- 03 12月, 2008 4 次提交
-
-
由 Milan Broz 提交于
Fix setting of max_segment_size and seg_boundary mask for stacked md/dm devices. When stacking devices (LVM over MD over SCSI) some of the request queue parameters are not set up correctly in some cases by default, namely max_segment_size and and seg_boundary mask. If you create MD device over SCSI, these attributes are zeroed. Problem become when there is over this mapping next device-mapper mapping - queue attributes are set in DM this way: request_queue max_segment_size seg_boundary_mask SCSI 65536 0xffffffff MD RAID1 0 0 LVM 65536 -1 (64bit) Unfortunately bio_add_page (resp. bio_phys_segments) calculates number of physical segments according to these parameters. During the generic_make_request() is segment cout recalculated and can increase bio->bi_phys_segments count over the allowed limit. (After bio_clone() in stack operation.) Thi is specially problem in CCISS driver, where it produce OOPS here BUG_ON(creq->nr_phys_segments > MAXSGENTRIES); (MAXSEGENTRIES is 31 by default.) Sometimes even this command is enough to cause oops: dd iflag=direct if=/dev/<vg>/<lv> of=/dev/null bs=128000 count=10 This command generates bios with 250 sectors, allocated in 32 4k-pages (last page uses only 1024 bytes). For LVM layer, it allocates bio with 31 segments (still OK for CCISS), unfortunatelly on lower layer it is recalculated to 32 segments and this violates CCISS restriction and triggers BUG_ON(). The patch tries to fix it by: * initializing attributes above in queue request constructor blk_queue_make_request() * make sure that blk_queue_stack_limits() inherits setting (DM uses its own function to set the limits because it blk_queue_stack_limits() was introduced later. It should probably switch to use generic stack limit function too.) * sets the default seg_boundary value in one place (blkdev.h) * use this mask as default in DM (instead of -1, which differs in 64bit) Bugs related to this: https://bugzilla.redhat.com/show_bug.cgi?id=471639 http://bugzilla.kernel.org/show_bug.cgi?id=8672Signed-off-by: NMilan Broz <mbroz@redhat.com> Reviewed-by: NAlasdair G Kergon <agk@redhat.com> Cc: Neil Brown <neilb@suse.de> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Tejun Heo <htejun@gmail.com> Cc: Mike Miller <mike.miller@hp.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
由 Tejun Heo 提交于
blkdev_dequeue_request() and elv_dequeue_request() are equivalent and both start the timeout timer. Barrier code dequeues the original barrier request but doesn't passes the request itself to lower level driver, only broken down proxy requests; however, as the original barrier code goes through the same dequeue path and timeout timer is started on it. If barrier sequence takes long enough, this timer expires but the low level driver has no idea about this request and oops follows. Timeout timer shouldn't have been started on the original barrier request as it never goes through actual IO. This patch unexports elv_dequeue_request(), which has no external user anyway, and makes it operate on elevator proper w/o adding the timer and make blkdev_dequeue_request() call elv_dequeue_request() and add timer. Internal users which don't pass the request to driver - barrier code and end_that_request_last() - are converted to use elv_dequeue_request(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Mike Anderson <andmike@linux.vnet.ibm.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
由 Junjiro R. Okajima 提交于
The previous patch from Alan Cox ("nfsd: fix vm overcommit crash", commit 731572d3) fixed the problem where knfsd crashes on exported shmemfs objects and strict overcommit is set. But the patch forgot supporting the case when CONFIG_SECURITY is disabled. This patch copies a part of his fix which is mainly for detecting a bug earlier. Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NAlan Cox <alan@redhat.com> Signed-off-by: NJunjiro R. Okajima <hooanon05@yahoo.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
