- 17 10月, 2015 12 次提交
-
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
This frees up some bits to hold more high level info such as PAE being present, w/o increasing the size of already bloated cpuinfo struct Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
It was generating warnings when called as write_aux_reg(x, paddr >> 32) Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
This is done by improving the laddering logic ! Before: if Exception goto excep_or_pure_k_ret if !Interrupt(L2) goto l1_chk else INTERRUPT_EPILOGUE 2 l1_chk: if !Interrupt(L1) (i.e. pure kernel mode) goto excep_or_pure_k_ret else INTERRUPT_EPILOGUE 1 excep_or_pure_k_ret: EXCEPTION_EPILOGUE Now: if !Interrupt(L1 or L2) (i.e. exception or pure kernel mode) goto excep_or_pure_k_ret ; guaranteed to be an interrupt if !Interrupt(L2) goto l1_ret else INTERRUPT_EPILOGUE 2 ; by virtue of above, no need to chk for L1 active l1_ret: INTERRUPT_EPILOGUE 1 excep_or_pure_k_ret: EXCEPTION_EPILOGUE Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
The requirement is to - Reenable Exceptions (AE cleared) - Reenable Interrupts (E1/E2 set) We need to do wiggle these bits into ERSTATUS and call RTIE. Prev version used the pre-exception STATUS32 as starting point for what goes into ERSTATUS. This required explicit fixups of U/DE/L bits. Instead, use the current (in-exception) STATUS32 as starting point. Being in exception handler U/DE/L can be safely assumed to be correct. Only AE/E1/E2 need to be fixed. So the new implementation is slightly better -Avoids read form memory -Is 4 bytes smaller for the typical 1 level of intr configuration -Depicts the semantics more clearly Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Historically this was done by ARC IDE driver, which is long gone. IRQ core is pretty robust now and already checks if IRQs are enabled in hard ISRs. Thus no point in checking this in arch code, for every call of irq enabled. Further if some driver does do that - let it bring down the system so we notice/fix this sooner than covering up for sucker This makes local_irq_enable() - for L1 only case atleast simple enough so we can inline it. Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Implement the TLB flush routine to evict a sepcific Super TLB entry, vs. moving to a new ASID on every such flush. Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP support. Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a new bit "SZ" in TLB page desciptor to distinguish between them. Super Page size is configurable in hardware (4K to 16M), but fixed once RTL builds. The exact THP size a Linx configuration will support is a function of: - MMU page size (typical 8K, RTL fixed) - software page walker address split between PGD:PTE:PFN (typical 11:8:13, but can be changed with 1 line) So for above default, THP size supported is 8K * 256 = 2M Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime reduces to 1 level (as PTE is folded into PGD and canonically referred to as PMD). Thus thp PMD accessors are implemented in terms of PTE (just like sparc) Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 09 10月, 2015 3 次提交
-
-
由 Vineet Gupta 提交于
Needed for THP, but will also come in handy for fast GUP later Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
No semantical changes Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
ARC is the only arch with unsigned long type (vs. struct page *). Historically this was done to avoid the page_address() calls in various arch hooks which need to get the virtual/logical address of the table. Some arches alternately define it as pte_t *, and is as efficient as unsigned long (generated code doesn't change) Suggested-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 16 9月, 2015 1 次提交
-
-
由 Thomas Gleixner 提交于
Most interrupt flow handlers do not use the irq argument. Those few which use it can retrieve the irq number from the irq descriptor. Remove the argument. Search and replace was done with coccinelle and some extra helper scripts around it. Thanks to Julia for her help! Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Jiang Liu <jiang.liu@linux.intel.com>
-
- 12 9月, 2015 1 次提交
-
-
由 Vineet Gupta 提交于
Newer bitfiles needs the reduced clk even for SMP builds Cc: <stable@vger.kernel.org> #4.2 Signed-off-by: NVineet Gupta <vgupta@synopsys.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 8月, 2015 7 次提交
-
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
With all features in place, the ARC HS pct block can now be effectively allowed to be probed/used Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Alexey Brodkin 提交于
