- 09 10月, 2012 3 次提交
-
-
由 David Miller 提交于
This is relatively easy since PMD's now cover exactly 4MB of memory. Our PMD entries are 32-bits each, so we use a special encoding. The lowest bit, PMD_ISHUGE, determines the interpretation. This is possible because sparc64's page tables are purely software entities so we can use whatever encoding scheme we want. We just have to make the TLB miss assembler page table walkers aware of the layout. set_pmd_at() works much like set_pte_at() but it has to operate in two page from a table of non-huge PTEs, so we have to queue up TLB flushes based upon what mappings are valid in the PTE table. In the second regime we are going from huge-page to non-huge-page, and in that case we need only queue up a single TLB flush to push out the huge page mapping. We still have 5 bits remaining in the huge PMD encoding so we can very likely support any new pieces of THP state tracking that might get added in the future. With lots of help from Johannes Weiner. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Miller 提交于
We're going to be messing around with the PMD interpretation and layout for the sake of transparent huge pages, so we better clearly document what we're starting with. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Miller 提交于
The reason we want to do this is to facilitate transparent huge page support. Right now PMD's cover 8MB of address space, and our huge page size is 4MB. The current transparent hugepage support is not able to handle HPAGE_SIZE != PMD_SIZE. So make PTE tables be sized to half of a page instead of a full page. We can still map properly the whole supported virtual address range which on sparc64 requires 44 bits. Add a compile time CPP test which ensures that this requirement is always met. There is a minor inefficiency added by this change. We only use half of the page for PTE tables. It's not trivial to use only half of the page yet still get all of the pgtable_page_{ctor,dtor}() stuff working properly. It is doable, and that will come in a subsequent change. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 8月, 2011 1 次提交
-
-
由 David S. Miller 提交于
On sun4v this is basically required since we point the hypervisor and the TSB walking hardware at these tables using physical addressing too. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 12月, 2008 1 次提交
-
-
由 David S. Miller 提交于
The kernel always executes in the TSO memory model now, so none of this stuff is necessary any more. With helpful feedback from Nick Piggin. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 7月, 2008 1 次提交
-
-
由 Sam Ravnborg 提交于
The majority of this patch was created by the following script: *** ASM=arch/sparc/include/asm mkdir -p $ASM git mv include/asm-sparc64/ftrace.h $ASM git rm include/asm-sparc64/* git mv include/asm-sparc/* $ASM sed -ie 's/asm-sparc64/asm/g' $ASM/* sed -ie 's/asm-sparc/asm/g' $ASM/* *** The rest was an update of the top-level Makefile to use sparc for header files when sparc64 is being build. And a small fixlet to pick up the correct unistd.h from sparc64 code. Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
-
- 18 7月, 2008 1 次提交
-
-
由 Sam Ravnborg 提交于
Used the following script to copy the files: cd include set -e SPARC64=`ls asm-sparc64` for FILE in ${SPARC64}; do if [ -f asm-sparc/$FILE ]; then echo $FILE exist in asm-sparc else git mv asm-sparc64/$FILE asm-sparc/$FILE printf "#include <asm-sparc/$FILE>\n" > asm-sparc64/$FILE git add asm-sparc64/$FILE fi done Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
-
- 29 5月, 2007 1 次提交
-
-
由 David S. Miller 提交于
1) The TSB lookup was not using the correct hash mask. 2) It was not aligned on a boundary equal to it's size, which is required by the sun4v Hypervisor. wasn't having it's return value checked, and that bug will be fixed up as well in a subsequent changeset. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 3月, 2007 1 次提交
-
-
由 David S. Miller 提交于
We have to make sure to use base-pagesize TLB entries even during the early transition period where we need TLB miss handling but don't have the kernel page tables setup yet for the linear region. Also, it is necessary therefore to not use the 4MB TSB for these translations, and instead use the normal kernel TSB. This allows us to also get rid of the 4MB tsb for debug builds which shrinks the kernel a little bit. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 3月, 2006 9 次提交
-
-
由 David S. Miller 提交于
It can map all of the linear kernel mappings with zero TSB hash conflicts for systems with 16GB or less ram. In such cases, on SUN4V, once we load up this TSB the first time with all the mappings, we never take a linear kernel mapping TLB miss ever again, the hypervisor handles them all. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The SUN4V convention with non-shared TSBs is that the context bit of the TAG is clear. So we have to choose an "invalid" bit and initialize new TSBs appropriately. Otherwise a zero TAG looks "valid". Make sure, for the window fixup cases, that we use the right global registers and that we don't potentially trample on the live global registers in etrap/rtrap handling (%g2 and %g6) and that we put the missing virtual address properly in %g5. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Things are a little tricky because, unlike sun4u, we have to: 1) do a hypervisor trap to do the TLB load. 2) do the TSB lookup calculations by hand Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
This way we don't need to lock the TSB into the TLB. The trick is that every TSB load/store is registered into a special instruction patch section. The default uses virtual addresses, and the patch instructions use physical address load/stores. We can't do this on all chips because only cheetah+ and later have the physical variant of the atomic quad load. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The TSB_LOCK_BIT define is actually a special value shifted down by 32-bits for the assembler code macros. In C code, this isn't what we want. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
This also cleans up tsb_context_switch(). The assembler routine is now __tsb_context_switch() and the former is an inline function that picks out the bits from the mm_struct and passes it into the assembler code as arguments. setup_tsb_parms() computes the locked TLB entry to map the TSB. Later when we support using the physical address quad load instructions of Cheetah+ and later, we'll simply use the physical address for the TSB register value and set the map virtual and PTE both to zero. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
We now use the TSB hardware assist features of the UltraSPARC MMUs. SMP is currently knowingly broken, we need to find another place to store the per-cpu base pointers. We hid them away in the TSB base register, and that obviously will not work any more :-) Another known broken case is non-8KB base page size. Also noticed that flush_tlb_all() is not referenced anywhere, only the internal __flush_tlb_all() (local cpu only) is used by the sparc64 port, so we can get rid of flush_tlb_all(). The kernel gets it's own 8KB TSB (swapper_tsb) and each address space gets it's own private 8K TSB. Later we can add code to dynamically increase the size of per-process TSB as the RSS grows. An 8KB TSB is good enough for up to about a 4MB RSS, after which the TSB starts to incur many capacity and conflict misses. We even accumulate OBP translations into the kernel TSB. Another area for refinement is large page size support. We could use a secondary address space TSB to handle those. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-