- 20 11月, 2014 7 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
Instead of doing individual checks all over the place that makes the code very messy. Just check trace_seq_has_overflowed() at the end or in strategic places. This makes the code much cleaner and also helps with getting closer to removing the return values of trace_seq_printf() and friends. Link: http://lkml.kernel.org/r/20141114011410.987913836@goodmis.orgReviewed-by: NPetr Mladek <pmladek@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The branch tracer should not be checking the trace_seq_printf() return value as that will soon be void. There's a new trace_handle_return() helper function that will return TRACE_TYPE_PARTIAL_LINE if the trace_seq overflowed and TRACE_TYPE_HANDLED otherwise. Reviewed-by: NPetr Mladek <pmladek@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Remove checking the return value of all trace_seq_puts(). It was wrong anyway as only the last return value mattered. But as the trace_seq_puts() is going to be a void function in the future, we should not be checking the return value of it anyway. Just return !trace_seq_has_overflowed() instead. Reviewed-by: NPetr Mladek <pmladek@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Checking the return code of every trace_seq_printf() operation and having to return early if it overflowed makes the code messy. Using the new trace_seq_has_overflowed() and trace_handle_return() functions allows us to clean up the code. In the future, trace_seq_printf() and friends will be turning into void functions and not returning a value. The trace_seq_has_overflowed() is to be used instead. This cleanup allows that change to take place. Cc: Jens Axboe <axboe@fb.com> Reviewed-by: NPetr Mladek <pmladek@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Adding a trace_seq_has_overflowed() which returns true if the trace_seq had too much written into it allows us to simplify the code. Instead of checking the return value of every call to trace_seq_printf() and friends, they can all be called normally, and at the end we can return !trace_seq_has_overflowed() instead. Several functions also return TRACE_TYPE_PARTIAL_LINE when the trace_seq overflowed and TRACE_TYPE_HANDLED otherwise. Another helper function was created called trace_handle_return() which takes a trace_seq and returns these enums. Using this helper function also simplifies the code. This change also makes it possible to remove the return values of trace_seq_printf() and friends. They should instead just be void functions. Link: http://lkml.kernel.org/r/20141114011410.365183157@goodmis.orgReviewed-by: NPetr Mladek <pmladek@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
In trace_seq_bitmask() it calls bitmap_scnprintf() not from the current position of the trace_seq buffer (s->buffer + s->len), but instead from the beginning of the buffer (s->buffer). Luckily, the only user of this "ipi_raise tracepoint" uses it as the first parameter, and as such, the start of the temp buffer in include/trace/ftrace.h (see __get_bitmask()). Reported-by: NPetr Mladek <pmladek@suse.cz> Reviewed-by: NPetr Mladek <pmladek@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Stack traces that happen from function tracing check if the address on the stack is a __kernel_text_address(). That is, is the address kernel code. This calls core_kernel_text() which returns true if the address is part of the builtin kernel code. It also calls is_module_text_address() which returns true if the address belongs to module code. But what is missing is ftrace dynamically allocated trampolines. These trampolines are allocated for individual ftrace_ops that call the ftrace_ops callback functions directly. But if they do a stack trace, the code checking the stack wont detect them as they are neither core kernel code nor module address space. Adding another field to ftrace_ops that also stores the size of the trampoline assigned to it we can create a new function called is_ftrace_trampoline() that returns true if the address is a dynamically allocate ftrace trampoline. Note, it ignores trampolines that are not dynamically allocated as they will return true with the core_kernel_text() function. Link: http://lkml.kernel.org/r/20141119034829.497125839@goodmis.org Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 19 11月, 2014 1 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