* split off pmu info into singleton and per-cpu bits * setup PMU on all cores Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Alexey Brodkin 提交于
Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Alexey Brodkin 提交于
In times of ARC 700 performance counters didn't have support of interrupt an so for ARC we only had support of non-sampling events. Put simply only "perf stat" was functional. Now with ARC HS we have support of interrupts in performance counters which this change introduces support of. ARC performance counters act in the following way in regard of interrupts generation. [1] A counter counts starting from value set in PCT_COUNT register pair [2] Once counter reaches value set in PCT_INT_CNT interrupt is raised Basic setup look like this: [1] PCT_COUNT = 0; [2] PCT_INT_CNT = __limit_value__; [3] Enable interrupts for that counter and let it run [4] Let counter reach its limit [5] Handle interrupt when it happens Note that PCT HW block is build in CPU core and so ints interrupt line (which is basically OR of all counters IRQs) is wired directly to top-level IRQC. That means do de-assert PCT interrupt it's required to reset IRQs from all counters that have reached their limit values. Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Alexey Brodkin 提交于
This generalization prepares for support of overflow interrupts. Hardware event counters on ARC work that way: Each counter counts from programmed start value (set in ARC_REG_PCT_COUNT) to a limit value (set in ARC_REG_PCT_INT_CNT) and once limit value is reached this timer generates an interrupt. Even though this hardware implementation allows for more flexibility, in Linux kernel we decided to mimic behavior of other architectures this way: [1] Set limit value as half of counter's max value (to allow counter to run after reaching it limit, see below for more explanation): ---------->8----------- arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL; ---------->8----------- [2] Set start value as "arc_pmu->max_period - sample_period" and then count up to the limit Our event counters don't stop on reaching max value (the one we set in ARC_REG_PCT_INT_CNT) but continue to count until kernel explicitly stops each of them. And setting a limit as half of counter capacity is done to allow capturing of additional events in between moment when interrupt was triggered until we're actually processing PMU interrupts. That way we're trying to be more precise. For example if we count CPU cycles we keep track of cycles while running through generic IRQ handling code: [1] We set counter period as say 100_000 events of type "crun" [2] Counter reaches that limit and raises its interrupt [3] Once we get in PMU IRQ handler we read current counter value from ARC_REG_PCT_SNAP ans see there something like 105_000. If counters stop on reaching a limit value then we would miss additional 5000 cycles. Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
The number of counters in PCT can never be more than 32 (while countable conditions could be 100+) for both ARCompact and ARCv2 And while at it update copyright dates. Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 21 8月, 2015 1 次提交
-
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 20 8月, 2015 10 次提交
-
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Yuriy Kolerov 提交于
When kernel's binary becomes large enough (32M and more) errors may occur during the final linkage stage. It happens because the build system uses short relocations for ARC by default. This problem may be easily resolved by passing -mlong-calls option to GCC to use long absolute jumps (j) instead of short relative branchs (b). But there are fragments of pure assembler code exist which use branchs in inappropriate places and cause a linkage error because of relocations overflow. First of these fragments is .fixup insertion in futex.h and unaligned.c. It inserts a code in the separate section (.fixup) with branch instruction. It leads to the linkage error when kernel becomes large. Second of these fragments is calling scheduler's functions (common kernel code) from entry.S of ARC's code. When kernel's binary becomes large it may lead to the linkage error because scheduler may occur far enough from ARC's code in the final binary. Signed-off-by: NYuriy Kolerov <yuriy.kolerov@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
W/o hardware assisted atomic r-m-w the best we can do is to disable preemption. Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
