounted for only in step (c). The race means that the user's pipe buffer allocation could be pushed over the limit (by an arbitrary amount, depending on how unlucky we were in the race). [Thanks to Vegard Nossum for spotting this point, which I had missed.] This patch addresses the above problems as follows: * Alter the checks against limits to include the memory required for the new pipe. * Re-order the accounting step so that it precedes the buffer allocation. If the accounting step determines that a limit has been reached, revert the accounting and cause the operation to fail. Link: http://lkml.kernel.org/r/8ff3e9f9-23f6-510c-644f-8e70cd1c0bd9@gmail.comSigned-off-by: NMichael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: NVegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <socketpair@gmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Jens Axboe <axboe@fb.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
Replace an 'if' block that covers most of the code in this function with a 'goto'. This makes the code a little simpler to read, and also simplifies the next patch (fix limit checking in alloc_pipe_info()) Link: http://lkml.kernel.org/r/aef030c1-0257-98a9-4988-186efa48530c@gmail.comSigned-off-by: NMichael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: NVegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <socketpair@gmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Jens Axboe <axboe@fb.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
The limit checking in pipe_set_size() (used by fcntl(F_SETPIPE_SZ)) has the following problems: (1) When increasing the pipe capacity, the checks against the limits in /proc/sys/fs/pipe-user-pages-{soft,hard} are made against existing consumption, and exclude the memory required for the increased pipe capacity. The new increase in pipe capacity can then push the total memory used by the user for pipes (possibly far) over a limit. This can also trigger the problem described next. (2) The limit checks are performed even when the new pipe capacity is less than the existing pipe capacity. This can lead to problems if a user sets a large pipe capacity, and then the limits are lowered, with the result that the user will no longer be able to decrease the pipe capacity. (3) As currently implemented, accounting and checking against the limits is done as follows: (a) Test whether the user has exceeded the limit. (b) Make new pipe buffer allocation. (c) Account new allocation against the limits. This is racey. Multiple processes may pass point (a) simultaneously, and then allocate pipe buffers that are accounted for only in step (c). The race means that the user's pipe buffer allocation could be pushed over the limit (by an arbitrary amount, depending on how unlucky we were in the race). [Thanks to Vegard Nossum for spotting this point, which I had missed.] This patch addresses the above problems as follows: * Perform checks against the limits only when increasing a pipe's capacity; an unprivileged user can always decrease a pipe's capacity. * Alter the checks against limits to include the memory required for the new pipe capacity. * Re-order the accounting step so that it precedes the buffer allocation. If the accounting step determines that a limit has been reached, revert the accounting and cause the operation to fail. The program below can be used to demonstrate problems 1 and 2, and the effect of the fix. The program takes one or more command-line arguments. The first argument specifies the number of pipes that the program should create. The remaining arguments are, alternately, pipe capacities that should be set using fcntl(F_SETPIPE_SZ), and sleep intervals (in seconds) between the fcntl() operations. (The sleep intervals allow the possibility to change the limits between fcntl() operations.) Problem 1 ========= Using the test program on an unpatched kernel, we first set some limits: # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # 40.96 MB Then show that we can set a pipe with capacity (100MB) that is over the hard limit # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 Initial pipe capacity: 65536 Loop 1: set pipe capacity to 100000000 bytes F_SETPIPE_SZ returned 134217728 Now set the capacity to 100MB twice. The second call fails (which is probably surprising to most users, since it seems like a no-op): # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 0 100000000 Initial pipe capacity: 65536 Loop 1: set pipe capacity to 100000000 bytes F_SETPIPE_SZ returned 134217728 Loop 2: set pipe capacity to 100000000 bytes Loop 2, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted With a patched kernel, setting a capacity over the limit fails at the first attempt: # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 Initial pipe capacity: 65536 Loop 1: set pipe capacity to 100000000 bytes Loop 1, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted There is a small chance