The function probe counting for traceon and traceoff suffered a race condition where if the probe was executing on two or more CPUs at the same time, it could decrement the counter by more than one when disabling (or enabling) the tracer only once. The way the traceon and traceoff probes are suppose to work is that they disable (or enable) tracing once per count. If a user were to echo 'schedule:traceoff:3' into set_ftrace_filter, then when the schedule function was called, it would disable tracing. But the count should only be decremented once (to 2). Then if the user enabled tracing again (via tracing_on file), the next call to schedule would disable tracing again and the count would be decremented to 1. But if multiple CPUS called schedule at the same time, it is possible that the count would be decremented more than once because of the simple "count--" used. By reading the count into a local variable and using memory barriers we can guarantee that the count would only be decremented once per disable (or enable). The stack trace probe had a similar race, but here the stack trace will decrement for each time it is called. But this had the read-modify- write race, where it could stack trace more than the number of times that was specified. This case we use a cmpxchg to stack trace only the number of times specified. The dump probes can still use the old "update_count()" function as they only run once, and that is controlled by the dump logic itself. Link: http://lkml.kernel.org/r/20141118134643.4b550ee4@gandalf.local.homeSigned-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 14 11月, 2014 9 次提交
-
-
由 Byungchul Park 提交于
Usually, "msecs" notation means milli-seconds, and "usecs" notation means micro-seconds. Since the unit used in the code is micro-seconds, the notation should be replaced from msecs to usecs. Link: http://lkml.kernel.org/r/1415171926-9782-2-git-send-email-byungchul.park@lge.comSigned-off-by: NByungchul Park <byungchul.park@lge.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
On the function_graph tracer, the print_graph_irq() function prints a trace line with the flag ==========> on an irq handler entry, and the flag <========== on an irq handler return. But when the latency-format is enable, it is not printing the latency-format flags, causing the following error in the trace output: 0) ==========> | 0) d... | smp_apic_timer_interrupt() { This patch fixes this issue by printing the latency-format flags when it is enable. Link: http://lkml.kernel.org/r/7c2e226dac20c940b6242178fab7f0e3c9b5ce58.1415233316.git.bristot@redhat.comReviewed-by: NLuis Claudio R. Goncalves <lgoncalv@redhat.com> Signed-off-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Rasmus Villemoes 提交于
Printing a single character to a seqfile might as well be done with seq_putc instead of seq_puts; this avoids a strlen() call and a memory access. It also shaves another few bytes off the generated code. Link: http://lkml.kernel.org/r/1415479332-25944-4-git-send-email-linux@rasmusvillemoes.dkSigned-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Rasmus Villemoes 提交于
Consecutive seq_puts calls with literal strings can be merged to a single call. This reduces the size of the generated code, and can also lead to slight .rodata reduction (because of fewer nul and padding bytes). It should also shave a off a few clock cycles. Link: http://lkml.kernel.org/r/1415479332-25944-3-git-send-email-linux@rasmusvillemoes.dkSigned-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Rasmus Villemoes 提交于
Using seq_printf to print a simple string or a single character is a lot more expensive than it needs to be, since seq_puts and seq_putc exist. These patches do seq_printf(m, s) -> seq_puts(m, s) seq_printf(m, "%s", s) -> seq_puts(m, s) seq_printf(m, "%c", c) -> seq_putc(m, c) Subsequent patches will simplify further. Link: http://lkml.kernel.org/r/1415479332-25944-2-git-send-email-linux@rasmusvillemoes.dkSigned-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Daniel Thompson 提交于
Currently kdb's ftdump command will livelock by constantly printk'ing the empty string at KERN_EMERG level if it run when the ftrace system is not in use. This occurs because trace_empty() never returns false when the ring buffers are left at the start of a non-consuming read [launched by ring_buffer_read_start()]. This patch changes the loop exit condition to use the result of trace_find_next_entry_inc(). Effectively this switches the non-consuming kdb dumper to follow the approach of the non-consuming userspace interface [s_next()] rather than the consuming ftrace_dump(). Link: http://lkml.kernel.org/r/1415277716-19419-3-git-send-email-daniel.thompson@linaro.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: NDaniel Thompson <daniel.thompson@linaro.org> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Daniel Thompson 提交于
