1. 20 4月, 2016 1 次提交
  2. 08 4月, 2016 1 次提交
    • A
      perf, bpf: allow bpf programs attach to tracepoints · 98b5c2c6
      Alexei Starovoitov 提交于
      introduce BPF_PROG_TYPE_TRACEPOINT program type and allow it to be attached
      to the perf tracepoint handler, which will copy the arguments into
      the per-cpu buffer and pass it to the bpf program as its first argument.
      The layout of the fields can be discovered by doing
      'cat /sys/kernel/debug/tracing/events/sched/sched_switch/format'
      prior to the compilation of the program with exception that first 8 bytes
      are reserved and not accessible to the program. This area is used to store
      the pointer to 'struct pt_regs' which some of the bpf helpers will use:
      +---------+
      | 8 bytes | hidden 'struct pt_regs *' (inaccessible to bpf program)
      +---------+
      | N bytes | static tracepoint fields defined in tracepoint/format (bpf readonly)
      +---------+
      | dynamic | __dynamic_array bytes of tracepoint (inaccessible to bpf yet)
      +---------+
      
      Not that all of the fields are already dumped to user space via perf ring buffer
      and broken application access it directly without consulting tracepoint/format.
      Same rule applies here: static tracepoint fields should only be accessed
      in a format defined in tracepoint/format. The order of fields and
      field sizes are not an ABI.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      98b5c2c6
  3. 31 3月, 2016 1 次提交
    • D
      bpf: make padding in bpf_tunnel_key explicit · c0e760c9
      Daniel Borkmann 提交于
      Make the 2 byte padding in struct bpf_tunnel_key between tunnel_ttl
      and tunnel_label members explicit. No issue has been observed, and
      gcc/llvm does padding for the old struct already, where tunnel_label
      was not yet present, so the current code works, but since it's part
      of uapi, make sure we don't introduce holes in structs.
      
      Therefore, add tunnel_ext that we can use generically in future
      (f.e. to flag OAM messages for backends, etc). Also add the offset
      to the compat tests to be sure should some compilers not padd the
      tail of the old version of bpf_tunnel_key.
      
      Fixes: 4018ab18 ("bpf: support flow label for bpf_skb_{set, get}_tunnel_key")
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c0e760c9
  4. 12 3月, 2016 1 次提交
  5. 09 3月, 2016 4 次提交
    • A
      bpf: pre-allocate hash map elements · 6c905981
      Alexei Starovoitov 提交于
      If kprobe is placed on spin_unlock then calling kmalloc/kfree from
      bpf programs is not safe, since the following dead lock is possible:
      kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe->
      bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock)
      and deadlocks.
      
      The following solutions were considered and some implemented, but
      eventually discarded
      - kmem_cache_create for every map
      - add recursion check to slow-path of slub
      - use reserved memory in bpf_map_update for in_irq or in preempt_disabled
      - kmalloc via irq_work
      
      At the end pre-allocation of all map elements turned out to be the simplest
      solution and since the user is charged upfront for all the memory, such
      pre-allocation doesn't affect the user space visible behavior.
      
      Since it's impossible to tell whether kprobe is triggered in a safe
      location from kmalloc point of view, use pre-allocation by default
      and introduce new BPF_F_NO_PREALLOC flag.
      
      While testing of per-cpu hash maps it was discovered
      that alloc_percpu(GFP_ATOMIC) has odd corner cases and often
      fails to allocate memory even when 90% of it is free.
      The pre-allocation of per-cpu hash elements solves this problem as well.
      
      Turned out that bpf_map_update() quickly followed by
      bpf_map_lookup()+bpf_map_delete() is very common pattern used
      in many of iovisor/bcc/tools, so there is additional benefit of
      pre-allocation, since such use cases are must faster.
      
      Since all hash map elements are now pre-allocated we can remove
      atomic increment of htab->count and save few more cycles.
      
      Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid
      large malloc/free done by users who don't have sufficient limits.
      
      Pre-allocation is done with vmalloc and alloc/free is done
      via percpu_freelist. Here are performance numbers for different
      pre-allocation algorithms that were implemented, but discarded
      in favor of percpu_freelist:
      
      1 cpu:
      pcpu_ida	2.1M
      pcpu_ida nolock	2.3M
      bt		2.4M
      kmalloc		1.8M
      hlist+spinlock	2.3M
      pcpu_freelist	2.6M
      
      4 cpu:
      pcpu_ida	1.5M
      pcpu_ida nolock	1.8M
      bt w/smp_align	1.7M
      bt no/smp_align	1.1M
      kmalloc		0.7M
      hlist+spinlock	0.2M
      pcpu_freelist	2.0M
      