that the change to fix this problem could break user-space, since there are cases where fcntl(F_SETPIPE_SZ) calls that previously succeeded might fail. However, the chances are small, since (a) the pipe-user-pages-{soft,hard} limits are new (in 4.5), and the default soft/hard limits are high/unlimited. Therefore, it seems warranted to make these limits operate more precisely (and behave more like what users probably expect). Problem 2 ========= Running the test program on an unpatched kernel, we first set some limits: # getconf PAGESIZE 4096 # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # 40.96 MB Now perform two fcntl(F_SETPIPE_SZ) operations on a single pipe, first setting a pipe capacity (10MB), sleeping for a few seconds, during which time the hard limit is lowered, and then set pipe capacity to a smaller amount (5MB): # sudo -u mtk ./test_F_SETPIPE_SZ 1 10000000 15 5000000 & [1] 748 # Initial pipe capacity: 65536 Loop 1: set pipe capacity to 10000000 bytes F_SETPIPE_SZ returned 16777216 Sleeping 15 seconds # echo 1000 > /proc/sys/fs/pipe-user-pages-hard # 4.096 MB # Loop 2: set pipe capacity to 5000000 bytes Loop 2, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted In this case, the user should be able to lower the limit. With a kernel that has the patch below, the second fcntl() succeeds: # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # sudo -u mtk ./test_F_SETPIPE_SZ 1 10000000 15 5000000 & [1] 3215 # Initial pipe capacity: 65536 # Loop 1: set pipe capacity to 10000000 bytes F_SETPIPE_SZ returned 16777216 Sleeping 15 seconds # echo 1000 > /proc/sys/fs/pipe-user-pages-hard # Loop 2: set pipe capacity to 5000000 bytes F_SETPIPE_SZ returned 8388608 8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x--- /* test_F_SETPIPE_SZ.c (C) 2016, Michael Kerrisk; licensed under GNU GPL version 2 or later Test operation of fcntl(F_SETPIPE_SZ) for setting pipe capacity and interactions with limits defined by /proc/sys/fs/pipe-* files. */ #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> int main(int argc, char *argv[]) { int (*pfd)[2]; int npipes; int pcap, rcap; int j, p, s, stime, loop; if (argc < 2) { fprintf(stderr, "Usage: %s num-pipes " "[pipe-capacity sleep-time]...\n", argv[0]); exit(EXIT_FAILURE); } npipes = atoi(argv[1]); pfd = calloc(npipes, sizeof (int [2])); if (pfd == NULL) { perror("calloc"); exit(EXIT_FAILURE); } for (j = 0; j < npipes; j++) { if (pipe(pfd[j]) == -1) { fprintf(stderr, "Loop %d: pipe() failed: ", j); perror("pipe"); exit(EXIT_FAILURE); } } printf("Initial pipe capacity: %d\n", fcntl(pfd[0][0], F_GETPIPE_SZ)); for (j = 2; j < argc; j += 2 ) { loop = j / 2; pcap = atoi(argv[j]); printf(" Loop %d: set pipe capacity to %d bytes\n", loop, pcap); for (p = 0; p < npipes; p++) { s = fcntl(pfd[p][0], F_SETPIPE_SZ, pcap); if (s == -1) { fprintf(stderr, " Loop %d, pipe %d: F_SETPIPE_SZ " "failed: ", loop, p); perror("fcntl"); exit(EXIT_FAILURE); } if (p == 0) { printf(" F_SETPIPE_SZ returned %d\n", s); rcap = s; } else { if (s != rcap) { fprintf(stderr, " Loop %d, pipe %d: F_SETPIPE_SZ " "unexpected return: %d\n", loop, p, s); exit(EXIT_FAILURE); } } stime = (j + 1 < argc) ? atoi(argv[j + 1]) : 0; if (stime > 0) { printf(" Sleeping %d seconds\n", stime); sleep(stime); } } } exit(EXIT_SUCCESS); } 8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x--- Patch history: v2 * Switch order of test in 'if' statement to avoid function call (to capability()) in normal path. [This is a fix to a preexisting wart in the code. Thanks to Willy Tarreau] * Perform (size > pipe_max_size) check before calling account_pipe_buffers(). [Thanks to Vegard Nossum] Quoting Vegard: The potential problem happens if the user passes a very large number which will overflow pipe->user->pipe_bufs. On 32-bit, sizeof(int) == sizeof(long), so if they pass arg = INT_MAX then round_pipe_size() returns INT_MAX. Although it's true that the accounting is done in terms of pages and not bytes, so you'd need on the order of (1 << 13) = 8192 processes hitting the limit at the same time in order to make it overflow, which seems a bit unlikely. (See https://lkml.org/lkml/2016/8/12/215 for another discussion on the limit checking) Link: http://lkml.kernel.org/r/1e464945-536b-2420-798b-e77b9c7e8593@gmail.comSigned-off-by: NMichael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: NVegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <socketpair@gmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Jens Axboe <axboe@fb.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