Currently kdb's ftdump command unconditionally crashes due to a null pointer de-reference whenever the command is run. This in turn causes the kernel to panic. The abridged stacktrace (gathered with ARCH=arm) is: --- cut here --- [<c09535ac>] (panic) from [<c02132dc>] (die+0x264/0x440) [<c02132dc>] (die) from [<c0952eb8>] (__do_kernel_fault.part.11+0x74/0x84) [<c0952eb8>] (__do_kernel_fault.part.11) from [<c021f954>] (do_page_fault+0x1d0/0x3c4) [<c021f954>] (do_page_fault) from [<c020846c>] (do_DataAbort+0x48/0xac) [<c020846c>] (do_DataAbort) from [<c0213c58>] (__dabt_svc+0x38/0x60) Exception stack(0xc0deba88 to 0xc0debad0) ba80: e8c29180 00000001 e9854304 e9854300 c0f567d8 c0df2580 baa0: 00000000 00000000 00000000 c0f117b8 c0e3a3c0 c0debb0c 00000000 c0debad0 bac0: 0000672e c02f4d60 60000193 ffffffff [<c0213c58>] (__dabt_svc) from [<c02f4d60>] (kdb_ftdump+0x1e4/0x3d8) [<c02f4d60>] (kdb_ftdump) from [<c02ce328>] (kdb_parse+0x2b8/0x698) [<c02ce328>] (kdb_parse) from [<c02ceef0>] (kdb_main_loop+0x52c/0x784) [<c02ceef0>] (kdb_main_loop) from [<c02d1b0c>] (kdb_stub+0x238/0x490) --- cut here --- The NULL deref occurs due to the initialized use of struct trace_iter's buffer_iter member. This is a regression, albeit a fairly elderly one. It was introduced by commit 6d158a81 ("tracing: Remove NR_CPUS array from trace_iterator"). This patch solves this by providing a collection of ring_buffer_iter(s) and using this to initialize buffer_iter. Note that static allocation is used solely because the trace_iter itself is also static allocated. Static allocation also means that we have to NULL-ify the pointer during cleanup to avoid use-after-free problems. Link: http://lkml.kernel.org/r/1415277716-19419-2-git-send-email-daniel.thompson@linaro.org Cc: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: NDaniel Thompson <daniel.thompson@linaro.org> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
According to the documentation, adding "traceoff_on_warning" to the boot command line should be enough to enable the feature. But right now it is necessary to specify "traceoff_on_warning=". Along with fixing that, also verify if the value passed, if any, is either "0" or "off". Link: http://lkml.kernel.org/r/20141112231400.GL12281@uudg.orgSigned-off-by: NLuis Claudio R. Goncalves <lgoncalv@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
With the new logic, if only a single user of ftrace function hooks is used, it will get its own trampoline assigned to it. The problem is that the control_ops is an indirect ops that perf ops uses. What that means is that when perf registers its ops with register_ftrace_function(), it has the CONTROL flag set and gets added to the control list instead of the global ftrace list. The control_ops gets added to that instead and the mcount trampoline calls the control_ops function. The control_ops function will iterate the control list and call the ops functions that are attached to it. But currently the trampoline is added to the perf ops and not the control ops, and when ftrace tries to find a trampoline hook for it, it fails to find one and gives the following splat: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 10133 at kernel/trace/ftrace.c:2033 ftrace_get_addr_new+0x6f/0xc0() Modules linked in: [...] CPU: 0 PID: 10133 Comm: perf Tainted: P 3.18.0-rc1-test+ #388 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012 00000000000007f1 ffff8800c2643bc8 ffffffff814fca6e ffff88011ea0ed01 0000000000000000 ffff8800c2643c08 ffffffff81041ffd 0000000000000000 ffffffff810c388c ffffffff81a5a350 ffff880119b00000 ffffffff810001c8 Call Trace: [<ffffffff814fca6e>] dump_stack+0x46/0x58 [<ffffffff81041ffd>] warn_slowpath_common+0x81/0x9b [<ffffffff810c388c>] ? ftrace_get_addr_new+0x6f/0xc0 [<ffffffff810001c8>] ? 0xffffffff810001c8 [<ffffffff81042031>] warn_slowpath_null+0x1a/0x1c [<ffffffff810c388c>] ftrace_get_addr_new+0x6f/0xc0 [<ffffffff8102e938>] ftrace_replace_code+0xd6/0x334 [<ffffffff810c4116>] ftrace_modify_all_code+0x41/0xc5 [<ffffffff8102eba6>] arch_ftrace_update_code+0x10/0x19 [<ffffffff810c293c>] ftrace_run_update_code+0x21/0x42 [<ffffffff810c298f>] ftrace_startup_enable+0x32/0x34 [<ffffffff810c3049>] ftrace_startup+0x14e/0x15a [<ffffffff810c307c>] register_ftrace_function+0x27/0x40 [<ffffffff810dc118>] perf_ftrace_event_register+0x3e/0xee [<ffffffff810dbfbe>] perf_trace_init+0x29d/0x2a9 [<ffffffff810eb422>] perf_tp_event_init+0x27/0x3a [<ffffffff810f18bc>] perf_init_event+0x9e/0xed [<ffffffff810f1ba4>] perf_event_alloc+0x299/0x330 [<ffffffff810f236b>] SYSC_perf_event_open+0x3ee/0x816 [<ffffffff8115a066>] ? mntput+0x2d/0x2f [<ffffffff81142b00>] ? __fput+0xa7/0x1b2 [<ffffffff81091300>] ? do_gettimeofday+0x22/0x3a [<ffffffff810f279c>] SyS_perf_event_open+0x9/0xb [<ffffffff81502a92>] system_call_fastpath+0x12/0x17 ---[ end trace 81a53565150e4982 ]--- Bad trampoline accounting at: ffffffff810001c8 (run_init_process+0x0/0x2d) (10000001) Update the control_ops trampoline instead of the perf ops one. Reported-by: lkp@01.org Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 12 11月, 2014 6 次提交