      8 cpu:
      pcpu_ida	0.7M
      bt w/smp_align	0.8M
      kmalloc		0.4M
      pcpu_freelist	1.5M
      
      32 cpu:
      kmalloc		0.13M
      pcpu_freelist	0.49M
      
      pcpu_ida nolock is a modified percpu_ida algorithm without
      percpu_ida_cpu locks and without cross-cpu tag stealing.
      It's faster than existing percpu_ida, but not as fast as pcpu_freelist.
      
      bt is a variant of block/blk-mq-tag.c simlified and customized
      for bpf use case. bt w/smp_align is using cache line for every 'long'
      (similar to blk-mq-tag). bt no/smp_align allocates 'long'
      bitmasks continuously to save memory. It's comparable to percpu_ida
      and in some cases faster, but slower than percpu_freelist
      
      hlist+spinlock is the simplest free list with single spinlock.
      As expeceted it has very bad scaling in SMP.
      
      kmalloc is existing implementation which is still available via
      BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and
      in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist,
      but saves memory, so in cases where map->max_entries can be large
      and number of map update/delete per second is low, it may make
      sense to use it.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6c905981
    • D
      bpf: support for access to tunnel options · 14ca0751
      Daniel Borkmann 提交于
      After eBPF being able to programmatically access/manage tunnel key meta
      data via commit d3aa45ce ("bpf: add helpers to access tunnel metadata")
      and more recently also for IPv6 through c6c33454 ("bpf: support ipv6
      for bpf_skb_{set,get}_tunnel_key"), this work adds two complementary
      helpers to generically access their auxiliary tunnel options.
      
      Geneve and vxlan support this facility. For geneve, TLVs can be pushed,
      and for the vxlan case its GBP extension. I.e. setting tunnel key for geneve
      case only makes sense, if we can also read/write TLVs into it. In the GBP
      case, it provides the flexibility to easily map the group policy ID in
      combination with other helpers or maps.
      
      I chose to model this as two separate helpers, bpf_skb_{set,get}_tunnel_opt(),
      for a couple of reasons. bpf_skb_{set,get}_tunnel_key() is already rather
      complex by itself, and there may be cases for tunnel key backends where
      tunnel options are not always needed. If we would have integrated this
      into bpf_skb_{set,get}_tunnel_key() nevertheless, we are very limited with
      remaining helper arguments, so keeping compatibility on structs in case of
      passing in a flat buffer gets more cumbersome. Separating both also allows
      for more flexibility and future extensibility, f.e. options could be fed
      directly from a map, etc.
      
      Moreover, change geneve's xmit path to test only for info->options_len
      instead of TUNNEL_GENEVE_OPT flag. This makes it more consistent with vxlan's
      xmit path and allows for avoiding to specify a protocol flag in the API on
      xmit, so it can be protocol agnostic. Having info->options_len is enough
      information that is needed. Tested with vxlan and geneve.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      14ca0751
    • D
      bpf: allow to propagate df in bpf_skb_set_tunnel_key · 22080870
      Daniel Borkmann 提交于
      Added by 9a628224 ("ip_tunnel: Add dont fragment flag."), allow to
      feed df flag into tunneling facilities (currently supported on TX by
      vxlan, geneve and gre) as a hint from eBPF's bpf_skb_set_tunnel_key()
      helper.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      22080870
    • D
      bpf: add flags to bpf_skb_store_bytes for clearing hash · 8afd54c8
      Daniel Borkmann 提交于
      When overwriting parts of the packet with bpf_skb_store_bytes() that
      were fed previously into skb->hash calculation, we should clear the
      current hash with skb_clear_hash(), so that a next skb_get_hash() call
      can determine the correct hash related to this skb.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8afd54c8
  6. 25 2月, 2016 1 次提交
    • D
      bpf: fix csum setting for bpf_set_tunnel_key · 2da897e5
      Daniel Borkmann 提交于
      The fix in 35e2d115 ("tunnels: Allow IPv6 UDP checksums to be correctly
      controlled.") changed behavior for bpf_set_tunnel_key() when in use with
      IPv6 and thus uncovered a bug that TUNNEL_CSUM needed to be set but wasn't.
      As a result, the stack dropped ingress vxlan IPv6 packets, that have been
      sent via eBPF through collect meta data mode due to checksum now being zero.
      
      Since after LCO, we enable IPv4 checksum by default, so make that analogous
      and only provide a flag BPF_F_ZERO_CSUM_TX for the user to turn it off in
      IPv4 case.
      
