- 11 10月, 2013 12 次提交
-
-
由 Theodore Ts'o 提交于
The add_timer_randomness() used to drop into trickle mode when entropy pool was estimated to be 87.5% full. This was important when add_timer_randomness() was used to sample interrupts. It's not used for this any more --- add_interrupt_randomness() now uses fast_mix() instead. By elimitating trickle mode, it allows us to fully utilize entropy provided by add_input_randomness() and add_disk_randomness() even when the input pool is above the old trickle threshold of 87.5%. This helps to answer the criticism in [1] in their hypothetical scenario where our entropy estimator was inaccurate, even though the measurements in [2] seem to indicate that our entropy estimator given real-life entropy collection is actually pretty good, albeit on the conservative side (which was as it was designed). [1] http://eprint.iacr.org/2013/338.pdf [2] http://eprint.iacr.org/2012/251.pdfSigned-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and Videau in their paper, "The Linux Pseudorandom Number Generator Revisited" (see: http://eprint.iacr.org/2012/251.pdf). They suggested a slight change to improve our mixing functions slightly. I also adjusted the comments to better explain what is going on, and to document why the polynomials were changed. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
By mixing the entropy in chunks of 32-bit words instead of byte by byte, we can speed up the fast_mix function significantly. Since it is called on every single interrupt, on systems with a very heavy interrupt load, this can make a noticeable difference. Also fix a compilation warning in add_interrupt_randomness() and avoid xor'ing cycles and jiffies together just in case we have an architecture which tries to define random_get_entropy() by returning jiffies. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Reported-by: NJörn Engel <joern@logfs.org>
-
由 Theodore Ts'o 提交于
In order to avoid draining the input pool of its entropy at too high of a rate, enforce a minimum time interval between reseedings of the urandom pool. This is set to 60 seconds by default. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Use smaller types to slightly shrink the size of the entropy store structure. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
The add_device_randomness() function calls mix_pool_bytes() twice for the input pool and the non-blocking pool, for a total of four times. By using _mix_pool_byte() and taking the spinlock in add_device_randomness(), we can halve the number of times we need take each pool's spinlock. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Fix a problem where get_random_bytes_arch() was calling the tracepoint get_random_bytes(). So add a new tracepoint for get_random_bytes_arch(), and make get_random_bytes() and get_random_bytes_arch() call their correct tracepoint. Also, add a new tracepoint for add_device_randomness() Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 H. Peter Anvin 提交于
When we write entropy into a non-empty pool, we currently don't account at all for the fact that we will probabilistically overwrite some of the entropy in that pool. This means that unless the pool is fully empty, we are currently *guaranteed* to overestimate the amount of entropy in the pool! Assuming Shannon entropy with zero correlations we end up with an exponentally decaying value of new entropy added: entropy <- entropy + (pool_size - entropy) * (1 - exp(-add_entropy/pool_size)) However, calculations involving fractional exponentials are not practical in the kernel, so apply a piecewise linearization: For add_entropy <= pool_size/2 then (1 - exp(-add_entropy/pool_size)) >= (add_entropy/pool_size)*0.7869... ... so we can approximate the exponential with 3/4*add_entropy/pool_size and still be on the safe side by adding at most pool_size/2 at a time. In order for the loop not to take arbitrary amounts of time if a bad ioctl is received, terminate if we are within one bit of full. This way the loop is guaranteed to terminate after no more than log2(poolsize) iterations, no matter what the input value is. The vast majority of the time the loop will be executed exactly once. The piecewise linearization is very conservative, approaching 3/4 of the usable input value for small inputs, however, our entropy estimation is pretty weak at best, especially for small values; we have no handle on correlation; and the Shannon entropy measure (Rényi entropy of order 1) is not the correct one to use in the first place, but rather the correct entropy measure is the min-entropy, the Rényi entropy of infinite order. As such, this conservatism seems more than justified. This does introduce fractional bit values. I have left it to have 3 bits of fraction, so that with a pool of 2^12 bits the multiply in credit_entropy_bits() can still fit into an int, as 2*(3+12) < 31. It is definitely possible to allow for more fractional accounting, but that multiply then would have to be turned into a 32*32 -> 64 multiply. Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu> Cc: DJ Johnston <dj.johnston@intel.com>