-
-
由 Jiang Liu 提交于
Function trace_ctxwake_bin() misses ctx_switch_entry->next_cpu field, so user will get stale value for "next_cpu". Link: http://lkml.kernel.org/p/1377176379-27908-1-git-send-email-liuj97@gmail.comSigned-off-by: NJiang Liu <jiang.liu@huawei.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The only code that references tracing_sched_switch_trace() and tracing_sched_wakeup_trace() is the wakeup latency tracer. Those two functions use to belong to the sched_switch tracer which has long been removed. These functions were left behind because the wakeup latency tracer used them. But since the wakeup latency tracer is the only one to use them, they should be static functions inside that code. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Oleg Nesterov 提交于
After the previous patch it is clear that "tracer_enabled" can never be true, we can remove the "if (tracer_enabled)" code in probe_sched_switch() and probe_sched_wakeup(). Plus we can obviously remove tracer_enabled, ctx_trace, and sched_stopped as well. Link: http://lkml.kernel.org/p/20140723193503.GA30217@redhat.comSigned-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Oleg Nesterov 提交于
tracing_{start,stop}_sched_switch_record() have no callers since 87d80de2 "tracing: Remove obsolete sched_switch tracer". The last caller of tracing_sched_switch_assign_trace() was removed by 30dbb20e "tracing: Remove boot tracer". Link: http://lkml.kernel.org/p/20140723193501.GA30214@redhat.comSigned-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
With the introduction of the dynamic trampolines, it is useful that if things go wrong that ftrace_bug() produces more information about what the current state is. This can help debug issues that may arise. Ftrace has lots of checks to make sure that the state of the system it touchs is exactly what it expects it to be. When it detects an abnormality it calls ftrace_bug() and disables itself to prevent any further damage. It is crucial that ftrace_bug() produces sufficient information that can be used to debug the situation. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: NBorislav Petkov <bp@suse.de> Tested-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Tested-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
When the static ftrace_ops (like function tracer) enables tracing, and it is the only callback that is referencing a function, a trampoline is dynamically allocated to the function that calls the callback directly instead of calling a loop function that iterates over all the registered ftrace ops (if more than one ops is registered). But when it comes to dynamically allocated ftrace_ops, where they may be freed, on a CONFIG_PREEMPT kernel there's no way to know when it is safe to free the trampoline. If a task was preempted while executing on the trampoline, there's currently no way to know when it will be off that trampoline. But this is not true when it comes to !CONFIG_PREEMPT. The current method of calling schedule_on_each_cpu() will force tasks off the trampoline, becaues they can not schedule while on it (kernel preemption is not configured). That means it is safe to free a dynamically allocated ftrace ops trampoline when CONFIG_PREEMPT is not configured. Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NBorislav Petkov <bp@suse.de> Tested-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Tested-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 01 11月, 2014 2 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
The file /sys/kernel/debug/tracing/eneabled_functions is used to debug ftrace function hooks. Add to the output what function is being called by the trampoline if the arch supports it. Add support for this feature in x86_64. Cc: H. Peter Anvin <hpa@linux.intel.com> Tested-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Tested-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The current method of handling multiple function callbacks is to register a list function callback that calls all the other callbacks based on their hash tables and compare it to the function that the callback was called on. But this is very inefficient. For example, if you are tracing all functions in the kernel and then add a kprobe to a function such that the kprobe uses ftrace, the mcount