      Fixes: 35e2d115 ("tunnels: Allow IPv6 UDP checksums to be correctly controlled.")
      Fixes: c6c33454 ("bpf: support ipv6 for bpf_skb_{set,get}_tunnel_key")
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      2da897e5
  7. 22 2月, 2016 2 次提交
    • D
      bpf: fix csum update in bpf_l4_csum_replace helper for udp · 2f72959a
      Daniel Borkmann 提交于
      When using this helper for updating UDP checksums, we need to extend
      this in order to write CSUM_MANGLED_0 for csum computations that result
      into 0 as sum. Reason we need this is because packets with a checksum
      could otherwise become incorrectly marked as a packet without a checksum.
      Likewise, if the user indicates BPF_F_MARK_MANGLED_0, then we should
      not turn packets without a checksum into ones with a checksum.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      2f72959a
    • D
      bpf: add generic bpf_csum_diff helper · 7d672345
      Daniel Borkmann 提交于
      For L4 checksums, we currently have bpf_l4_csum_replace() helper. It's
      currently limited to handle 2 and 4 byte changes in a header and feeds the
      from/to into inet_proto_csum_replace{2,4}() helpers of the kernel. When
      working with IPv6, for example, this makes it rather cumbersome to deal
      with, similarly when editing larger parts of a header.
      
      Instead, extend the API in a more generic way: For bpf_l4_csum_replace(),
      add a case for header field mask of 0 to change the checksum at a given
      offset through inet_proto_csum_replace_by_diff(), and provide a helper
      bpf_csum_diff() that can generically calculate a from/to diff for arbitrary
      amounts of data.
      
      This can be used in multiple ways: for the bpf_l4_csum_replace() only
      part, this even provides us with the option to insert precalculated diffs
      from user space f.e. from a map, or from bpf_csum_diff() during runtime.
      
      bpf_csum_diff() has a optional from/to stack buffer input, so we can
      calculate a diff by using a scratchbuffer for scenarios where we're
      inserting (from is NULL), removing (to is NULL) or diffing (from/to buffers
      don't need to be of equal size) data. Also, bpf_csum_diff() allows to
      feed a previous csum into csum_partial(), so the function can also be
      cascaded.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7d672345
  8. 20 2月, 2016 1 次提交
    • A
      bpf: introduce BPF_MAP_TYPE_STACK_TRACE · d5a3b1f6
      Alexei Starovoitov 提交于
      add new map type to store stack traces and corresponding helper
      bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id
      @ctx: struct pt_regs*
      @map: pointer to stack_trace map
      @flags: bits 0-7 - numer of stack frames to skip
              bit 8 - collect user stack instead of kernel
              bit 9 - compare stacks by hash only
              bit 10 - if two different stacks hash into the same stackid
                       discard old
              other bits - reserved
      Return: >= 0 stackid on success or negative error
      
      stackid is a 32-bit integer handle that can be further combined with
      other data (including other stackid) and used as a key into maps.
      
      Userspace will access stackmap using standard lookup/delete syscall commands to
      retrieve full stack trace for given stackid.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d5a3b1f6
  9. 06 2月, 2016 2 次提交
    • A
      bpf: introduce BPF_MAP_TYPE_PERCPU_ARRAY map · a10423b8
      Alexei Starovoitov 提交于
      Primary use case is a histogram array of latency
      where bpf program computes the latency of block requests or other
      events and stores histogram of latency into array of 64 elements.
      All cpus are constantly running, so normal increment is not accurate,
      bpf_xadd causes cache ping-pong and this per-cpu approach allows
      fastest collision-free counters.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a10423b8
    • A
      bpf: introduce BPF_MAP_TYPE_PERCPU_HASH map · 824bd0ce
      Alexei Starovoitov 提交于
      Introduce BPF_MAP_TYPE_PERCPU_HASH map type which is used to do
      accurate counters without need to use BPF_XADD instruction which turned
      out to be too costly for high-performance network monitoring.
      In the typical use case the 'key' is the flow tuple or other long
      living object that sees a lot of events per second.
      
      bpf_map_lookup_elem() returns per-cpu area.
      Example:
      struct {
        u32 packets;
        u32 bytes;
      } * ptr = bpf_map_lookup_elem(&map, &key);
      /* ptr points to this_cpu area of the value, so the following
       * increments will not collide with other cpus
       */
      ptr->packets ++;
      ptr->bytes += skb->len;
      
      bpf_update_elem() atomically creates a new element where all per-cpu
      values are zero initialized and this_cpu value is populated with
      given 'value'.
      Note that non-per-cpu hash map always allocates new element
      and then deletes old after rcu grace period to maintain atomicity
      of update. Per-cpu hash map updates element values in-place.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      824bd0ce
  10. 12 1月, 2016 2 次提交
  11. 19 12月, 2015 1 次提交
    • D
      bpf: add bpf_skb_load_bytes helper · 05c74e5e
      Daniel Borkmann 提交于
      When hacking tc programs with eBPF, one of the issues that come up
      from time to time is to load addresses from headers. In eBPF as in
      classic BPF, we have BPF_LD | BPF_ABS | BPF_{B,H,W} instructions that
      extract a byte, half-word or word out of the skb data though helpers
      such as bpf_load_pointer() (interpreter case).
      