This is a preparatory patch for following work. account_pipe_buffers() performs accounting in the 'user_struct'. There is no need to pass a pointer to a 'pipe_inode_info' struct (which is then dereferenced to obtain a pointer to the 'user' field). Instead, pass a pointer directly to the 'user_struct'. This change is needed in preparation for a subsequent patch that the fixes the limit checking in alloc_pipe_info() (and the resulting code is a little more logical). Link: http://lkml.kernel.org/r/7277bf8c-a6fc-4a7d-659c-f5b145c981ab@gmail.comSigned-off-by: NMichael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: NVegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <socketpair@gmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Jens Axboe <axboe@fb.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
This is a preparatory patch for following work. Move the F_SETPIPE_SZ limit-checking logic from pipe_fcntl() into pipe_set_size(). This simplifies the code a little, and allows for reworking required in a later patch that fixes the limit checking in pipe_set_size() Link: http://lkml.kernel.org/r/3701b2c5-2c52-2c3e-226d-29b9deb29b50@gmail.comSigned-off-by: NMichael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: NVegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <socketpair@gmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Jens Axboe <axboe@fb.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
Patch series "pipe: fix limit handling", v2. When changing a pipe's capacity with fcntl(F_SETPIPE_SZ), various limits defined by /proc/sys/fs/pipe-* files are checked to see if unprivileged users are exceeding limits on memory consumption. While documenting and testing the operation of these limits I noticed that, as currently implemented, these checks have a number of problems: (1) When increasing the pipe capacity, the checks against the limits in /proc/sys/fs/pipe-user-pages-{soft,hard} are made against existing consumption, and exclude the memory required for the increased pipe capacity. The new increase in pipe capacity can then push the total memory used by the user for pipes (possibly far) over a limit. This can also trigger the problem described next. (2) The limit checks are performed even when the new pipe capacity is less than the existing pipe capacity. This can lead to problems if a user sets a large pipe capacity, and then the limits are lowered, with the result that the user will no longer be able to decrease the pipe capacity. (3) As currently implemented, accounting and checking against the limits is done as follows: (a) Test whether the user has exceeded the limit. (b) Make new pipe buffer allocation. (c) Account new allocation against the limits. This is racey. Multiple processes may pass point (a) simultaneously, and then allocate pipe buffers that are accounted for only in step (c). The race means that the user's pipe buffer allocation could be pushed over the limit (by an arbitrary amount, depending on how unlucky we were in the race). [Thanks to Vegard Nossum for spotting this point, which I had missed.] This patch series addresses these three problems. This patch (of 8): This is a minor preparatory patch. After subsequent patches, round_pipe_size() will be called from pipe_set_size(), so place round_pipe_size() above pipe_set_size(). Link: http://lkml.kernel.org/r/91a91fdb-a959-ba7f-b551-b62477cc98a1@gmail.comSigned-off-by: NMichael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: NVegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <socketpair@gmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Jens Axboe <axboe@fb.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
cmd part of this struct is the same as an index of itself within _ioctls[]. In fact this cmd is unused, so we can drop this part. Link: http://lkml.kernel.org/r/20160831033414.9910.66697.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <raven@themaw.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
Having this in autofs_i.h gives illusion that uncommenting this enables pr_debug(), but it doesn't enable all the pr_debug() in autofs because inclusion order matters. XFS has the same DEBUG macro in its core header fs/xfs/xfs.h, however XFS seems to have a rule to include this prior to other XFS headers as well as kernel headers. This is not the case with autofs, and DEBUG could be enabled via Makefile, so autofs should just get rid of this comment to make the code less confusing. It's a comment, so there is literally no functional difference. Link: http://lkml.kernel.org/r/20160831033409.9910.77067.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <raven@themaw.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
All other warnings use "cmd(0x%08x)" and this is the only one with "cmd(%d)". (below comes from my userspace debug program, but not automount daemon) [ 1139.905676] autofs4:pid:1640:check_dev_ioctl_version: ioctl control interface version mismatch: kernel(1.0), user(0.0), cmd(-1072131215) Link: http://lkml.kernel.org/r/20160812024851.12352.75458.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <ikent@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ian Kent 提交于