-
由 H. Peter Anvin 提交于
Allow fractional bits of entropy to be tracked by scaling the entropy counter (fixed point). This will be used in a subsequent patch that accounts for entropy lost due to overwrites. [ Modified by tytso to fix up a few missing places where the entropy_count wasn't properly converted from fractional bits to bits. ] Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
由 H. Peter Anvin 提交于
Use a macro to statically compute poolbitshift (will be used in a subsequent patch), poolbytes, and poolbits. On virtually all architectures the cost of a memory load with an offset is the same as the one of a memory load. It is still possible for this to generate worse code since the C compiler doesn't know the fixed relationship between these fields, but that is somewhat unlikely. Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Previously if CPU chip had a built-in random number generator (i.e., RDRAND on newer x86 chips), we mixed it in at the very end of extract_buf() using an XOR operation. We now mix it in right after the calculate a hash across the entire pool. This has the advantage that any contribution of entropy from the CPU's HWRNG will get mixed back into the pool. In addition, it means that if the HWRNG has any defects (either accidentally or maliciously introduced), this will be mitigated via the non-linear transform of the SHA-1 hash function before we hand out generated output. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Allow architectures which have a disabled get_cycles() function to provide a random_get_entropy() function which provides a fine-grained, rapidly changing counter that can be used by the /dev/random driver. For example, an architecture might have a rapidly changing register used to control random TLB cache eviction, or DRAM refresh that doesn't meet the requirements of get_cycles(), but which is good enough for the needs of the random driver. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
-
- 23 9月, 2013 1 次提交
-
-
由 Theodore Ts'o 提交于
The some platforms (e.g., ARM) initializes their clocks as late_initcalls for some unknown reason. So make sure random_int_secret_init() is run after all of the late_initcalls are run. Cc: stable@vger.kernel.org Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 18 6月, 2013 1 次提交
-
-
由 Joe Perches 提交于
This typedef is unnecessary and should just be removed. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 25 5月, 2013 2 次提交
-
-
由 Jiri Kosina 提交于
Commit 902c098a ("random: use lockless techniques in the interrupt path") turned IRQ path from being spinlock protected into lockless cmpxchg-retry update. That commit removed r->lock serialization between crediting entropy bits from IRQ context and accounting when extracting entropy on userspace read path, but didn't turn the r->entropy_count reads/updates in account() to use cmpxchg as well. It has been observed, that under certain circumstances this leads to read() on /dev/urandom to return 0 (EOF), as r->entropy_count gets corrupted and becomes negative, which in turn results in propagating 0 all the way from account() to the actual read() call. Convert the accounting code to be the proper lockless counterpart of what has been partially done by 902c098a. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jarod Wilson 提交于
Commit ec8f02da ("random: prime last_data value per fips requirements") added priming of last_data per fips requirements. Unfortuantely, it did so in a way that can lead to multiple threads all incrementing nbytes, but only one actually doing anything with the extra data, which leads to some fun random corruption and panics. The fix is to simply do everything needed to prime last_data in a single shot, so there's no window for multiple cpus to increment nbytes -- in fact, we won't even increment or decrement nbytes anymore, we'll just extract the needed EXTRACT_SIZE one time per pool and then carry on with the normal routine. All these changes have been tested across multiple hosts and architectures where panics were previously encoutered. The code changes are are strictly limited to areas only touched when when booted in fips mode. This change should also go into 3.8-stable, to make the myriads of fips users on 3.8.x happy. Signed-off-by: NJarod Wilson <jarod@redhat.com> Tested-by: NJan Stancek <jstancek@redhat.com> Tested-by: NJan Stodola <jstodola@redhat.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: NNeil Horman <nhorman@tuxdriver.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Matt Mackall <mpm@selenic.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 5月, 2013 1 次提交