It seems that on some nVidia controllers using AltStatus register can be unreliable so default to Status register if the PCI device is in Compatibility Mode. In order to achieve this: * Add ide_pci_is_in_compatibility_mode() inline helper to <linux/ide.h>. * Add IDE_HFLAG_BROKEN_ALTSTATUS host flag and set it in amd74xx host driver for nVidia controllers in Compatibility Mode. * Teach actual_try_to_identify() and drive_is_ready() about the new flag. This fixes the regression caused by removal of CONFIG_IDEPCI_SHARE_IRQ config option in 2.6.25 and using AltStatus register unconditionally when available (kernel.org bugs #11659 and #10216). [ Moreover for CONFIG_IDEPCI_SHARE_IRQ=y (which is what most people and distributions use) it never worked correctly. ] Thanks to Remy LABENE and Lars Winterfeld for help with debugging the problem. More info at: http://bugzilla.kernel.org/show_bug.cgi?id=11659 http://bugzilla.kernel.org/show_bug.cgi?id=10216Reported-by: NRemy LABENE <remy.labene@free.fr> Tested-by: NRemy LABENE <remy.labene@free.fr> Tested-by: NLars Winterfeld <lars.winterfeld@tu-ilmenau.de> Acked-by: NBorislav Petkov <petkovbb@gmail.com> Signed-off-by: NBartlomiej Zolnierkiewicz <bzolnier@gmail.com>
-
- 02 12月, 2008 3 次提交
-
-
由 Manfred Spraul 提交于
2nd part of the fixes needed for http://bugzilla.kernel.org/show_bug.cgi?id=11796. When the idr tree is either grown or shrunk, then the update to the number of layers and the top pointer were not atomic. This race caused crashes. The attached patch fixes that by replicating the layers counter in each layer, thus idr_find doesn't need idp->layers anymore. Signed-off-by: NManfred Spraul <manfred@colorfullife.com> Cc: Clement Calmels <cboulte@gmail.com> Cc: Nadia Derbey <Nadia.Derbey@bull.net> Cc: Pierre Peiffer <peifferp@gmail.com> Cc: <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Davide Libenzi 提交于
It has been thought that the per-user file descriptors limit would also limit the resources that a normal user can request via the epoll interface. Vegard Nossum reported a very simple program (a modified version attached) that can make a normal user to request a pretty large amount of kernel memory, well within the its maximum number of fds. To solve such problem, default limits are now imposed, and /proc based configuration has been introduced. A new directory has been created, named /proc/sys/fs/epoll/ and inside there, there are two configuration points: max_user_instances = Maximum number of devices - per user max_user_watches = Maximum number of "watched" fds - per user The current default for "max_user_watches" limits the memory used by epoll to store "watches", to 1/32 of the amount of the low RAM. As example, a 256MB 32bit machine, will have "max_user_watches" set to roughly 90000. That should be enough to not break existing heavy epoll users. The default value for "max_user_instances" is set to 128, that should be enough too. This also changes the userspace, because a new error code can now come out from EPOLL_CTL_ADD (-ENOSPC). The EMFILE from epoll_create() was already listed, so that should be ok. [akpm@linux-foundation.org: use get_current_user()] Signed-off-by: NDavide Libenzi <davidel@xmailserver.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: <stable@kernel.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Reported-by: NVegard Nossum <vegardno@ifi.uio.no> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
Some recent Seagate harddrives have firmware bug which causes FLUSH CACHE to timeout under certain circumstances if NCQ is being used. This can be worked around by disabling NCQ and fixed by updating the firmware. Implement ATA_HORKAGE_FIRMWARE_UPDATE and blacklist these devices. The wiki page has been updated to contain information on this issue. http://ata.wiki.kernel.org/index.php/Known_issuesSigned-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NJeff Garzik <jgarzik@redhat.com>
-
- 01 12月, 2008 3 次提交
-
-
由 Christoph Hellwig 提交于
All architectures now use the generic compat_sys_ptrace, as should every new architecture that needs 32bit compat (if we'll ever get another). Remove the now superflous __ARCH_WANT_COMPAT_SYS_PTRACE define, and also kill a comment about __ARCH_SYS_PTRACE that was added after __ARCH_SYS_PTRACE was already gone. Signed-off-by: NChristoph Hellwig <hch@lst.de> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Al Viro 提交于
Same as for hotplug_cpu - we want static notifier_block in there in meminitdata, to avoid false positives whenever it's used. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 11月, 2008 1 次提交
-
-
由 Jack Morgenstein 提交于
