1. 13 8月, 2014 6 次提交
    • A
      powerpc/ppc476: Disable BTAC · 97b3be1e
      Alistair Popple 提交于
      This patch disables the branch target address CAM which under specific
      circumstances may cause the processor to skip execution of 1-4
      instructions. This fixes IBM Erratum #47.
      Signed-off-by: NAlistair Popple <alistair@popple.id.au>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      97b3be1e
    • G
      powerpc/powernv: Fix IOMMU group lost · 763fe0ad
      Gavin Shan 提交于
      When we take full hotplug to recover from EEH errors, PCI buses
      could be involved. For the case, the child devices of involved
      PCI buses can't be attached to IOMMU group properly, which is
      caused by commit 3f28c5af ("powerpc/powernv: Reduce multi-hit of
      iommu_add_device()").
      
      When adding the PCI devices of the newly created PCI buses to
      the system, the IOMMU group is expected to be added in (C).
      (A) fails to bind the IOMMU group because bus->is_added is
      false. (B) fails because the device doesn't have binding IOMMU
      table yet. bus->is_added is set to true at end of (C) and
      pdev->is_added is set to true at (D).
      
         pcibios_add_pci_devices()
            pci_scan_bridge()
               pci_scan_child_bus()
                  pci_scan_slot()
                     pci_scan_single_device()
                        pci_scan_device()
                        pci_device_add()
                           pcibios_add_device()           A: Ignore
                           device_add()                   B: Ignore
                        pcibios_fixup_bus()
                           pcibios_setup_bus_devices()
                              pcibios_setup_device()      C: Hit
            pcibios_finish_adding_to_bus()
               pci_bus_add_devices()
                  pci_bus_add_device()                    D: Add device
      
      If the parent PCI bus isn't involved in hotplug, the IOMMU
      group is expected to be bound in (B). (A) should fail as the
      sysfs entries aren't populated.
      
      The patch fixes the issue by reverting commit 3f28c5af and remove
      WARN_ON() in iommu_add_device() to allow calling the function
      even the specified device already has associated IOMMU group.
      
      Cc: <stable@vger.kernel.org>  # 3.16+
      Reported-by: NThadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com>
      Signed-off-by: NGavin Shan <gwshan@linux.vnet.ibm.com>
      Acked-by: NWei Yang <weiyang@linux.vnet.ibm.com>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      763fe0ad
    • M
      powerpc: Add smp_mb()s to arch_spin_unlock_wait() · 78e05b14
      Michael Ellerman 提交于
      Similar to the previous commit which described why we need to add a
      barrier to arch_spin_is_locked(), we have a similar problem with
      spin_unlock_wait().
      
      We need a barrier on entry to ensure any spinlock we have previously
      taken is visibly locked prior to the load of lock->slock.
      
      It's also not clear if spin_unlock_wait() is intended to have ACQUIRE
      semantics. For now be conservative and add a barrier on exit to give it
      ACQUIRE semantics.
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      78e05b14
    • M
      powerpc: Add smp_mb() to arch_spin_is_locked() · 51d7d520
      Michael Ellerman 提交于
      The kernel defines the function spin_is_locked(), which can be used to
      check if a spinlock is currently locked.
      
      Using spin_is_locked() on a lock you don't hold is obviously racy. That
      is, even though you may observe that the lock is unlocked, it may become
      locked at any time.
      
      There is (at least) one exception to that, which is if two locks are
      used as a pair, and the holder of each checks the status of the other
      before doing any update.
      
      Assuming *A and *B are two locks, and *COUNTER is a shared non-atomic
      value:
      
      The first CPU does:
      
      	spin_lock(*A)
      
      	if spin_is_locked(*B)
      		# nothing
      	else
      		smp_mb()
      		LOAD r = *COUNTER
      		r++
      		STORE *COUNTER = r
      
      	spin_unlock(*A)
      
      And the second CPU does:
      
      	spin_lock(*B)
      
      	if spin_is_locked(*A)
      		# nothing
      	else
      		smp_mb()
      		LOAD r = *COUNTER
      		r++
      		STORE *COUNTER = r
      
      	spin_unlock(*B)
      
      Although this is a strange locking construct, it should work.
      
      It seems to be understood, but not documented, that spin_is_locked() is
      not a memory barrier, so in the examples above and below the caller
      inserts its own memory barrier before acting on the result of
      spin_is_locked().
      