-
-
由 Andy Shevchenko 提交于
There are several places in kernel where modules unescapes input to convert C-Style Escape Sequences into byte codes. The patch provides generic implementation of such approach. Test cases are also included into the patch. [akpm@linux-foundation.org: clarify comment] [akpm@linux-foundation.org: export get_random_int() to modules] Signed-off-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Samuel Thibault <samuel.thibault@ens-lyon.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: William Hubbs <w.d.hubbs@gmail.com> Cc: Chris Brannon <chris@the-brannons.com> Cc: Kirk Reiser <kirk@braille.uwo.ca> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 3月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Needed for bcache - need a cheap source of random numbers for perturbing IO sizes, for rate limiting IO to the SSD. Signed-off-by: NKent Overstreet <koverstreet@google.com> CC: "Theodore Ts'o" <tytso@mit.edu>
-
- 05 3月, 2013 1 次提交
-
-
由 Theodore Ts'o 提交于
Commit 61337054 introduced a circular lock dependency because posix_cpu_timers_exit() is called by release_task(), which is holding a writer lock on tasklist_lock, and this can cause a deadlock since kill_fasync() gets called with nonblocking_pool.lock taken. There's no reason why kill_fasync() needs to be taken while the random pool is locked, so move it out to fix this locking dependency. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Reported-by: NRuss Dill <Russ.Dill@gmail.com> Cc: stable@kernel.org
-
- 19 2月, 2013 1 次提交
-
-
由 Thomas Gleixner 提交于
The static lock initializers want to be fed the proper name of the lock and not some random string. In mainline random strings are obfuscating the readability of debug output, but for RT they prevent the spinlock substitution. Fix it up. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 08 11月, 2012 2 次提交
-
-
由 Jarod Wilson 提交于
The value stored in last_data must be primed for FIPS 140-2 purposes. Upon first use, either on system startup or after an RNDCLEARPOOL ioctl, we need to take an initial random sample, store it internally in last_data, then pass along the value after that to the requester, so that consistency checks aren't being run against stale and possibly known data. CC: Herbert Xu <herbert@gondor.apana.org.au> CC: "David S. Miller" <davem@davemloft.net> CC: Matt Mackall <mpm@selenic.com> CC: linux-crypto@vger.kernel.org Acked-by: NNeil Horman <nhorman@tuxdriver.com> Signed-off-by: NJarod Wilson <jarod@redhat.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Jiri Kosina 提交于
Fix the following warnings in formatting debug output: drivers/char/random.c: In function ‘xfer_secondary_pool’: drivers/char/random.c:827: warning: format ‘%d’ expects type ‘int’, but argument 7 has type ‘size_t’ drivers/char/random.c: In function ‘account’: drivers/char/random.c:859: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘size_t’ drivers/char/random.c:881: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘size_t’ drivers/char/random.c: In function ‘random_read’: drivers/char/random.c:1141: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘ssize_t’ drivers/char/random.c:1145: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘ssize_t’ drivers/char/random.c:1145: warning: format ‘%d’ expects type ‘int’, but argument 6 has type ‘long unsigned int’ by using '%zd' instead of '%d' to properly denote ssize_t/size_t conversion. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
- 16 10月, 2012 1 次提交
-
-
由 Jiri Kosina 提交于
The module parameter that turns debugging mode (which basically means printing a few extra lines during runtime) is in '#if 0' block. Forcing everyone who would like to see how entropy is behaving on his system to rebuild seems to be a little bit too harsh. If we were concerned about speed, we could potentially turn 'debug' into a static key, but I don't think it's necessary. Drop the '#if 0' block to allow using the 'debug' parameter without rebuilding. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
- 28 7月, 2012 1 次提交
-
-
由 H. Peter Anvin 提交于
Mix in any architectural randomness in extract_buf() instead of xfer_secondary_buf(). This allows us to mix in more architectural randomness, and it also makes xfer_secondary_buf() faster, moving a tiny bit of additional CPU overhead to process which is extracting the randomness. [ Commit description modified by tytso to remove an extended advertisement for the RDRAND instruction. ] Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Acked-by: NIngo Molnar <mingo@kernel.org> Cc: DJ Johnston <dj.johnston@intel.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu> Cc: stable@vger.kernel.org
-
- 25 7月, 2012 1 次提交
-
-
由 Tony Luck 提交于