No functional changes, based on the following justification. 1. Make the code more consistent using the ioctl vector _ioctls[], rather than assigning NULL only for this ioctl command. 2. Remove goto done; for better maintainability in the long run. 3. The existing code is based on the fact that validate_dev_ioctl() sets ioctl version for any command, but AUTOFS_DEV_IOCTL_VERSION_CMD should explicitly set it regardless of the default behavior. Link: http://lkml.kernel.org/r/20160812024846.12352.9885.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <ikent@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ian Kent 提交于
The count of miscellaneous device ioctls in fs/autofs4/autofs_i.h is wrong. The number of ioctls is the difference between AUTOFS_DEV_IOCTL_VERSION_CMD and AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD (14) not the difference between AUTOFS_IOC_COUNT and 11 (21). [kusumi.tomohiro@gmail.com: fix typo that made the count macro negative] Link: http://lkml.kernel.org/r/20160831033420.9910.16809.stgit@pluto.themaw.net Link: http://lkml.kernel.org/r/20160812024841.12352.11975.stgit@pluto.themaw.netSigned-off-by: NIan Kent <raven@themaw.net> Cc: Tomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
This isn't a return value, so change the message to indicate the status is the result of may_umount(). (or locate pr_debug() after put_user() with the same message) Link: http://lkml.kernel.org/r/20160812024836.12352.74628.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <ikent@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
Returning -ENOTTY here fails to free dynamically allocated param. Link: http://lkml.kernel.org/r/20160812024815.12352.69153.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <ikent@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
These two were left from commit aa55ddf3 ("autofs4: remove unused ioctls") which removed unused ioctls. Link: http://lkml.kernel.org/r/20160812024810.12352.96377.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <ikent@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
kfree dentry data allocated by autofs4_new_ino() with autofs4_free_ino() instead of raw kfree. (since we have the interface to free autofs_info*) This patch was modified to remove the need to set the dentry info field to NULL dew to a change in the previous patch. Link: http://lkml.kernel.org/r/20160812024805.12352.43650.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <raven@themaw.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ian Kent 提交于
The inode allocation failure case in autofs4_dir_symlink() frees the autofs dentry info of the dentry without setting ->d_fsdata to NULL. That could lead to a double free so just get rid of the free and leave it to ->d_release(). Link: http://lkml.kernel.org/r/20160812024759.12352.10653.stgit@pluto.themaw.netSigned-off-by: NIan Kent <raven@themaw.net> Cc: Tomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
It's invalid if the given mode is neither dir nor link, so warn on else case. Link: http://lkml.kernel.org/r/20160812024754.12352.8536.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <raven@themaw.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ian Kent 提交于
Somewhere along the line the error handling gotos have become incorrect. Link: http://lkml.kernel.org/r/20160812024749.12352.15100.stgit@pluto.themaw.netSigned-off-by: NIan Kent <raven@themaw.net> Cc: Tomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
This patch does what the below comment says. It could be and it's considered better to do this first before various functions get called during initialization. /* Couldn't this be tested earlier? */ Link: http://lkml.kernel.org/r/20160812024744.12352.43075.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <raven@themaw.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tomohiro Kusumi 提交于
autofs4_kill_sb() doesn't need to be declared as extern, and no other functions in .h are explicitly declared as extern. Link: http://lkml.kernel.org/r/20160812024739.12352.99354.stgit@pluto.themaw.netSigned-off-by: NTomohiro Kusumi <kusumi.tomohiro@gmail.com> Signed-off-by: NIan Kent <raven@themaw.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
The select(2) syscall performs a kmalloc(size, GFP_KERNEL) where size grows with the number of fds passed. We had a customer report page allocation failures of order-4 for this allocation. This is a costly order, so it might easily fail, as the VM expects such allocation to have a lower-order fallback. Such trivial fallback is vmalloc(), as the memory doesn't have to be physically contiguous and the allocation is temporary for the duration of the syscall only. There were some concerns, whether this would have negative impact on the system by exposing vmalloc() to userspace. Although an excessive use of vmalloc can cause some system wide performance issues - TLB flushes etc. - a large order allocation is not for free either and an excessive reclaim/compaction can have a similar effect. Also note that the size is effectively limited by RLIMIT_NOFILE which defaults to 1024 on the systems I checked. That means the bitmaps will fit well within single page and thus the vmalloc() fallback could be only excercised for processes where root allows a higher limit. Note that the poll(2) syscall seems to use a linked list of order-0 pages, so it doesn't need this kind of fallback. [eric.dumazet@gmail.com: fix failure path logic] [akpm@linux-foundation.org: use proper type for size] Link: http://lkml.kernel.org/r/20160927084536.5923-1-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Jason Baron <jbaron@akamai.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Darrick J. Wong 提交于
