1. 14 10月, 2008 2 次提交
    • M
      ocfs2: throttle back local alloc when low on disk space · 9c7af40b
      Mark Fasheh 提交于
      Ocfs2's local allocator disables itself for the duration of a mount point
      when it has trouble allocating a large enough area from the primary bitmap.
      That can cause performance problems, especially for disks which were only
      temporarily full or fragmented. This patch allows for the allocator to
      shrink it's window first, before being disabled. Later, it can also be
      re-enabled so that any performance drop is minimized.
      
      To do this, we allow the value of osb->local_alloc_bits to be shrunk when
      needed. The default value is recorded in a mostly read-only variable so that
      we can re-initialize when required.
      
      Locking had to be updated so that we could protect changes to
      local_alloc_bits. Mostly this involves protecting various local alloc values
      with the osb spinlock. A new state is also added, OCFS2_LA_THROTTLED, which
      is used when the local allocator is has shrunk, but is not disabled. If the
      available space dips below 1 megabyte, the local alloc file is disabled. In
      either case, local alloc is re-enabled 30 seconds after the event, or when
      an appropriate amount of bits is seen in the primary bitmap.
      Signed-off-by: NMark Fasheh <mfasheh@suse.com>
      9c7af40b
    • M
      ocfs2: Track local alloc bits internally · ebcee4b5
      Mark Fasheh 提交于
      Do this instead of tracking absolute local alloc size. This avoids
      needless re-calculatiion of bits from bytes in localalloc.c. Additionally,
      the value is now in a more natural unit for internal file system bitmap
      work.
      Signed-off-by: NMark Fasheh <mfasheh@suse.com>
      ebcee4b5
  2. 15 7月, 2008 1 次提交
  3. 01 5月, 2008 1 次提交
  4. 18 4月, 2008 2 次提交
  5. 04 3月, 2008 2 次提交
  6. 26 1月, 2008 2 次提交
  7. 28 11月, 2007 1 次提交
  8. 04 10月, 2007 1 次提交
  9. 21 9月, 2007 1 次提交
    • M
      ocfs2: Allow smaller allocations during large writes · 415cb800
      Mark Fasheh 提交于
      The ocfs2 write code loops through a page much like the block code, except
      that ocfs2 allocation units can be any size, including larger than page
      size. Typically it's equal to or larger than page size - most kernels run 4k
      pages, the minimum ocfs2 allocation (cluster) size.
      
      Some changes introduced during 2.6.23 changed the way writes to pages are
      handled, and inadvertantly broke support for > 4k page size. Instead of just
      writing one cluster at a time, we now handle the whole page in one pass.
      
      This means that multiple (small) seperate allocations might happen in the
      same pass. The allocation code howver typically optimizes by getting the
      maximum which was reserved. This triggered a BUG_ON in the extend code where
      it'd ask for a single bit (for one part of a > 4k page) and get back more
      than it asked for.
      
      Fix this by providing a variant of the high level allocation function which
      allows the caller to specify a maximum. The traditional function remains and
      just calls the new one with a maximum determined from the initial
      reservation.
      Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
      415cb800
  10. 26 5月, 2007 1 次提交
    • M
      ocfs2: fix inode leak · 8fccfc82
      Mark Fasheh 提交于
      We weren't cleaning up our inode reference on error in
      ocfs2_reserve_local_alloc_bits(). Add a check for error return and iput() if
      need be. Move the code to set the alloc context inode info to the end of the
      function so we don't have any possibility of passing back a bad pointer.
      Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
      8fccfc82
  11. 14 12月, 2006 1 次提交
  12. 02 12月, 2006 7 次提交
  13. 08 8月, 2006 1 次提交
    • M
      ocfs2: allocation hints · 883d4cae
      Mark Fasheh 提交于
      Record the most recently used allocation group on the allocation context, so
      that subsequent allocations can attempt to optimize for contiguousness.
      Local alloc especially should benefit from this as the current chain search
      tends to let it spew across the disk.
      Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
      883d4cae
  14. 25 3月, 2006 1 次提交
  15. 10 1月, 2006 1 次提交
  16. 04 1月, 2006 1 次提交