trampoline will switch from calling the function trace callback to calling the list callback that will iterate over all registered ftrace_ops (in this case, the function tracer and the kprobes callback). That means for every function being traced it checks the hash of the ftrace_ops for function tracing and kprobes, even though the kprobes is only set at a single function. The kprobes ftrace_ops is checked for every function being traced! Instead of calling the list function for functions that are only being traced by a single callback, we can call a dynamically allocated trampoline that calls the callback directly. The function graph tracer already uses a direct call trampoline when it is being traced by itself but it is not dynamically allocated. It's trampoline is static in the kernel core. The infrastructure that called the function graph trampoline can also be used to call a dynamically allocated one. For now, only ftrace_ops that are not dynamically allocated can have a trampoline. That is, users such as function tracer or stack tracer. kprobes and perf allocate their ftrace_ops, and until there's a safe way to free the trampoline, it can not be used. The dynamically allocated ftrace_ops may, although, use the trampoline if the kernel is not compiled with CONFIG_PREEMPT. But that will come later. Tested-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Tested-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 25 10月, 2014 2 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
When modifying code, ftrace has several checks to make sure things are being done correctly. One of them is to make sure any code it modifies is exactly what it expects it to be before it modifies it. In order to do so with the new trampoline logic, it must be able to find out what trampoline a function is hooked to in order to see if the code that hooks to it is what's expected. The logic to find the trampoline from a record (accounting descriptor for a function that is hooked) needs to only look at the "old_hash" of an ops that is being modified. The old_hash is the list of function an ops is hooked to before its update. Since a record would only be pointing to an ops that is being modified if it was already hooked before. Currently, it can pick a modified ops based on its new functions it will be hooked to, and this picks the wrong trampoline and causes the check to fail, disabling ftrace. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> ftrace: squash into ordering of ops for modification
-
由 Steven Rostedt (Red Hat) 提交于
The code that checks for trampolines when modifying function hooks tests against a modified ops "old_hash". But the ops old_hash pointer is not being updated before the changes are made, making it possible to not find the right hash to the callback and possibly causing ftrace to break in accounting and disable itself. Have the ops set its old_hash before the modifying takes place. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 19 10月, 2014 1 次提交
-
-
由 Catalin Marinas 提交于
Commit b0c29f79 (futexes: Avoid taking the hb->lock if there's nothing to wake up) changes the futex code to avoid taking a lock when there are no waiters. This code has been subsequently fixed in commit 11d4616b (futex: revert back to the explicit waiter counting code). Both the original commit and the fix-up rely on get_futex_key_refs() to always imply a barrier. However, for private futexes, none of the cases in the switch statement of get_futex_key_refs() would be hit and the function completes without a memory barrier as required before checking the "waiters" in futex_wake() -> hb_waiters_pending(). The consequence is a race with a thread waiting on a futex on another CPU, allowing the waker thread to read "waiters == 0" while the waiter thread to have read "futex_val == locked" (in kernel). Without this fix, the problem (user space deadlocks) can be seen with Android bionic's mutex implementation on an arm64 multi-cluster system. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Reported-by: NMatteo Franchin <Matteo.Franchin@arm.com> Fixes: b0c29f79 (futexes: Avoid taking the hb->lock if there's nothing to wake up) Acked-by: NDavidlohr Bueso <dave@stgolabs.net> Tested-by: NMike Galbraith <umgwanakikbuti@gmail.com> Cc: <stable@vger.kernel.org> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 10月, 2014 1 次提交
-
-
由 Prarit Bhargava 提交于