      F.e. extracting a whole IPv6 address could possibly look like ...
      
        union v6addr {
          struct {
            __u32 p1;
            __u32 p2;
            __u32 p3;
            __u32 p4;
          };
          __u8 addr[16];
        };
      
        [...]
      
        a.p1 = htonl(load_word(skb, off));
        a.p2 = htonl(load_word(skb, off +  4));
        a.p3 = htonl(load_word(skb, off +  8));
        a.p4 = htonl(load_word(skb, off + 12));
      
        [...]
      
        /* access to a.addr[...] */
      
      This work adds a complementary helper bpf_skb_load_bytes() (we also
      have bpf_skb_store_bytes()) as an alternative where the same call
      would look like from an eBPF program:
      
        ret = bpf_skb_load_bytes(skb, off, addr, sizeof(addr));
      
      Same verifier restrictions apply as in ffeedafb ("bpf: introduce
      current->pid, tgid, uid, gid, comm accessors") case, where stack memory
      access needs to be statically verified and thus guaranteed to be
      initialized in first use (otherwise verifier cannot tell whether a
      subsequent access to it is valid or not as it's runtime dependent).
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      05c74e5e
  12. 03 11月, 2015 1 次提交
    • D
      bpf: add support for persistent maps/progs · b2197755
      Daniel Borkmann 提交于
      This work adds support for "persistent" eBPF maps/programs. The term
      "persistent" is to be understood that maps/programs have a facility
      that lets them survive process termination. This is desired by various
      eBPF subsystem users.
      
      Just to name one example: tc classifier/action. Whenever tc parses
      the ELF object, extracts and loads maps/progs into the kernel, these
      file descriptors will be out of reach after the tc instance exits.
      So a subsequent tc invocation won't be able to access/relocate on this
      resource, and therefore maps cannot easily be shared, f.e. between the
      ingress and egress networking data path.
      
      The current workaround is that Unix domain sockets (UDS) need to be
      instrumented in order to pass the created eBPF map/program file
      descriptors to a third party management daemon through UDS' socket
      passing facility. This makes it a bit complicated to deploy shared
      eBPF maps or programs (programs f.e. for tail calls) among various
      processes.
      
      We've been brainstorming on how we could tackle this issue and various
      approches have been tried out so far, which can be read up further in
      the below reference.
      
      The architecture we eventually ended up with is a minimal file system
      that can hold map/prog objects. The file system is a per mount namespace
      singleton, and the default mount point is /sys/fs/bpf/. Any subsequent
      mounts within a given namespace will point to the same instance. The
      file system allows for creating a user-defined directory structure.
      The objects for maps/progs are created/fetched through bpf(2) with
      two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor
      along with a pathname is being passed to bpf(2) that in turn creates
      (we call it eBPF object pinning) the file system nodes. Only the pathname
      is being passed to bpf(2) for getting a new BPF file descriptor to an
      existing node. The user can use that to access maps and progs later on,
      through bpf(2). Removal of file system nodes is being managed through
      normal VFS functions such as unlink(2), etc. The file system code is
      kept to a very minimum and can be further extended later on.
      
      The next step I'm working on is to add dump eBPF map/prog commands
      to bpf(2), so that a specification from a given file descriptor can
      be retrieved. This can be used by things like CRIU but also applications
      can inspect the meta data after calling BPF_OBJ_GET.
      
      Big thanks also to Alexei and Hannes who significantly contributed
      in the design discussion that eventually let us end up with this
      architecture here.
      
      Reference: https://lkml.org/lkml/2015/10/15/925Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      b2197755
  13. 22 10月, 2015 1 次提交
    • A
      bpf: introduce bpf_perf_event_output() helper · a43eec30
      Alexei Starovoitov 提交于
      This helper is used to send raw data from eBPF program into
      special PERF_TYPE_SOFTWARE/PERF_COUNT_SW_BPF_OUTPUT perf_event.
      User space needs to perf_event_open() it (either for one or all cpus) and
      store FD into perf_event_array (similar to bpf_perf_event_read() helper)
      before eBPF program can send data into it.
      
      Today the programs triggered by kprobe collect the data and either store
      it into the maps or print it via bpf_trace_printk() where latter is the debug
      facility and not suitable to stream the data. This new helper replaces
      such bpf_trace_printk() usage and allows programs to have dedicated
      channel into user space for post-processing of the raw data collected.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a43eec30
  14. 03 10月, 2015 1 次提交
    • D
      sched, bpf: add helper for retrieving routing realms · c46646d0
      Daniel Borkmann 提交于
      Using routing realms as part of the classifier is quite useful, it
      can be viewed as a tag for one or multiple routing entries (think of
      an analogy to net_cls cgroup for processes), set by user space routing
      daemons or via iproute2 as an indicator for traffic classifiers and
      later on processed in the eBPF program.
      