Commit 7ff93f8b ("mlx4_core: Multiple port type support") introduced support for different port types. As part of that support, SET_PORT is invoked to set the port type during driver startup. However, as a side-effect, for IB ports the invocation of this command also sets the port's capability mask to zero (losing the default value set by FW). To fix this, get the default ib port capabilities (via a MAD_IFC Port Info query) during driver startup, and save them for use in the mlx4_SET_PORT command when setting the port-type to Infiniband. This patch fixes problems with subnet manager (SM) failover such as <https://bugs.openfabrics.org/show_bug.cgi?id=1183>, which occurred because the IsTrapSupported bit in the capability mask was zeroed. Signed-off-by: NJack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: NRoland Dreier <rolandd@cisco.com>
-
- 28 11月, 2008 1 次提交
-
-
由 Russell King 提交于
With aliasing VIPT cache support, the ARM implementation of clear_user_page() and copy_user_page() sets up a temporary kernel space mapping such that we have the same cache colour as the userspace page. This avoids having to consider any userspace aliases from this operation. However, when highmem is enabled, kmap_atomic() have to setup mappings. The copy_user_highpage() and clear_user_highpage() call these functions before delegating the copies to copy_user_page() and clear_user_page(). The effect of this is that each of the *_user_highpage() functions setup their own kmap mapping, followed by the *_user_page() functions setting up another mapping. This is rather wasteful. Thankfully, copy_user_highpage() can be overriden by architectures by defining __HAVE_ARCH_COPY_USER_HIGHPAGE. However, replacement of clear_user_highpage() is more difficult because its inline definition is not conditional. It seems that you're expected to define __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and provide a replacement __alloc_zeroed_user_highpage() implementation instead. The allocation itself is fine, so we don't want to override that. What we really want to do is to override clear_user_highpage() with our own version which doesn't kmap_atomic() unnecessarily. Other VIPT architectures (PARISC and SH) would also like to override this function as well. Acked-by: NHugh Dickins <hugh@veritas.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Acked-by: NPaul Mundt <lethal@linux-sh.org> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 25 11月, 2008 2 次提交
-
-
由 Jan Engelhardt 提交于
When entryinfo was a standalone parameter to functions, it used to be "const void *". Put the const back in. Signed-off-by: NJan Engelhardt <jengelh@medozas.de> Signed-off-by: NPatrick McHardy <kaber@trash.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Serge Hallyn 提交于
The user_ns is moved from nsproxy to user_struct, so that a struct cred by itself is sufficient to determine access (which it otherwise would not be). Corresponding ecryptfs fixes (by David Howells) are here as well. Fix refcounting. The following rules now apply: 1. The task pins the user struct. 2. The user struct pins its user namespace. 3. The user namespace pins the struct user which created it. User namespaces are cloned during copy_creds(). Unsharing a new user_ns is no longer possible. (We could re-add that, but it'll cause code duplication and doesn't seem useful if PAM doesn't need to clone user namespaces). When a user namespace is created, its first user (uid 0) gets empty keyrings and a clean group_info. This incorporates a previous patch by David Howells. Here is his original patch description: >I suggest adding the attached incremental patch. It makes the following >changes: > > (1) Provides a current_user_ns() macro to wrap accesses to current's user > namespace. > > (2) Fixes eCryptFS. > > (3) Renames create_new_userns() to create_user_ns() to be more consistent > with the other associated functions and because the 'new' in the name is > superfluous. > > (4) Moves the argument and permission checks made for CLONE_NEWUSER to the > beginning of do_fork() so that they're done prior to making any attempts > at allocation. > > (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds > to fill in rather than have it return the new root user. I don't imagine > the new root user being used for anything other than filling in a cred > struct. > > This also permits me to get rid of a get_uid() and a free_uid(), as the > reference the creds were holding on the old user_struct can just be > transferred to the new namespace's creator pointer. > > (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under > preparation rather than doing it in copy_creds(). > >David >Signed-off-by: David Howells <dhowells@redhat.com> Changelog: Oct 20: integrate dhowells comments 1. leave thread_keyring alone 2. use current_user_ns() in set_user() Signed-off-by: NSerge Hallyn <serue@us.ibm.com>