Many platforms have per-machine instance data (serial numbers, asset tags, etc.) squirreled away in areas that are accessed during early system bringup. Mixing this data into the random pools has a very high value in providing better random data, so we should allow (and even encourage) architecture code to call add_device_randomness() from the setup_arch() paths. However, this limits our options for internal structure of the random driver since random_initialize() is not called until long after setup_arch(). Add a big fat comment to rand_initialize() spelling out this requirement. Suggested-by: NTheodore Ts'o <tytso@mit.edu> Signed-off-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
- 19 7月, 2012 1 次提交
-
-
由 Theodore Ts'o 提交于
With the new interrupt sampling system, we are no longer using the timer_rand_state structure in the irq descriptor, so we can stop initializing it now. [ Merged in fixes from Sedat to find some last missing references to rand_initialize_irq() ] Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Signed-off-by: NSedat Dilek <sedat.dilek@gmail.com>
-
- 15 7月, 2012 6 次提交
-
-
由 Theodore Ts'o 提交于
Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Create a new function, get_random_bytes_arch() which will use the architecture-specific hardware random number generator if it is present. Change get_random_bytes() to not use the HW RNG, even if it is avaiable. The reason for this is that the hw random number generator is fast (if it is present), but it requires that we trust the hardware manufacturer to have not put in a back door. (For example, an increasing counter encrypted by an AES key known to the NSA.) It's unlikely that Intel (for example) was paid off by the US Government to do this, but it's impossible for them to prove otherwise --- especially since Bull Mountain is documented to use AES as a whitener. Hence, the output of an evil, trojan-horse version of RDRAND is statistically indistinguishable from an RDRAND implemented to the specifications claimed by Intel. Short of using a tunnelling electronic microscope to reverse engineer an Ivy Bridge chip and disassembling and analyzing the CPU microcode, there's no way for us to tell for sure. Since users of get_random_bytes() in the Linux kernel need to be able to support hardware systems where the HW RNG is not present, most time-sensitive users of this interface have already created their own cryptographic RNG interface which uses get_random_bytes() as a seed. So it's much better to use the HW RNG to improve the existing random number generator, by mixing in any entropy returned by the HW RNG into /dev/random's entropy pool, but to always _use_ /dev/random's entropy pool. This way we get almost of the benefits of the HW RNG without any potential liabilities. The only benefits we forgo is the speed/performance enhancements --- and generic kernel code can't depend on depend on get_random_bytes() having the speed of a HW RNG anyway. For those places that really want access to the arch-specific HW RNG, if it is available, we provide get_random_bytes_arch(). Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
-
由 Theodore Ts'o 提交于
If the CPU supports a hardware random number generator, use it in xfer_secondary_pool(), where it will significantly improve things and where we can afford it. Also, remove the use of the arch-specific rng in add_timer_randomness(), since the call is significantly slower than get_cycles(), and we're much better off using it in xfer_secondary_pool() anyway. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
-
由 Linus Torvalds 提交于
Add a new interface, add_device_randomness() for adding data to the random pool that is likely to differ between two devices (or possibly even per boot). This would be things like MAC addresses or serial numbers, or the read-out of the RTC. This does *not* add any actual entropy to the pool, but it initializes the pool to different values for devices that might otherwise be identical and have very little entropy available to them (particularly common in the embedded world). [ Modified by tytso to mix in a timestamp, since there may be some variability caused by the time needed to detect/configure the hardware in question. ] Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
-
由 Theodore Ts'o 提交于
The real-time Linux folks don't like add_interrupt_randomness() taking a spinlock since it is called in the low-level interrupt routine. This also allows us to reduce the overhead in the fast path, for the random driver, which is the interrupt collection path. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
-
由 Theodore Ts'o 提交于