      Unlike actions, the classifier can inspect device flags and enable
      netif_keep_dst() if necessary. tc actions don't have that possibility,
      but in case people know what they are doing, it can be used from there
      as well (e.g. via devs that must keep dsts by design anyway).
      
      If a realm is set, the handler returns the non-zero realm. User space
      can set the full 32bit realm for the dst.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c46646d0
  15. 18 9月, 2015 2 次提交
    • A
      bpf: add bpf_redirect() helper · 27b29f63
      Alexei Starovoitov 提交于
      Existing bpf_clone_redirect() helper clones skb before redirecting
      it to RX or TX of destination netdev.
      Introduce bpf_redirect() helper that does that without cloning.
      
      Benchmarked with two hosts using 10G ixgbe NICs.
      One host is doing line rate pktgen.
      Another host is configured as:
      $ tc qdisc add dev $dev ingress
      $ tc filter add dev $dev root pref 10 u32 match u32 0 0 flowid 1:2 \
         action bpf run object-file tcbpf1_kern.o section clone_redirect_xmit drop
      so it receives the packet on $dev and immediately xmits it on $dev + 1
      The section 'clone_redirect_xmit' in tcbpf1_kern.o file has the program
      that does bpf_clone_redirect() and performance is 2.0 Mpps
      
      $ tc filter add dev $dev root pref 10 u32 match u32 0 0 flowid 1:2 \
         action bpf run object-file tcbpf1_kern.o section redirect_xmit drop
      which is using bpf_redirect() - 2.4 Mpps
      
      and using cls_bpf with integrated actions as:
      $ tc filter add dev $dev root pref 10 \
        bpf run object-file tcbpf1_kern.o section redirect_xmit integ_act classid 1
      performance is 2.5 Mpps
      
      To summarize:
      u32+act_bpf using clone_redirect - 2.0 Mpps
      u32+act_bpf using redirect - 2.4 Mpps
      cls_bpf using redirect - 2.5 Mpps
      
      For comparison linux bridge in this setup is doing 2.1 Mpps
      and ixgbe rx + drop in ip_rcv - 7.8 Mpps
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Acked-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NJohn Fastabend <john.r.fastabend@intel.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      27b29f63
    • D
      cls_bpf: introduce integrated actions · 045efa82
      Daniel Borkmann 提交于
      Often cls_bpf classifier is used with single action drop attached.
      Optimize this use case and let cls_bpf return both classid and action.
      For backwards compatibility reasons enable this feature under
      TCA_BPF_FLAG_ACT_DIRECT flag.
      
      Then more interesting programs like the following are easier to write:
      int cls_bpf_prog(struct __sk_buff *skb)
      {
        /* classify arp, ip, ipv6 into different traffic classes
         * and drop all other packets
         */
        switch (skb->protocol) {
        case htons(ETH_P_ARP):
          skb->tc_classid = 1;
          break;
        case htons(ETH_P_IP):
          skb->tc_classid = 2;
          break;
        case htons(ETH_P_IPV6):
          skb->tc_classid = 3;
          break;
        default:
          return TC_ACT_SHOT;
        }
      
        return TC_ACT_OK;
      }
      
      Joint work with Daniel Borkmann.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      045efa82
  16. 10 8月, 2015 2 次提交
  17. 03 8月, 2015 1 次提交
    • D
      ebpf: add skb->hash to offset map for usage in {cls, act}_bpf or filters · ba7591d8
      Daniel Borkmann 提交于
      Add skb->hash to the __sk_buff offset map, so it can be accessed from
      an eBPF program. We currently already do this for classic BPF filters,
      but not yet on eBPF, it might be useful as a demuxer in combination with
      helpers like bpf_clone_redirect(), toy example:
      
        __section("cls-lb") int ingress_main(struct __sk_buff *skb)
        {
          unsigned int which = 3 + (skb->hash & 7);
          /* bpf_skb_store_bytes(skb, ...); */
          /* bpf_l{3,4}_csum_replace(skb, ...); */
          bpf_clone_redirect(skb, which, 0);
          return -1;
        }
      
      I was thinking whether to add skb_get_hash(), but then concluded the
      raw skb->hash seems fine in this case: we can directly access the hash
      w/o extra eBPF helper function call, it's filled out by many NICs on
      ingress, and in case the entropy level would not be sufficient, people
      can still implement their own specific sw fallback hash mix anyway.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ba7591d8
  18. 01 8月, 2015 1 次提交
    • A
      bpf: add helpers to access tunnel metadata · d3aa45ce
      Alexei Starovoitov 提交于
      Introduce helpers to let eBPF programs attached to TC manipulate tunnel metadata:
      bpf_skb_[gs]et_tunnel_key(skb, key, size, flags)
      skb: pointer to skb
      key: pointer to 'struct bpf_tunnel_key'
      size: size of 'struct bpf_tunnel_key'
      flags: room for future extensions
      
      First eBPF program that uses these helpers will allocate per_cpu
      metadata_dst structures that will be used on TX.
      On RX metadata_dst is allocated by tunnel driver.
      