      For now we assume spin_is_locked() is implemented as below, and we break
      it out in our examples:
      
      	bool spin_is_locked(*LOCK) {
      		LOAD l = *LOCK
      		return l.locked
      	}
      
      Our intuition is that there should be no problem even if the two code
      sequences run simultaneously such as:
      
      	CPU 0			CPU 1
      	==================================================
      	spin_lock(*A)		spin_lock(*B)
      	LOAD b = *B		LOAD a = *A
      	if b.locked # true	if a.locked # true
      	# nothing		# nothing
      	spin_unlock(*A)		spin_unlock(*B)
      
      If one CPU gets the lock before the other then it will do the update and
      the other CPU will back off:
      
      	CPU 0			CPU 1
      	==================================================
      	spin_lock(*A)
      	LOAD b = *B
      				spin_lock(*B)
      	if b.locked # false	LOAD a = *A
      	else			if a.locked # true
      	smp_mb()		# nothing
      	LOAD r1 = *COUNTER	spin_unlock(*B)
      	r1++
      	STORE *COUNTER = r1
      	spin_unlock(*A)
      
      However in reality spin_lock() itself is not indivisible. On powerpc we
      implement it as a load-and-reserve and store-conditional.
      
      Ignoring the retry logic for the lost reservation case, it boils down to:
      	spin_lock(*LOCK) {
      		LOAD l = *LOCK
      		l.locked = true
      		STORE *LOCK = l
      		ACQUIRE_BARRIER
      	}
      
      The ACQUIRE_BARRIER is required to give spin_lock() ACQUIRE semantics as
      defined in memory-barriers.txt:
      
           This acts as a one-way permeable barrier.  It guarantees that all
           memory operations after the ACQUIRE operation will appear to happen
           after the ACQUIRE operation with respect to the other components of
           the system.
      
      On modern powerpc systems we use lwsync for ACQUIRE_BARRIER. lwsync is
      also know as "lightweight sync", or "sync 1".
      
      As described in Power ISA v2.07 section B.2.1.1, in this scenario the
      lwsync is not the barrier itself. It instead causes the LOAD of *LOCK to
      act as the barrier, preventing any loads or stores in the locked region
      from occurring prior to the load of *LOCK.
      
      Whether this behaviour is in accordance with the definition of ACQUIRE
      semantics in memory-barriers.txt is open to discussion, we may switch to
      a different barrier in future.
      
      What this means in practice is that the following can occur:
      
      	CPU 0			CPU 1
      	==================================================
      	LOAD a = *A 		LOAD b = *B
      	a.locked = true		b.locked = true
      	LOAD b = *B		LOAD a = *A
      	STORE *A = a		STORE *B = b
      	if b.locked # false	if a.locked # false
      	else			else
      	smp_mb()		smp_mb()
      	LOAD r1 = *COUNTER	LOAD r2 = *COUNTER
      	r1++			r2++
      	STORE *COUNTER = r1
      				STORE *COUNTER = r2	# Lost update
      	spin_unlock(*A)		spin_unlock(*B)
      
      That is, the load of *B can occur prior to the store that makes *A
      visibly locked. And similarly for CPU 1. The result is both CPUs hold
      their lock and believe the other lock is unlocked.
      
      The easiest fix for this is to add a full memory barrier to the start of
      spin_is_locked(), so adding to our previous definition would give us:
      
      	bool spin_is_locked(*LOCK) {
      		smp_mb()
      		LOAD l = *LOCK
      		return l.locked
      	}
      
      The new barrier orders the store to the lock we are locking vs the load
      of the other lock:
      
      	CPU 0			CPU 1
      	==================================================
      	LOAD a = *A 		LOAD b = *B
      	a.locked = true		b.locked = true
      	STORE *A = a		STORE *B = b
      	smp_mb()		smp_mb()
      	LOAD b = *B		LOAD a = *A
      	if b.locked # true	if a.locked # true
      	# nothing		# nothing
      	spin_unlock(*A)		spin_unlock(*B)
      
      Although the above example is theoretical, there is code similar to this
      example in sem_lock() in ipc/sem.c. This commit in addition to the next
      commit appears to be a fix for crashes we are seeing in that code where
      we believe this race happens in practice.
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      51d7d520
    • G
      powerpc: Fix "attempt to move .org backwards" error · 11d54904
      Guenter Roeck 提交于
      Once again, we see
      
      arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
      arch/powerpc/kernel/exceptions-64s.S:865: Error: attempt to move .org backwards
      arch/powerpc/kernel/exceptions-64s.S:866: Error: attempt to move .org backwards
      arch/powerpc/kernel/exceptions-64s.S:890: Error: attempt to move .org backwards
      
      when compiling ppc:allmodconfig.
      