After much discussion, it seems that the fallocate feature flag FALLOC_FL_ZERO_RANGE maps nicely to SCSI WRITE SAME; and the feature FALLOC_FL_PUNCH_HOLE maps nicely to the devices that have been whitelisted for zeroing SCSI UNMAP. Punch still requires that FALLOC_FL_KEEP_SIZE is set. A length that goes past the end of the device will be clamped to the device size if KEEP_SIZE is set; or will return -EINVAL if not. Both start and length must be aligned to the device's logical block size. Since the semantics of fallocate are fairly well established already, wire up the two pieces. The other fallocate variants (collapse range, insert range, and allocate blocks) are not supported. Link: http://lkml.kernel.org/r/147518379992.22791.8849838163218235007.stgit@birch.djwong.orgSigned-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NHannes Reinecke <hare@suse.com> Reviewed-by: NBart Van Assche <bart.vanassche@sandisk.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> # tweaked header Cc: Brian Foster <bfoster@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hannes Reinecke <hare@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Guozhonghua 提交于
In the dlm_migrate_request_handler(), when `ret' is -EEXIST, the mle should be freed, otherwise the memory will be leaked. Link: http://lkml.kernel.org/r/71604351584F6A4EBAE558C676F37CA4A3D3522A@H3CMLB12-EX.srv.huawei-3com.comSigned-off-by: NGuozhonghua <guozhonghua@h3c.com> Reviewed-by: NMark Fasheh <mfasheh@versity.com> Cc: Eric Ren <zren@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Joseph Qi <joseph.qi@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 10月, 2016 2 次提交
-
-
由 Al Viro 提交于
looking for duplicate ->iov_base makes sense only for iovec-backed iterators; for kvec-backed ones it's pointless, for bvec-backed ones it's pointless and broken on 32bit (we walk through an array of struct bio_vec accessing them as if they were struct iovec; works by accident on 64bit, but on 32bit it'll blow up) and for pipe-backed ones it's pointless and ends up oopsing. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
by making sure we call iov_iter_advance() on original iov_iter even if direct_IO (done on its copy) has returned 0. It's a no-op for old iov_iter flavours and does the right thing (== truncation of the stuff we'd allocated, but not filled) in ITER_PIPE case. Failures (e.g. -EIO) get caught and dealt with by cleanup in generic_file_read_iter(). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 10 10月, 2016 1 次提交
-
-
由 Marcelo Ricardo Leitner 提交于
After backporting commit ee44b4bc ("dlm: use sctp 1-to-1 API") series to a kernel with an older workqueue which didn't use RCU yet, it was noticed that we are freeing the workqueues in dlm_lowcomms_stop() too early as free_conn() will try to access that memory for canceling the queued works if any. This issue was introduced by commit 0d737a8c as before it such attempt to cancel the queued works wasn't performed, so the issue was not present. This patch fixes it by simply inverting the free order. Cc: stable@vger.kernel.org Fixes: 0d737a8c ("dlm: fix race while closing connections") Signed-off-by: NMarcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: NDavid Teigland <teigland@redhat.com>
-
- 08 10月, 2016 14 次提交
-
-
由 Andreas Gruenbacher 提交于
These inode operations are no longer used; remove them. Signed-off-by: NAndreas Gruenbacher <agruenba@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Alexey Dobriyan 提交于
Current supplementary groups code can massively overallocate memory and is implemented in a way so that access to individual gid is done via 2D array. If number of gids is <= 32, memory allocation is more or less tolerable (140/148 bytes). But if it is not, code allocates full page (!) regardless and, what's even more fun, doesn't reuse small 32-entry array. 2D array means dependent shifts, loads and LEAs without possibility to optimize them (gid is never known at compile time). All of the above is unnecessary. Switch to the usual trailing-zero-len-array scheme. Memory is allocated with kmalloc/vmalloc() and only as much as needed. Accesses become simpler (LEA 8(gi,idx,4) or even without displacement). Maximum number of gids is 65536 which translates to 256KB+8 bytes. I think kernel can handle such allocation. On my usual desktop system with whole 9 (nine) aux groups, struct group_info shrinks from 148 bytes to 44 bytes, yay! Nice side effects: - "gi->gid[i]" is shorter than "GROUP_AT(gi, i)", less typing, - fix little mess in net/ipv4/ping.c should have been using GROUP_AT macro but this point becomes moot, - aux group allocation is persistent and should be accounted as such. Link: http://lkml.kernel.org/r/20160817201927.GA2096@p183.telecom.bySigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: Vasily Kulikov <segoon@openwall.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Robert Ho 提交于