A panic was seen in the following sitation. There are two threads running on the system. The first thread is a system monitoring thread that is reading /proc/modules. The second thread is loading and unloading a module (in this example I'm using my simple dummy-module.ko). Note, in the "real world" this occurred with the qlogic driver module. When doing this, the following panic occurred: ------------[ cut here ]------------ kernel BUG at kernel/module.c:3739! invalid opcode: 0000 [#1] SMP Modules linked in: binfmt_misc sg nfsv3 rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache intel_powerclamp coretemp kvm_intel kvm crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel aesni_intel lrw igb gf128mul glue_helper iTCO_wdt iTCO_vendor_support ablk_helper ptp sb_edac cryptd pps_core edac_core shpchp i2c_i801 pcspkr wmi lpc_ich ioatdma mfd_core dca ipmi_si nfsd ipmi_msghandler auth_rpcgss nfs_acl lockd sunrpc xfs libcrc32c sr_mod cdrom sd_mod crc_t10dif crct10dif_common mgag200 syscopyarea sysfillrect sysimgblt i2c_algo_bit drm_kms_helper ttm isci drm libsas ahci libahci scsi_transport_sas libata i2c_core dm_mirror dm_region_hash dm_log dm_mod [last unloaded: dummy_module] CPU: 37 PID: 186343 Comm: cat Tainted: GF O-------------- 3.10.0+ #7 Hardware name: Intel Corporation S2600CP/S2600CP, BIOS RMLSDP.86I.00.29.D696.1311111329 11/11/2013 task: ffff8807fd2d8000 ti: ffff88080fa7c000 task.ti: ffff88080fa7c000 RIP: 0010:[<ffffffff810d64c5>] [<ffffffff810d64c5>] module_flags+0xb5/0xc0 RSP: 0018:ffff88080fa7fe18 EFLAGS: 00010246 RAX: 0000000000000003 RBX: ffffffffa03b5200 RCX: 0000000000000000 RDX: 0000000000001000 RSI: ffff88080fa7fe38 RDI: ffffffffa03b5000 RBP: ffff88080fa7fe28 R08: 0000000000000010 R09: 0000000000000000 R10: 0000000000000000 R11: 000000000000000f R12: ffffffffa03b5000 R13: ffffffffa03b5008 R14: ffffffffa03b5200 R15: ffffffffa03b5000 FS: 00007f6ae57ef740(0000) GS:ffff88101e7a0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000404f70 CR3: 0000000ffed48000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: ffffffffa03b5200 ffff8810101e4800 ffff88080fa7fe70 ffffffff810d666c ffff88081e807300 000000002e0f2fbf 0000000000000000 ffff88100f257b00 ffffffffa03b5008 ffff88080fa7ff48 ffff8810101e4800 ffff88080fa7fee0 Call Trace: [<ffffffff810d666c>] m_show+0x19c/0x1e0 [<ffffffff811e4d7e>] seq_read+0x16e/0x3b0 [<ffffffff812281ed>] proc_reg_read+0x3d/0x80 [<ffffffff811c0f2c>] vfs_read+0x9c/0x170 [<ffffffff811c1a58>] SyS_read+0x58/0xb0 [<ffffffff81605829>] system_call_fastpath+0x16/0x1b Code: 48 63 c2 83 c2 01 c6 04 03 29 48 63 d2 eb d9 0f 1f 80 00 00 00 00 48 63 d2 c6 04 13 2d 41 8b 0c 24 8d 50 02 83 f9 01 75 b2 eb cb <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 RIP [<ffffffff810d64c5>] module_flags+0xb5/0xc0 RSP <ffff88080fa7fe18> Consider the two processes running on the system. CPU 0 (/proc/modules reader) CPU 1 (loading/unloading module) CPU 0 opens /proc/modules, and starts displaying data for each module by traversing the modules list via fs/seq_file.c:seq_open() and fs/seq_file.c:seq_read(). For each module in the modules list, seq_read does op->start() <-- this is a pointer to m_start() op->show() <- this is a pointer to m_show() op->stop() <-- this is a pointer to m_stop() The m_start(), m_show(), and m_stop() module functions are defined in kernel/module.c. The m_start() and m_stop() functions acquire and release the module_mutex respectively. ie) When reading /proc/modules, the module_mutex is acquired and released for each module. m_show() is called with the module_mutex held. It accesses the module struct data and attempts to write out module data. It is in this code path that the above BUG_ON() warning is encountered, specifically m_show() calls static char *module_flags(struct module *mod, char *buf) { int bx = 0; BUG_ON(mod->state == MODULE_STATE_UNFORMED); ... The other thread, CPU 1, in unloading the module calls the syscall delete_module() defined in kernel/module.c. The module_mutex is acquired for a short time, and then released. free_module() is called without the module_mutex. free_module() then sets mod->state = MODULE_STATE_UNFORMED, also without the module_mutex. Some additional code is called and then the module_mutex is reacquired to remove the module from the modules list: /* Now we can delete it from the lists */ mutex_lock(&module_mutex); stop_machine(__unlink_module, mod, NULL); mutex_unlock(&module_mutex); This is the sequence of events that leads to the panic. CPU 1 is removing dummy_module via delete_module(). It acquires the module_mutex, and then releases it. CPU 1 has NOT set dummy_module->state to MODULE_STATE_UNFORMED yet. CPU 0, which is reading the /proc/modules, acquires the module_mutex and acquires a pointer to the dummy_module which is still in the modules list. CPU 0 calls m_show for dummy_module. The check in m_show() for MODULE_STATE_UNFORMED passed for dummy_module even though it is being