      Typical usage for TX:
      struct bpf_tunnel_key tkey;
      ... populate tkey ...
      bpf_skb_set_tunnel_key(skb, &tkey, sizeof(tkey), 0);
      bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
      
      RX:
      struct bpf_tunnel_key tkey = {};
      bpf_skb_get_tunnel_key(skb, &tkey, sizeof(tkey), 0);
      ... lookup or redirect based on tkey ...
      
      'struct bpf_tunnel_key' will be extended in the future by adding
      elements to the end and the 'size' argument will indicate which fields
      are populated, thereby keeping backwards compatibility.
      The 'flags' argument may be used as well when the 'size' is not enough or
      to indicate completely different layout of bpf_tunnel_key.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Acked-by: NThomas Graf <tgraf@suug.ch>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d3aa45ce
  19. 21 7月, 2015 2 次提交
    • A
      bpf: introduce bpf_skb_vlan_push/pop() helpers · 4e10df9a
      Alexei Starovoitov 提交于
      Allow eBPF programs attached to TC qdiscs call skb_vlan_push/pop via
      helper functions. These functions may change skb->data/hlen which are
      cached by some JITs to improve performance of ld_abs/ld_ind instructions.
      Therefore JITs need to recognize bpf_skb_vlan_push/pop() calls,
      re-compute header len and re-cache skb->data/hlen back into cpu registers.
      Note, skb->data/hlen are not directly accessible from the programs,
      so any changes to skb->data done either by these helpers or by other
      TC actions are safe.
      
      eBPF JIT supported by three architectures:
      - arm64 JIT is using bpf_load_pointer() without caching, so it's ok as-is.
      - x64 JIT re-caches skb->data/hlen unconditionally after vlan_push/pop calls
        (experiments showed that conditional re-caching is slower).
      - s390 JIT falls back to interpreter for now when bpf_skb_vlan_push() is present
        in the program (re-caching is tbd).
      
      These helpers allow more scalable handling of vlan from the programs.
      Instead of creating thousands of vlan netdevs on top of eth0 and attaching
      TC+ingress+bpf to all of them, the program can be attached to eth0 directly
      and manipulate vlans as necessary.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4e10df9a
    • D
      ebpf: add helper to retrieve net_cls's classid cookie · 8d20aabe
      Daniel Borkmann 提交于
      It would be very useful to retrieve the net_cls's classid from an eBPF
      program to allow for a more fine-grained classification, it could be
      directly used or in conjunction with additional policies. I.e. docker,
      but also tooling such as cgexec, can easily run applications via net_cls
      cgroups:
      
        cgcreate -g net_cls:/foo
        echo 42 > foo/net_cls.classid
        cgexec -g net_cls:foo <prog>
      
      Thus, their respecitve classid cookie of foo can then be looked up on
      the egress path to apply further policies. The helper is desigend such
      that a non-zero value returns the cgroup id.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Cc: Thomas Graf <tgraf@suug.ch>
      Acked-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8d20aabe
  20. 16 6月, 2015 1 次提交
    • A
      bpf: introduce current->pid, tgid, uid, gid, comm accessors · ffeedafb
      Alexei Starovoitov 提交于
      eBPF programs attached to kprobes need to filter based on
      current->pid, uid and other fields, so introduce helper functions:
      
      u64 bpf_get_current_pid_tgid(void)
      Return: current->tgid << 32 | current->pid
      
      u64 bpf_get_current_uid_gid(void)
      Return: current_gid << 32 | current_uid
      
      bpf_get_current_comm(char *buf, int size_of_buf)
      stores current->comm into buf
      
      They can be used from the programs attached to TC as well to classify packets
      based on current task fields.
      
      Update tracex2 example to print histogram of write syscalls for each process
      instead of aggregated for all.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ffeedafb
  21. 07 6月, 2015 1 次提交
    • A
      bpf: allow programs to write to certain skb fields · d691f9e8
      Alexei Starovoitov 提交于
      allow programs read/write skb->mark, tc_index fields and
      ((struct qdisc_skb_cb *)cb)->data.
      
      mark and tc_index are generically useful in TC.
      cb[0]-cb[4] are primarily used to pass arguments from one
      program to another called via bpf_tail_call() which can
      be seen in sockex3_kern.c example.
      