We've been moving away from add_interrupt_randomness() for various reasons: it's too expensive to do on every interrupt, and flooding the CPU with interrupts could theoretically cause bogus floods of entropy from a somewhat externally controllable source. This solves both problems by limiting the actual randomness addition to just once a second or after 64 interrupts, whicever comes first. During that time, the interrupt cycle data is buffered up in a per-cpu pool. Also, we make sure the the nonblocking pool used by urandom is initialized before we start feeding the normal input pool. This assures that /dev/urandom is returning unpredictable data as soon as possible. (Based on an original patch by Linus, but significantly modified by tytso.) Tested-by: NEric Wustrow <ewust@umich.edu> Reported-by: NEric Wustrow <ewust@umich.edu> Reported-by: NNadia Heninger <nadiah@cs.ucsd.edu> Reported-by: NZakir Durumeric <zakir@umich.edu> Reported-by: J. Alex Halderman <jhalderm@umich.edu>. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
-
- 07 7月, 2012 1 次提交
-
-
由 Theodore Ts'o 提交于
Add extern and static declarations to suppress sparse warnings Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 13 4月, 2012 1 次提交
-
-
由 Mathieu Desnoyers 提交于
/proc/sys/kernel/random/boot_id can be read concurrently by userspace processes. If two (or more) user-space processes concurrently read boot_id when sysctl_bootid is not yet assigned, a race can occur making boot_id differ between the reads. Because the whole point of the boot id is to be unique across a kernel execution, fix this by protecting this operation with a spinlock. Given that this operation is not frequently used, hitting the spinlock on each call should not be an issue. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 1月, 2012 2 次提交
-
-
由 H. Peter Anvin 提交于
When we are initializing using arch_get_random_long() we only need to loop enough times to touch all the bytes in the buffer; using poolwords for that does twice the number of operations necessary on a 64-bit machine, since in the random number generator code "word" means 32 bits. Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
-
由 Theodore Ts'o 提交于
If there is an architecture-specific random number generator (such as RDRAND for Intel architectures), use it to initialize /dev/random's entropy stores. Even in the worst case, if RDRAND is something like AES(NSA_KEY, counter++), it won't hurt, and it will definitely help against any other adversaries. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu> Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.eduSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 13 1月, 2012 1 次提交
-
-
由 Rusty Russell 提交于
module_param(bool) used to counter-intuitively take an int. In fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy trick. It's time to remove the int/unsigned int option. For this version it'll simply give a warning, but it'll break next kernel version. Acked-by: NMauro Carvalho Chehab <mchehab@redhat.com> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
- 30 12月, 2011 1 次提交
-
-
由 Linus Torvalds 提交于
We still don't use rdrand in /dev/random, which just seems stupid. We accept the *cycle*counter* as a random input, but we don't accept rdrand? That's just broken. Sure, people can do things in user space (write to /dev/random, use rdrand in addition to /dev/random themselves etc etc), but that *still* seems to be a particularly stupid reason for saying "we shouldn't bother to try to do better in /dev/random". And even if somebody really doesn't trust rdrand as a source of random bytes, it seems singularly stupid to trust the cycle counter *more*. So I'd suggest the attached patch. I'm not going to even bother arguing that we should add more bits to the entropy estimate, because that's not the point - I don't care if /dev/random fills up slowly or not, I think it's just stupid to not use the bits we can get from rdrand and mix them into the strong randomness pool. Link: http://lkml.kernel.org/r/CA%2B55aFwn59N1=m651QAyTy-1gO1noGbK18zwKDwvwqnravA84A@mail.gmail.comAcked-by: N"David S. Miller" <davem@davemloft.net> Acked-by: N"Theodore Ts'o" <tytso@mit.edu> Acked-by: NHerbert Xu <herbert@gondor.apana.org.au> Cc: Matt Mackall <mpm@selenic.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 17 11月, 2011 2 次提交
-
-
由 Luck, Tony 提交于
If there is an architecture-specific random number generator we use it to acquire randomness one "long" at a time. We should put these random words into consecutive words in the result buffer - not just overwrite the first word again and again. Signed-off-by: NTony Luck <tony.luck@intel.com> Acked-by: NH. Peter Anvin <hpa@zytor.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Luck, Tony 提交于
If there is an architecture-specific random number generator we use it to acquire randomness one "long" at a time. We should put these random words into consecutive words in the result buffer - not just overwrite the first word again and again. Signed-off-by: NTony Luck <tony.luck@intel.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/4ec4061010261a4cb0@agluck-desktop.sc.intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-