torn down. Meanwhile CPU 1, which has been continuing to remove dummy_module without holding the module_mutex, now calls free_module() and sets dummy_module->state to MODULE_STATE_UNFORMED. CPU 0 now calls module_flags() with dummy_module and ... static char *module_flags(struct module *mod, char *buf) { int bx = 0; BUG_ON(mod->state == MODULE_STATE_UNFORMED); and BOOM. Acquire and release the module_mutex lock around the setting of MODULE_STATE_UNFORMED in the teardown path, which should resolve the problem. Testing: In the unpatched kernel I can panic the system within 1 minute by doing while (true) do insmod dummy_module.ko; rmmod dummy_module.ko; done and while (true) do cat /proc/modules; done in separate terminals. In the patched kernel I was able to run just over one hour without seeing any issues. I also verified the output of panic via sysrq-c and the output of /proc/modules looks correct for all three states for the dummy_module. dummy_module 12661 0 - Unloading 0xffffffffa03a5000 (OE-) dummy_module 12661 0 - Live 0xffffffffa03bb000 (OE) dummy_module 14015 1 - Loading 0xffffffffa03a5000 (OE+) Signed-off-by: NPrarit Bhargava <prarit@redhat.com> Reviewed-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Cc: stable@kernel.org
-
- 14 10月, 2014 9 次提交
-
-
由 Geert Uytterhoeven 提交于
Consolidate the various external const and non-const declarations of __start___param[] and __stop___param in <linux/moduleparam.h>. This requires making a few struct kernel_param pointers in kernel/params.c const. Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Acked-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
In some cases we don't want hard lockup detection enabled by default. An example is when running as a guest. Introduce watchdog_enable_hardlockup_detector(bool) allowing those cases to disable hard lockup detection. This must be executed early by the boot processor from e.g. smp_prepare_boot_cpu, in order to allow kernel command line arguments to override it, as well as to avoid hard lockup detection being enabled before we've had a chance to indicate that it's unwanted. In summary, initial boot: default=enabled smp_prepare_boot_cpu watchdog_enable_hardlockup_detector(false): default=disabled cmdline has 'nmi_watchdog=1': default=enabled The running kernel still has the ability to enable/disable at any time with /proc/sys/kernel/nmi_watchdog us usual. However even when the default has been overridden /proc/sys/kernel/nmi_watchdog will initially show '1'. To truly turn it on one must disable/enable it, i.e. echo 0 > /proc/sys/kernel/nmi_watchdog echo 1 > /proc/sys/kernel/nmi_watchdog This patch will be immediately useful for KVM with the next patch of this series. Other hypervisor guest types may find it useful as well. [akpm@linux-foundation.org: fix build] [dzickus@redhat.com: fix compile issues on sparc] Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NDon Zickus <dzickus@redhat.com> Signed-off-by: NDon Zickus <dzickus@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rasmus Villemoes 提交于
The kernel used to contain two functions for length-delimited, case-insensitive string comparison, strnicmp with correct semantics and a slightly buggy strncasecmp. The latter is the POSIX name, so strnicmp was renamed to strncasecmp, and strnicmp made into a wrapper for the new strncasecmp to avoid breaking existing users. To allow the compat wrapper strnicmp to be removed at some point in the future, and to avoid the extra indirection cost, do s/strnicmp/strncasecmp/g. Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Travis 提交于
We have a large university system in the UK that is experiencing very long delays modprobing the driver for a specific I/O device. The delay is from 8-10 minutes per device and there are 31 devices in the system. This 4 to 5 hour delay in starting up those I/O devices is very much a burden on the customer. There are two causes for requiring a restart/reload of the drivers. First is periodic preventive maintenance (PM) and the second is if any of the devices experience a fatal error. Both of these trigger this excessively long delay in bringing the system back up to full capability. The problem was tracked down to a very slow IOREMAP operation and the excessively long ioresource lookup to insure that the user is not attempting to ioremap RAM. These patches provide a speed up to that function. The modprobe time appears to be affected quite a bit by previous activity on the ioresource list, which I suspect is due to cache preloading. While the overall improvement is impacted by other overhead of starting the devices, this drastically improves the modprobe time. Also our