      This time the problem has been caused by to commit 0869b6fd
      ("powerpc/book3s: Add basic infrastructure to handle HMI in Linux"),
      which adds functions hmi_exception_early and hmi_exception_after_realmode
      into a critical (size-limited) code area, even though that does not appear
      to be necessary.
      
      Move those functions to a non-critical area of the file.
      Signed-off-by: NGuenter Roeck <linux@roeck-us.net>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      11d54904
    • S
      powerpc/nohash: Split __early_init_mmu() into boot and secondary · 5d61a217
      Scott Wood 提交于
      __early_init_mmu() does some things that are really only needed by the
      boot cpu.  On FSL booke, This includes calling
      memblock_enforce_memory_limit(), which is labelled __init.  Secondary
      cpu init code can't be __init as that would break CPU hotplug.
      
      While it's probably a bug that memblock_enforce_memory_limit() isn't
      __init_memblock instead, there's no reason why we should be doing this
      stuff for secondary cpus in the first place.
      Signed-off-by: NScott Wood <scottwood@freescale.com>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      5d61a217
  2. 09 8月, 2014 4 次提交
    • V
      kexec: load and relocate purgatory at kernel load time · 12db5562
      Vivek Goyal 提交于
      Load purgatory code in RAM and relocate it based on the location.
      Relocation code has been inspired by module relocation code and purgatory
      relocation code in kexec-tools.
      
      Also compute the checksums of loaded kexec segments and store them in
      purgatory.
      
      Arch independent code provides this functionality so that arch dependent
      bootloaders can make use of it.
      
      Helper functions are provided to get/set symbol values in purgatory which
      are used by bootloaders later to set things like stack and entry point of
      second kernel etc.
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      12db5562
    • D
      arch/powerpc: replace obsolete strict_strto* calls · 1618bd53
      Daniel Walter 提交于
      Replace strict_strto calls with more appropriate kstrto calls
      Signed-off-by: NDaniel Walter <dwalter@google.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1618bd53
    • A
      arm64,ia64,ppc,s390,sh,tile,um,x86,mm: remove default gate area · a6c19dfe
      Andy Lutomirski 提交于
      The core mm code will provide a default gate area based on
      FIXADDR_USER_START and FIXADDR_USER_END if
      !defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR).
      
      This default is only useful for ia64.  arm64, ppc, s390, sh, tile, 64-bit
      UML, and x86_32 have their own code just to disable it.  arm, 32-bit UML,
      and x86_64 have gate areas, but they have their own implementations.
      
      This gets rid of the default and moves the code into ia64.
      
      This should save some code on architectures without a gate area: it's now
      possible to inline the gate_area functions in the default case.
      Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
      Acked-by: NNathan Lynch <nathan_lynch@mentor.com>
      Acked-by: NH. Peter Anvin <hpa@linux.intel.com>
      Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle]
      Acked-by: Richard Weinberger <richard@nod.at> [for um]
      Acked-by: Will Deacon <will.deacon@arm.com> [for arm64]
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: Richard Weinberger <richard@nod.at>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Nathan Lynch <Nathan_Lynch@mentor.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a6c19dfe
    • L
      lib/scatterlist: make ARCH_HAS_SG_CHAIN an actual Kconfig · 308c09f1
      Laura Abbott 提交于
      Rather than have architectures #define ARCH_HAS_SG_CHAIN in an
      architecture specific scatterlist.h, make it a proper Kconfig option and
      use that instead.  At same time, remove the header files are are now
      mostly useless and just include asm-generic/scatterlist.h.
      
      [sfr@canb.auug.org.au: powerpc files now need asm/dma.h]
      Signed-off-by: NLaura Abbott <lauraa@codeaurora.org>
      Acked-by: Thomas Gleixner <tglx@linutronix.de>			[x86]
      Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>	[powerpc]
      Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      308c09f1
  3. 07 8月, 2014 4 次提交
  4. 06 8月, 2014 2 次提交
  5. 05 8月, 2014 24 次提交