      All fields of 'struct __sk_buff' are readable to socket and tc_cls_act progs.
      mark, tc_index are writeable from tc_cls_act only.
      cb[0]-cb[4] are writeable by both sockets and tc_cls_act.
      
      Add verifier tests and improve sample code.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d691f9e8
  22. 04 6月, 2015 1 次提交
  23. 31 5月, 2015 1 次提交
  24. 22 5月, 2015 1 次提交
    • A
      bpf: allow bpf programs to tail-call other bpf programs · 04fd61ab
      Alexei Starovoitov 提交于
      introduce bpf_tail_call(ctx, &jmp_table, index) helper function
      which can be used from BPF programs like:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        bpf_tail_call(ctx, &jmp_table, index);
        ...
      }
      that is roughly equivalent to:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        if (jmp_table[index])
          return (*jmp_table[index])(ctx);
        ...
      }
      The important detail that it's not a normal call, but a tail call.
      The kernel stack is precious, so this helper reuses the current
      stack frame and jumps into another BPF program without adding
      extra call frame.
      It's trivially done in interpreter and a bit trickier in JITs.
      In case of x64 JIT the bigger part of generated assembler prologue
      is common for all programs, so it is simply skipped while jumping.
      Other JITs can do similar prologue-skipping optimization or
      do stack unwind before jumping into the next program.
      
      bpf_tail_call() arguments:
      ctx - context pointer
      jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
      index - index in the jump table
      
      Since all BPF programs are idenitified by file descriptor, user space
      need to populate the jmp_table with FDs of other BPF programs.
      If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
      and program execution continues as normal.
      
      New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
      populate this jmp_table array with FDs of other bpf programs.
      Programs can share the same jmp_table array or use multiple jmp_tables.
      
      The chain of tail calls can form unpredictable dynamic loops therefore
      tail_call_cnt is used to limit the number of calls and currently is set to 32.
      
      Use cases:
      Acked-by: NDaniel Borkmann <daniel@iogearbox.net>
      
      ==========
      - simplify complex programs by splitting them into a sequence of small programs
      
      - dispatch routine
        For tracing and future seccomp the program may be triggered on all system
        calls, but processing of syscall arguments will be different. It's more
        efficient to implement them as:
        int syscall_entry(struct seccomp_data *ctx)
        {
           bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
           ... default: process unknown syscall ...
        }
        int sys_write_event(struct seccomp_data *ctx) {...}
        int sys_read_event(struct seccomp_data *ctx) {...}
        syscall_jmp_table[__NR_write] = sys_write_event;
        syscall_jmp_table[__NR_read] = sys_read_event;
      
        For networking the program may call into different parsers depending on
        packet format, like:
        int packet_parser(struct __sk_buff *skb)
        {
           ... parse L2, L3 here ...
           __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
           bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
           ... default: process unknown protocol ...
        }
        int parse_tcp(struct __sk_buff *skb) {...}
        int parse_udp(struct __sk_buff *skb) {...}
        ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
        ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
      
      - for TC use case, bpf_tail_call() allows to implement reclassify-like logic
      
      - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
        are atomic, so user space can build chains of BPF programs on the fly
      
      Implementation details:
      =======================
      - high performance of bpf_tail_call() is the goal.
        It could have been implemented without JIT changes as a wrapper on top of
        BPF_PROG_RUN() macro, but with two downsides:
        . all programs would have to pay performance penalty for this feature and
          tail call itself would be slower, since mandatory stack unwind, return,
          stack allocate would be done for every tailcall.
        . tailcall would be limited to programs running preempt_disabled, since
          generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
          need to be either global per_cpu variable accessed by helper and by wrapper
          or global variable protected by locks.
      
        In this implementation x64 JIT bypasses stack unwind and jumps into the
        callee program after prologue.
      
      - bpf_prog_array_compatible() ensures that prog_type of callee and caller
        are the same and JITed/non-JITed flag is the same, since calling JITed
        program from non-JITed is invalid, since stack frames are different.
        Similarly calling kprobe type program from socket type program is invalid.
      
      - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
        abstraction, its user space API and all of verifier logic.
        It's in the existing arraymap.c file, since several functions are
        shared with regular array map.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      04fd61ab
  25. 17 4月, 2015 1 次提交
    • A
      bpf: fix bpf helpers to use skb->mac_header relative offsets · a166151c
      Alexei Starovoitov 提交于
      For the short-term solution, lets fix bpf helper functions to use
      skb->mac_header relative offsets instead of skb->data in order to
      get the same eBPF programs with cls_bpf and act_bpf work on ingress
      and egress qdisc path. We need to ensure that mac_header is set
      before calling into programs. This is effectively the first option
      from below referenced discussion.
      