Recently, Redhat reported that nvml test suite failed on QEMU/KVM, more detailed info please refer to: https://bugzilla.redhat.com/show_bug.cgi?id=1365721 Actually, this bug is not only for NVDIMM/DAX but also for any other file systems. This simple test case abstracted from nvml can easily reproduce this bug in common environment: -------------------------- testcase.c ----------------------------- int is_pmem_proc(const void *addr, size_t len) { const char *caddr = addr; FILE *fp; if ((fp = fopen("/proc/self/smaps", "r")) == NULL) { printf("!/proc/self/smaps"); return 0; } int retval = 0; /* assume false until proven otherwise */ char line[PROCMAXLEN]; /* for fgets() */ char *lo = NULL; /* beginning of current range in smaps file */ char *hi = NULL; /* end of current range in smaps file */ int needmm = 0; /* looking for mm flag for current range */ while (fgets(line, PROCMAXLEN, fp) != NULL) { static const char vmflags[] = "VmFlags:"; static const char mm[] = " wr"; /* check for range line */ if (sscanf(line, "%p-%p", &lo, &hi) == 2) { if (needmm) { /* last range matched, but no mm flag found */ printf("never found mm flag.\n"); break; } else if (caddr < lo) { /* never found the range for caddr */ printf("#######no match for addr %p.\n", caddr); break; } else if (caddr < hi) { /* start address is in this range */ size_t rangelen = (size_t)(hi - caddr); /* remember that matching has started */ needmm = 1; /* calculate remaining range to search for */ if (len > rangelen) { len -= rangelen; caddr += rangelen; printf("matched %zu bytes in range " "%p-%p, %zu left over.\n", rangelen, lo, hi, len); } else { len = 0; printf("matched all bytes in range " "%p-%p.\n", lo, hi); } } } else if (needmm && strncmp(line, vmflags, sizeof(vmflags) - 1) == 0) { if (strstr(&line[sizeof(vmflags) - 1], mm) != NULL) { printf("mm flag found.\n"); if (len == 0) { /* entire range matched */ retval = 1; break; } needmm = 0; /* saw what was needed */ } else { /* mm flag not set for some or all of range */ printf("range has no mm flag.\n"); break; } } } fclose(fp); printf("returning %d.\n", retval); return retval; } void *Addr; size_t Size; /* * worker -- the work each thread performs */ static void * worker(void *arg) { int *ret = (int *)arg; *ret = is_pmem_proc(Addr, Size); return NULL; } int main(int argc, char *argv[]) { if (argc < 2 || argc > 3) { printf("usage: %s file [env].\n", argv[0]); return -1; } int fd = open(argv[1], O_RDWR); struct stat stbuf; fstat(fd, &stbuf); Size = stbuf.st_size; Addr = mmap(0, stbuf.st_size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); close(fd); pthread_t threads[NTHREAD]; int ret[NTHREAD]; /* kick off NTHREAD threads */ for (int i = 0; i < NTHREAD; i++) pthread_create(&threads[i], NULL, worker, &ret[i]); /* wait for all the threads to complete */ for (int i = 0; i < NTHREAD; i++) pthread_join(threads[i], NULL); /* verify that all the threads return the same value */ for (int i = 1; i < NTHREAD; i++) { if (ret[0] != ret[i]) { printf("Error i %d ret[0] = %d ret[i] = %d.\n", i, ret[0], ret[i]); } } printf("%d", ret[0]); return 0; } It failed as some threads can not find the memory region in "/proc/self/smaps" which is allocated in the main process It is caused by proc fs which uses 'file->version' to indicate the VMA that is the last one has already been handled by read() system call. When the next read() issues, it uses the 'version' to find the VMA, then the next VMA is what we want to handle, the related code is as follows: if (last_addr) { vma = find_vma(mm, last_addr); if (vma && (vma = m_next_vma(priv, vma))) return vma; } However, VMA will be lost if the last VMA is gone, e.g: The process VMA list is A->B->C->D CPU 0 CPU 1 read() system call handle VMA B version = B return to userspace unmap VMA B issue read() again to continue to get the region info find_vma(version) will get VMA C m_next_vma(C) will get VMA D handle D !!! VMA C is lost !!! In order to fix this bug, we make 'file->version' indicate the end address of the current VMA. m_start will then look up a vma which with vma_start < last_vm_end and moves on to the next vma if we found the same or an overlapping vma. This will guarantee that we will not miss an exclusive vma but we can still miss one if the previous vma was shrunk. This is acceptable because guaranteeing "never miss a vma" is simply not feasible. User has to cope with some inconsistencies if the file is not read in one go. [mhocko@suse.com: changelog fixes] Link: http://lkml.kernel.org/r/1475296958-27652-1-git-send-email-robert.hu@intel.comAcked-by: NDave Hansen <dave.hansen@intel.com> Signed-off-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: NRobert Hu <robert.hu@intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Stefan Hajnoczi <stefanha@redhat.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 John Stultz 提交于