-
- 23 11月, 2008 1 次提交
-
-
由 Randy Dunlap 提交于
Impact: fix kernel-doc build Fix missing & excess irq.h kernel-doc: Warning(include/linux/irq.h:182): No description found for parameter 'irq' Warning(include/linux/irq.h:182): Excess struct/union/enum/typedef member 'affinity_entry' description in 'irq_desc' Signed-off-by: NRandy Dunlap <randy.dunlap@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 11月, 2008 2 次提交
-
-
由 Miao Xie 提交于
After adding a node into the machine, top cpuset's mems isn't updated. By reviewing the code, we found that the update function cpuset_track_online_nodes() was invoked after node_states[N_ONLINE] changes. It is wrong because N_ONLINE just means node has pgdat, and if node has/added memory, we use N_HIGH_MEMORY. So, We should invoke the update function after node_states[N_HIGH_MEMORY] changes, just like its commit says. This patch fixes it. And we use notifier of memory hotplug instead of direct calling of cpuset_track_online_nodes(). Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Acked-by: NYasunori Goto <y-goto@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Menage <menage@google.com Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Drepper 提交于
Introduce a new accept4() system call. The addition of this system call matches analogous changes in 2.6.27 (dup3(), evenfd2(), signalfd4(), inotify_init1(), epoll_create1(), pipe2()) which added new system calls that differed from analogous traditional system calls in adding a flags argument that can be used to access additional functionality. The accept4() system call is exactly the same as accept(), except that it adds a flags bit-mask argument. Two flags are initially implemented. (Most of the new system calls in 2.6.27 also had both of these flags.) SOCK_CLOEXEC causes the close-on-exec (FD_CLOEXEC) flag to be enabled for the new file descriptor returned by accept4(). This is a useful security feature to avoid leaking information in a multithreaded program where one thread is doing an accept() at the same time as another thread is doing a fork() plus exec(). More details here: http://udrepper.livejournal.com/20407.html "Secure File Descriptor Handling", Ulrich Drepper). The other flag is SOCK_NONBLOCK, which causes the O_NONBLOCK flag to be enabled on the new open file description created by accept4(). (This flag is merely a convenience, saving the use of additional calls fcntl(F_GETFL) and fcntl (F_SETFL) to achieve the same result. Here's a test program. Works on x86-32. Should work on x86-64, but I (mtk) don't have a system to hand to test with. It tests accept4() with each of the four possible combinations of SOCK_CLOEXEC and SOCK_NONBLOCK set/clear in 'flags', and verifies that the appropriate flags are set on the file descriptor/open file description returned by accept4(). I tested Ulrich's patch in this thread by applying against 2.6.28-rc2, and it passes according to my test program. /* test_accept4.c Copyright (C) 2008, Linux Foundation, written by Michael Kerrisk <mtk.manpages@gmail.com> Licensed under the GNU GPLv2 or later. */ #define _GNU_SOURCE #include <unistd.h> #include <sys/syscall.h> #include <sys/socket.h> #include <netinet/in.h> #include <stdlib.h> #include <fcntl.h> #include <stdio.h> #include <string.h> #define PORT_NUM 33333 #define die(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0) /**********************************************************************/ /* The following is what we need until glibc gets a wrapper for accept4() */ /* Flags for socket(), socketpair(), accept4() */ #ifndef SOCK_CLOEXEC #define SOCK_CLOEXEC O_CLOEXEC #endif #ifndef SOCK_NONBLOCK #define SOCK_NONBLOCK O_NONBLOCK #endif #ifdef __x86_64__ #define SYS_accept4 288 #elif __i386__ #define USE_SOCKETCALL 1 #define SYS_ACCEPT4 18 #else #error "Sorry -- don't know the syscall # on this architecture" #endif static int accept4(int fd, struct sockaddr *sockaddr, socklen_t *addrlen, int flags) { printf("Calling accept4(): flags = %x", flags); if (flags != 0) { printf(" ("); if (flags & SOCK_CLOEXEC) printf("SOCK_CLOEXEC"); if ((flags & SOCK_CLOEXEC) && (flags & SOCK_NONBLOCK)) printf(" "); if (flags & SOCK_NONBLOCK) printf("SOCK_NONBLOCK"); printf(")"); } printf("\n"); #if USE_SOCKETCALL long args[6]; args[0] = fd; args[1] = (long) sockaddr; args[2] = (long) addrlen; args[3] = flags; return syscall(SYS_socketcall, SYS_ACCEPT4, args); #else return syscall(SYS_accept4, fd, sockaddr, addrlen, flags); #endif } /**********************************************************************/ static int do_test(int lfd, struct sockaddr_in *conn_addr, int closeonexec_flag, int nonblock_flag) { int connfd, acceptfd; int fdf, flf, fdf_pass, flf_pass; struct sockaddr_in claddr; socklen_t addrlen; printf("=======================================\n"); connfd = socket(AF_INET, SOCK_STREAM, 0); if (connfd == -1) die("socket"); if (connect(connfd, (struct sockaddr *) conn_addr, sizeof(struct sockaddr_in)) == -1) die("connect"); addrlen = sizeof(struct sockaddr_in); acceptfd = accept4(lfd, (struct sockaddr *) &claddr, &addrlen, closeonexec_flag | nonblock_flag); if (acceptfd == -1) { perror("accept4()"); close(connfd); return 0; } fdf = fcntl(acceptfd, F_GETFD); if (fdf == -1) die("fcntl:F_GETFD"); fdf_pass = ((fdf & FD_CLOEXEC) != 0) == ((closeonexec_flag & SOCK_CLOEXEC) != 0); printf("Close-on-exec flag is %sset (%s); ", (fdf & FD_CLOEXEC) ? "" : "not ", fdf_pass ? "OK" : "failed"); flf = fcntl(acceptfd, F_GETFL); if (flf == -1) die("fcntl:F_GETFD"); flf_pass = ((flf & O_NONBLOCK) != 0) == ((nonblock_flag & SOCK_NONBLOCK) !=0); printf("nonblock flag is %sset (%s)\n", (flf & O_NONBLOCK) ? "" : "not ", flf_pass ? "OK" : "failed"); close(acceptfd); close(connfd); printf("Test result: %s\n", (fdf_pass && flf_pass) ? "PASS" : "FAIL"); return fdf_pass && flf_pass; } static int create_listening_socket(int port_num) { struct sockaddr_in svaddr; int lfd; int optval; memset(&svaddr, 0, sizeof(struct sockaddr_in)); svaddr.sin_family = AF_INET; svaddr.sin_addr.s_addr = htonl(INADDR_ANY); svaddr.sin_port = htons(port_num); lfd = socket(AF_INET, SOCK_STREAM, 0); if (lfd == -1) die("socket"); optval = 1; if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) == -1) die("setsockopt"); if (bind(lfd, (struct sockaddr *) &svaddr, sizeof(struct sockaddr_in)) == -1) die("bind"); if (listen(lfd, 5) == -1) die("listen"); return lfd; } int main(int argc, char *argv[]) { struct sockaddr_in conn_addr; int lfd; int port_num; int passed; passed = 1; port_num = (argc > 1) ? atoi(argv[1]) : PORT_NUM; memset(&conn_addr, 0, sizeof(struct sockaddr_in)); conn_addr.sin_family = AF_INET; conn_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); conn_addr.sin_port = htons(port_num); lfd = create_listening_socket(port_num); if (!do_test(lfd, &conn_addr, 0, 0)) passed = 0; if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, 0)) passed = 0; if (!do_test(lfd, &conn_addr, 0, SOCK_NONBLOCK)) passed = 0; if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, SOCK_NONBLOCK)) passed = 0; close(lfd); exit(passed ? EXIT_SUCCESS : EXIT_FAILURE); } [mtk.manpages@gmail.com: rewrote changelog, updated test program] Signed-off-by: NUlrich Drepper <drepper@redhat.com> Tested-by: NMichael Kerrisk <mtk.manpages@gmail.com> Acked-by: NMichael Kerrisk <mtk.manpages@gmail.com> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 11月, 2008 1 次提交
-
-
由 Tejun Heo 提交于
Make add_partition() return pointer to the new hd_struct on success and ERR_PTR() value on failure. This change will be used to fix md autodetection bug. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Neil Brown <neilb@suse.de> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 16 11月, 2008 2 次提交
-
-
由 Al Viro 提交于
Inotify watch removals suck violently. To kick the watch out we need (in this order) inode->inotify_mutex and ih->mutex. That's fine if we have a hold on inode; however, for all other cases we need to make damn sure we don't race with umount. We can *NOT* just grab a reference to a watch - inotify_unmount_inodes() will happily sail past it and we'll end with reference to inode potentially outliving its superblock. Ideally we just want to grab an active reference to superblock if we can; that will make sure we won't go into inotify_umount_inodes() until we are done. Cleanup is just deactivate_super(). However, that leaves a messy case - what if we *are* racing with umount() and active