      More long term solution for LD_ABS|LD_IND instructions will be more
      intrusive but also more beneficial than this, and implemented later
      as it's too risky at this point in time.
      
      I.e., we plan to look into the option of moving skb_pull() out of
      eth_type_trans() and into netif_receive_skb() as has been suggested
      as second option. Meanwhile, this solution ensures ingress can be
      used with eBPF, too, and that we won't run into ABI troubles later.
      For dealing with negative offsets inside eBPF helper functions,
      we've implemented bpf_skb_clone_unwritable() to test for unwriteable
      headers.
      
      Reference: http://thread.gmane.org/gmane.linux.network/359129/focus=359694
      Fixes: 608cd71a ("tc: bpf: generalize pedit action")
      Fixes: 91bc4822 ("tc: bpf: add checksum helpers")
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a166151c
  26. 07 4月, 2015 1 次提交
    • A
      tc: bpf: add checksum helpers · 91bc4822
      Alexei Starovoitov 提交于
      Commit 608cd71a ("tc: bpf: generalize pedit action") has added the
      possibility to mangle packet data to BPF programs in the tc pipeline.
      This patch adds two helpers bpf_l3_csum_replace() and bpf_l4_csum_replace()
      for fixing up the protocol checksums after the packet mangling.
      
      It also adds 'flags' argument to bpf_skb_store_bytes() helper to avoid
      unnecessary checksum recomputations when BPF programs adjusting l3/l4
      checksums and documents all three helpers in uapi header.
      
      Moreover, a sample program is added to show how BPF programs can make use
      of the mangle and csum helpers.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Acked-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      91bc4822
  27. 04 4月, 2015 1 次提交
  28. 02 4月, 2015 3 次提交
    • A
      tracing: Allow BPF programs to call bpf_trace_printk() · 9c959c86
      Alexei Starovoitov 提交于
      Debugging of BPF programs needs some form of printk from the
      program, so let programs call limited trace_printk() with %d %u
      %x %p modifiers only.
      
      Similar to kernel modules, during program load verifier checks
      whether program is calling bpf_trace_printk() and if so, kernel
      allocates trace_printk buffers and emits big 'this is debug
      only' banner.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Reviewed-by: NSteven Rostedt <rostedt@goodmis.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Daniel Borkmann <daniel@iogearbox.net>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1427312966-8434-6-git-send-email-ast@plumgrid.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      9c959c86
    • A
      tracing: Allow BPF programs to call bpf_ktime_get_ns() · d9847d31
      Alexei Starovoitov 提交于
      bpf_ktime_get_ns() is used by programs to compute time delta
      between events or as a timestamp
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Reviewed-by: NSteven Rostedt <rostedt@goodmis.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Daniel Borkmann <daniel@iogearbox.net>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1427312966-8434-5-git-send-email-ast@plumgrid.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d9847d31
    • A
      tracing, perf: Implement BPF programs attached to kprobes · 2541517c
      Alexei Starovoitov 提交于
      BPF programs, attached to kprobes, provide a safe way to execute
      user-defined BPF byte-code programs without being able to crash or
      hang the kernel in any way. The BPF engine makes sure that such
      programs have a finite execution time and that they cannot break
      out of their sandbox.
      
      The user interface is to attach to a kprobe via the perf syscall:
      
      	struct perf_event_attr attr = {
      		.type	= PERF_TYPE_TRACEPOINT,
      		.config	= event_id,
      		...
      	};
      
      	event_fd = perf_event_open(&attr,...);
      	ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);
      
      'prog_fd' is a file descriptor associated with BPF program
      previously loaded.
      
      'event_id' is an ID of the kprobe created.
      
      Closing 'event_fd':
      
      	close(event_fd);
      
      ... automatically detaches BPF program from it.
      
      BPF programs can call in-kernel helper functions to:
      
        - lookup/update/delete elements in maps
      
        - probe_read - wraper of probe_kernel_read() used to access any
          kernel data structures
      
      BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
      architecture dependent) and return 0 to ignore the event and 1 to store
      kprobe event into the ring buffer.
      
      Note, kprobes are a fundamentally _not_ a stable kernel ABI,
      so BPF programs attached to kprobes must be recompiled for
      every kernel version and user must supply correct LINUX_VERSION_CODE
      in attr.kern_version during bpf_prog_load() call.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Reviewed-by: NSteven Rostedt <rostedt@goodmis.org>
      Reviewed-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Daniel Borkmann <daniel@iogearbox.net>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      2541517c
  29. 30 3月, 2015 1 次提交