In changing from checking ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS) to capable(CAP_SYS_NICE), I missed that ptrace_my_access succeeds when p == current, but the CAP_SYS_NICE doesn't. Thus while the previous commit was intended to loosen the needed privileges to modify a processes timerslack, it needlessly restricted a task modifying its own timerslack via the proc/<tid>/timerslack_ns (which is permitted also via the PR_SET_TIMERSLACK method). This patch corrects this by checking if p == current before checking the CAP_SYS_NICE value. This patch applies on top of my two previous patches currently in -mm Link: http://lkml.kernel.org/r/1471906870-28624-1-git-send-email-john.stultz@linaro.orgSigned-off-by: NJohn Stultz <john.stultz@linaro.org> Acked-by: NKees Cook <keescook@chromium.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Oren Laadan <orenl@cellrox.com> Cc: Ruchi Kandoi <kandoiruchi@google.com> Cc: Rom Lemarchand <romlem@android.com> Cc: Todd Kjos <tkjos@google.com> Cc: Colin Cross <ccross@android.com> Cc: Nick Kralevich <nnk@google.com> Cc: Dmitry Shmidt <dimitrysh@google.com> Cc: Elliott Hughes <enh@google.com> Cc: Android Kernel Team <kernel-team@android.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 John Stultz 提交于
As requested, this patch checks the existing LSM hooks task_getscheduler/task_setscheduler when reading or modifying the task's timerslack value. Previous versions added new get/settimerslack LSM hooks, but since they checked the same PROCESS__SET/GETSCHED values as existing hooks, it was suggested we just use the existing ones. Link: http://lkml.kernel.org/r/1469132667-17377-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Kees Cook <keescook@chromium.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Oren Laadan <orenl@cellrox.com> Cc: Ruchi Kandoi <kandoiruchi@google.com> Cc: Rom Lemarchand <romlem@android.com> Cc: Todd Kjos <tkjos@google.com> Cc: Colin Cross <ccross@android.com> Cc: Nick Kralevich <nnk@google.com> Cc: Dmitry Shmidt <dimitrysh@google.com> Cc: Elliott Hughes <enh@google.com> Cc: James Morris <jmorris@namei.org> Cc: Android Kernel Team <kernel-team@android.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 John Stultz 提交于
When an interface to allow a task to change another tasks timerslack was first proposed, it was suggested that something greater then CAP_SYS_NICE would be needed, as a task could be delayed further then what normally could be done with nice adjustments. So CAP_SYS_PTRACE was adopted instead for what became the /proc/<tid>/timerslack_ns interface. However, for Android (where this feature originates), giving the system_server CAP_SYS_PTRACE would allow it to observe and modify all tasks memory. This is considered too high a privilege level for only needing to change the timerslack. After some discussion, it was realized that a CAP_SYS_NICE process can set a task as SCHED_FIFO, so they could fork some spinning processes and set them all SCHED_FIFO 99, in effect delaying all other tasks for an infinite amount of time. So as a CAP_SYS_NICE task can already cause trouble for other tasks, using it as a required capability for accessing and modifying /proc/<tid>/timerslack_ns seems sufficient. Thus, this patch loosens the capability requirements to CAP_SYS_NICE and removes CAP_SYS_PTRACE, simplifying some of the code flow as well. This is technically an ABI change, but as the feature just landed in 4.6, I suspect no one is yet using it. Link: http://lkml.kernel.org/r/1469132667-17377-1-git-send-email-john.stultz@linaro.orgSigned-off-by: NJohn Stultz <john.stultz@linaro.org> Reviewed-by: NNick Kralevich <nnk@google.com> Acked-by: NSerge Hallyn <serge@hallyn.com> Acked-by: NKees Cook <keescook@chromium.org> Cc: Kees Cook <keescook@chromium.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Oren Laadan <orenl@cellrox.com> Cc: Ruchi Kandoi <kandoiruchi@google.com> Cc: Rom Lemarchand <romlem@android.com> Cc: Todd Kjos <tkjos@google.com> Cc: Colin Cross <ccross@android.com> Cc: Nick Kralevich <nnk@google.com> Cc: Dmitry Shmidt <dimitrysh@google.com> Cc: Elliott Hughes <enh@google.com> Cc: Android Kernel Team <kernel-team@android.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joe Perches 提交于