system is considerably smaller so the percentages gained will not be the same. Best case improvement with the modprobe on our 20 device smallish system was from 'real 5m51.913s' to 'real 0m18.275s'. This patch (of 2): Since the ioremap operation is verifying that the specified address range is NOT RAM, it will search the entire ioresource list if the condition is true. To make matters worse, it does this one 4k page at a time. For a 128M BAR region this is 32 passes to determine the entire region does not contain any RAM addresses. This patch provides another resource lookup function, region_is_ram, that searches for the entire region specified, verifying that it is completely contained within the resource region. If it is found, then it is checked to be RAM or not, within a single pass. The return result reflects if it was found or not (-1), and whether it is RAM (1) or not (0). This allows the caller to fallback to the previous page by page search if it was not found. [akpm@linux-foundation.org: fix spellos and typos in comment] Signed-off-by: NMike Travis <travis@sgi.com> Acked-by: NAlex Thorlton <athorlton@sgi.com> Reviewed-by: NCliff Wickman <cpw@sgi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Mark Salter <msalter@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Baoquan He 提交于
This is a cleanup. In function parse_crashkernel_suffix, the parameter crash_base is not used. So here remove it. Signed-off-by: NBaoquan He <bhe@redhat.com> Acked-by: NVivek Goyal <vgoyal@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Baoquan He 提交于
In locate_mem_hole functions, a memory hole is located and added as kexec_segment. But from the name of locate_mem_hole, it should only take responsibility of searching a available memory hole to contain data of a specified size. So in this patch add a new field 'mem' into kexec_buf, then take that kexec segment adding code out of locate_mem_hole_top_down and locate_mem_hole_bottom_up. This make clear of the functionality of locate_mem_hole just like it declars to do. And by this locate_mem_hole_callback chould be used later if anyone want to locate a memory hole for other use. Meanwhile Vivek suggested opening code function __kexec_add_segment(), that way we have to retreive ksegment pointer once and it is easy to read. So just do it in this patch and remove __kexec_add_segment() since no one use it anymore. Signed-off-by: NBaoquan He <bhe@redhat.com> Acked-by: NVivek Goyal <vgoyal@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rob Jones 提交于
Reduce boilerplate code by using __seq_open_private() instead of seq_open() in kallsyms_open(). Signed-off-by: NRob Jones <rob.jones@codethink.co.uk> Cc: Gideon Israel Dsouza <gidisrael@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Markus Trippelsdorf 提交于
Commit 458df9fd ("printk: remove separate printk_sched buffers and use printk buf instead") hardcodes printk_deferred() to KERN_WARNING and inserts the string "[sched_delayed] " before the actual message. However it doesn't take into account the KERN_* prefix of the message, that now ends up in the middle of the output: [sched_delayed] ^a4CE: hpet increased min_delta_ns to 20115 nsec Fix this by just getting rid of the "[sched_delayed] " scnprintf(). The prefix is useless since 458df9fd anyway since from that moment printk_deferred() inserts the message into the kernel printk buffer immediately. So if the message eventually gets printed to console, it is printed in the correct order with other messages and there's no need for any special prefix. And if the kernel crashes before the message makes it to console, then prefix in the printk buffer doesn't make the situation any better. Link: http://lkml.org/lkml/2014/9/14/4Signed-off-by: NMarkus Trippelsdorf <markus@trippelsdorf.de> Acked-by: NJan Kara <jack@suse.cz> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Geert Uytterhoeven 提交于
When configuring a uniprocessor kernel, don't bother the user with an irrelevant LOG_CPU_MAX_BUF_SHIFT question, and don't build the unused code. Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Acked-by: NLuis R. Rodriguez <mcgrof@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 10月, 2014 2 次提交
-
-
由 Richard Guy Briggs 提交于
Rename audit_log_remove_rule() to audit_tree_log_remove_rule() to avoid confusion with watch and mark rule removal/changes. Signed-off-by: NRichard Guy Briggs <rgb@redhat.com> Signed-off-by: NEric Paris <eparis@redhat.com>
-
由 Richard Guy Briggs 提交于
Re-factor audit_rule_change() to reduce the amount of code redundancy and simplify the logic. Signed-off-by: NRichard Guy Briggs <rgb@redhat.com> Signed-off-by: NEric Paris <eparis@redhat.com>
-