ARC doesn't need the runtime detection of futex cmpxchg op Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Callers of cmpxchg_futex_value_locked() in futex code expect bimodal return value: !0 (essentially -EFAULT as failure) 0 (success) Before this patch, the success return value was old value of futex, which could very well be non zero, causing caller to possibly take the failure path erroneously. Fix that by returning 0 for success (This fix was done back in 2011 for all upstream arches, which ARC obviously missed) Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
The atomic ops on futex need to provide the full barrier just like regular atomics in kernel. Also remove pagefault_enable/disable in futex_atomic_cmpxchg_inatomic() as core code already does that Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Alexey Brodkin 提交于
Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Alexey Brodkin 提交于
In case of ARCv2 CPU there're could be following configurations that affect cache handling for data exchanged with peripherals via DMA: [1] Only L1 cache exists [2] Both L1 and L2 exist, but no IO coherency unit [3] L1, L2 caches and IO coherency unit exist Current implementation takes care of [1] and [2]. Moreover support of [2] is implemented with run-time check for SLC existence which is not super optimal. This patch introduces support of [3] and rework of DMA ops usage. Instead of doing run-time check every time a particular DMA op is executed we'll have 3 different implementations of DMA ops and select appropriate one during init. As for IOC support for it we need: [a] Implement empty DMA ops because IOC takes care of cache coherency with DMAed data [b] Route dma_alloc_coherent() via dma_alloc_noncoherent() This is required to make IOC work in first place and also serves as optimization as LD/ST to coherent buffers can be srviced from caches w/o going all the way to memory Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com> [vgupta: -Added some comments about IOC gains -Marked dma ops as static, -Massaged changelog a bit] Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 11 8月, 2015 1 次提交
-
-
由 Vineet Gupta 提交于
Suggested-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 07 8月, 2015 1 次提交
-
-
由 Vineet Gupta 提交于
The increment of delay counter was 2 instructions: Arithmatic Shfit Left (ASL) + set to 1 on overflow This can be done in 1 using ROtate Left (ROL) Suggested-by: NNigel Topham <ntopham@synopsys.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 05 8月, 2015 1 次提交
-
-
由 Vineet Gupta 提交于
KGDB fails to build after f51e2f19 ("ARC: make sure instruction_pointer() returns unsigned value") The hack to force one specific reg to unsigned backfired. There's no reason to keep the regs signed after all. | CC arch/arc/kernel/kgdb.o |../arch/arc/kernel/kgdb.c: In function 'kgdb_trap': | ../arch/arc/kernel/kgdb.c:180:29: error: lvalue required as left operand of assignment | instruction_pointer(regs) -= BREAK_INSTR_SIZE; Reported-by: NYuriy Kolerov <yuriy.kolerov@synopsys.com> Fixes: f51e2f19 ("ARC: make sure instruction_pointer() returns unsigned value") Cc: Alexey Brodkin <abrodkin@synopsys.com> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 04 8月, 2015 2 次提交
-
-
由 Vineet Gupta 提交于
The previous commit for delayed retry of SCOND needs some fine tuning for spin locks. The backoff from delayed retry in conjunction with spin looping of lock itself can potentially cause the delay counter to reach high values. So to provide fairness to any lock operation, after a lock "seems" available (i.e. just before first SCOND try0, reset the delay counter back to starting value of 1 Essentially reset delay to 1 for a new spin-wait-loop-acquire cycle. Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
由 Vineet Gupta 提交于
This is to workaround the llock/scond livelock HS38x4 could get into a LLOCK/SCOND livelock in case of multiple overlapping coherency transactions in the SCU. The exclusive line state keeps rotating among contenting cores leading to a never ending cycle. So break the cycle by deferring the retry of failed exclusive access (SCOND). The actual delay needed is function of number of contending cores as well as the unrelated coherency traffic from other cores. To keep the code simple, start off with small delay of 1 which would suffice most cases and in case of contention double the delay. Eventually the delay is sufficient such that the coherency pipeline is drained, thus a subsequent exclusive access would succeed. Link: http://lkml.kernel.org/r/1438612568-28265-1-git-send-email-vgupta@synopsys.comAcked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-