Use a specific routine to emit most lines so that the code is easier to read and maintain. akpm: text data bss dec hex filename 2976 8 0 2984 ba8 fs/proc/meminfo.o before 2669 8 0 2677 a75 fs/proc/meminfo.o after Link: http://lkml.kernel.org/r/8fce7fdef2ba081a4ef531594e97da8a9feebb58.1470810406.git.joe@perches.comSigned-off-by: NJoe Perches <joe@perches.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joe Perches 提交于
Allow some seq_puts removals by taking a string instead of a single char. [akpm@linux-foundation.org: update vmstat_show(), per Joe] Link: http://lkml.kernel.org/r/667e1cf3d436de91a5698170a1e98d882905e956.1470704995.git.joe@perches.comSigned-off-by: NJoe Perches <joe@perches.com> Cc: Joe Perches <joe@perches.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
top(1) opens the following files for every PID: /proc/*/stat /proc/*/statm /proc/*/status This patch switches /proc/*/status away from seq_printf(). The result is 13.5% speedup. Benchmark is open("/proc/self/status")+read+close 1.000.000 million times. BEFORE $ perf stat -r 10 taskset -c 3 ./proc-self-status Performance counter stats for 'taskset -c 3 ./proc-self-status' (10 runs): 10748.474301 task-clock (msec) # 0.954 CPUs utilized ( +- 0.91% ) 12 context-switches # 0.001 K/sec ( +- 1.09% ) 1 cpu-migrations # 0.000 K/sec 104 page-faults # 0.010 K/sec ( +- 0.45% ) 37,424,127,876 cycles # 3.482 GHz ( +- 0.04% ) 8,453,010,029 stalled-cycles-frontend # 22.59% frontend cycles idle ( +- 0.12% ) 3,747,609,427 stalled-cycles-backend # 10.01% backend cycles idle ( +- 0.68% ) 65,632,764,147 instructions # 1.75 insn per cycle # 0.13 stalled cycles per insn ( +- 0.00% ) 13,981,324,775 branches # 1300.773 M/sec ( +- 0.00% ) 138,967,110 branch-misses # 0.99% of all branches ( +- 0.18% ) 11.263885428 seconds time elapsed ( +- 0.04% ) ^^^^^^^^^^^^ AFTER $ perf stat -r 10 taskset -c 3 ./proc-self-status Performance counter stats for 'taskset -c 3 ./proc-self-status' (10 runs): 9010.521776 task-clock (msec) # 0.925 CPUs utilized ( +- 1.54% ) 11 context-switches # 0.001 K/sec ( +- 1.54% ) 1 cpu-migrations # 0.000 K/sec ( +- 11.11% ) 103 page-faults # 0.011 K/sec ( +- 0.60% ) 32,352,310,603 cycles # 3.591 GHz ( +- 0.07% ) 7,849,199,578 stalled-cycles-frontend # 24.26% frontend cycles idle ( +- 0.27% ) 3,269,738,842 stalled-cycles-backend # 10.11% backend cycles idle ( +- 0.73% ) 56,012,163,567 instructions # 1.73 insn per cycle # 0.14 stalled cycles per insn ( +- 0.00% ) 11,735,778,795 branches # 1302.453 M/sec ( +- 0.00% ) 98,084,459 branch-misses # 0.84% of all branches ( +- 0.28% ) 9.741247736 seconds time elapsed ( +- 0.07% ) ^^^^^^^^^^^ Link: http://lkml.kernel.org/r/20160806125608.GB1187@p183.telecom.bySigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: Joe Perches <joe@perches.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 zhong jiang 提交于
When the huge page is added to the page cahce (huge_add_to_page_cache), the page private flag will be cleared. since this code (remove_inode_hugepages) will only be called for pages in the page cahce, PagePrivate(page) will always be false. The patch remove the code without any functional change. Link: http://lkml.kernel.org/r/1475113323-29368-1-git-send-email-zhongjiang@huawei.comSigned-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Tested-by: NMike Kravetz <mike.kravetz@oracle.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yisheng Xie 提交于
Avoid making ifdef get pretty unwieldy if many ARCHs support gigantic page. No functional change with this patch. Link: http://lkml.kernel.org/r/1475227569-63446-2-git-send-email-xieyisheng1@huawei.comSigned-off-by: NYisheng Xie <xieyisheng1@huawei.com> Suggested-by: NMichal Hocko <mhocko@suse.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Huang Ying 提交于
After using the offset of the swap entry as the key of the swap cache, the page_index() becomes exactly same as page_file_index(). So the page_file_index() is removed and the callers are changed to use page_index() instead. Link: http://lkml.kernel.org/r/1473270649-27229-2-git-send-email-ying.huang@intel.comSigned-off-by: N"Huang, Ying" <ying.huang@intel.com> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Anna Schumaker <anna.schumaker@netapp.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aaron Lu 提交于
The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 James Morse 提交于
Trying to walk all of virtual memory requires architecture specific knowledge. On x86_64, addresses must be sign extended from bit 48, whereas on arm64 the top VA_BITS of address space have their own set of page tables. clear_refs_write() calls walk_page_range() on the range 0 to ~0UL, it provides a test_walk() callback that only expects to be walking over VMAs. Currently walk_pmd_range() will skip memory regions that don't have a VMA, reporting them as a hole. As this call only expects to walk user address space, make it walk 0 to 'highest_vm_end'. Link: http://lkml.kernel.org/r/1472655792-22439-1-git-send-email-james.morse@arm.comSigned-off-by: NJames Morse <james.morse@arm.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-