references to superblock can't be acquired anymore? We can bump ->s_count, grab ->s_umount, which will almost certainly wait until the superblock is shut down and the watch in question is pining for fjords. That's fine, but there is a problem - we might have hit the window between ->s_active getting to 0 / ->s_count - below S_BIAS (i.e. the moment when superblock is past the point of no return and is heading for shutdown) and the moment when deactivate_super() acquires ->s_umount. We could just do drop_super() yield() and retry, but that's rather antisocial and this stuff is luser-triggerable. OTOH, having grabbed ->s_umount and having found that we'd got there first (i.e. that ->s_root is non-NULL) we know that we won't race with inotify_umount_inodes(). So we could grab a reference to watch and do the rest as above, just with drop_super() instead of deactivate_super(), right? Wrong. We had to drop ih->mutex before we could grab ->s_umount. So the watch could've been gone already. That still can be dealt with - we need to save watch->wd, do idr_find() and compare its result with our pointer. If they match, we either have the damn thing still alive or we'd lost not one but two races at once, the watch had been killed and a new one got created with the same ->wd at the same address. That couldn't have happened in inotify_destroy(), but inotify_rm_wd() could run into that. Still, "new one got created" is not a problem - we have every right to kill it or leave it alone, whatever's more convenient. So we can use idr_find(...) == watch && watch->inode->i_sb == sb as "grab it and kill it" check. If it's been our original watch, we are fine, if it's a newcomer - nevermind, just pretend that we'd won the race and kill the fscker anyway; we are safe since we know that its superblock won't be going away. And yes, this is far beyond mere "not very pretty"; so's the entire concept of inotify to start with. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Acked-by: NGreg KH <greg@kroah.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Martin Schwidefsky 提交于
A common reason for device drivers to implement their own printk macros is the lack of a printk prefix with the standard pr_xyz macros. Introduce a pr_fmt() macro that is applied for every pr_xyz macro to the format string. The most common use of the pr_fmt macro would be to add the name of the device driver to all pr_xyz messages in a source file. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 11月, 2008 20 次提交
-
-
由 Ingo Molnar 提交于
fix this warning: net/bluetooth/af_bluetooth.c:60: warning: ‘bt_key_strings’ defined but not used net/bluetooth/af_bluetooth.c:71: warning: ‘bt_slock_key_strings’ defined but not used this is a lockdep macro problem in the !LOCKDEP case. We cannot convert it to an inline because the macro works on multiple types, but we can mark the parameter used. [ also clean up a misaligned tab in sock_lock_init_class_and_name() ] [ also remove #ifdefs from around af_family_clock_key strings - which were certainly added to get rid of the ugly build warnings. ] Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David Howells 提交于
Allow kernel services to override LSM settings appropriate to the actions performed by a task by duplicating a set of credentials, modifying it and then using task_struct::cred to point to it when performing operations on behalf of a task. This is used, for example, by CacheFiles which has to transparently access the cache on behalf of a process that thinks it is doing, say, NFS accesses with a potentially inappropriate (with respect to accessing the cache) set of credentials. This patch provides two LSM hooks for modifying a task security record: (*) security_kernel_act_as() which allows modification of the security datum with which a task acts on other objects (most notably files). (*) security_kernel_create_files_as() which allows modification of the security datum that is used to initialise the security data on a file that a task creates. The patch also provides four new credentials handling functions, which wrap the LSM functions: (1) prepare_kernel_cred() Prepare a set of credentials for a kernel service to use, based either on a daemon's credentials or on init_cred. All the keyrings are cleared. (2) set_security_override() Set the LSM security ID in a set of credentials to a specific security context, assuming permission from the LSM policy. (3) set_security_override_from_ctx() As (2), but takes the security context as a string. (4) set_create_files_as() Set the file creation LSM security ID in a set of credentials to be the same as that on a particular inode. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> [Smack changes] Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Differentiate the objective and real subjective credentials from the effective subjective credentials on a task by introducing a second credentials pointer into the task_struct. task_struct::real_cred then refers to the objective and apparent real subjective credentials of a task, as perceived by the other tasks in the system. task_struct::cred then refers to the effective subjective credentials of a task, as used by that task when it's actually running. These are not visible to the other tasks in the system. __task_cred(task) then refers to the objective/real credentials of the task in question. current_cred() refers to the effective subjective credentials of the current task. prepare_creds() uses the objective creds as a base and commit_creds() changes both pointers in the task_struct (indeed commit_creds() requires them to be the same). override_creds() and revert_creds() change the subjective creds pointer only, and the former returns the old subjective creds. These are used by NFSD, faccessat() and do_coredump(), and will by used by CacheFiles. In SELinux, current_has_perm() is provided as an alternative to task_has_perm(). This uses the effective subjective context of current, whereas task_has_perm() uses the objective/real context of the subject. Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Document credentials and the new credentials API. Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Attach creds to file structs and discard f_uid/f_gid. file_operations::open() methods (such as hppfs_open()) should use file->f_cred rather than current_cred(). At the moment file->f_cred will be current_cred() at this point. Signed-off-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Pass credentials through dentry_open() so that the COW creds patch can have SELinux's flush_unauthorized_files() pass the appropriate creds back to itself when it opens its null chardev. The security_dentry_open() call also now takes a creds pointer, as does the dentry_open hook in struct security_operations. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Separate per-task-group keyrings from signal_struct and dangle their anchor from the cred struct rather than the signal_struct. Signed-off-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Use RCU to access another task's creds and to release a task's own creds. This means that it will be possible for the credentials of a task to be replaced without another task (a) requiring a full lock to read them, and (b) seeing deallocated memory. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Wrap current->cred and a few other accessors to hide their actual implementation. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Detach the credentials from task_struct, duplicating them in copy_process() and releasing them in __put_task_struct(). Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Separate the task security context from task_struct. At this point, the security data is temporarily embedded in the task_struct with two pointers pointing to it. Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in entry.S via asm-offsets. With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com> Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Constify the kernel_cap_t arguments to the capset LSM hooks. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NSerge Hallyn <serue@us.ibm.com> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Take away the ability for sys_capset() to affect processes other than current. This means that current will not need to lock its own credentials when reading them against interference by other processes. This has effectively been the case for a while anyway, since: (1) Without LSM enabled, sys_capset() is disallowed. (2) With file-based capabilities, sys_capset() is neutered. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NSerge Hallyn <serue@us.ibm.com> Acked-by: NAndrew G. Morgan <morgan@kernel.org> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Alter the use of the key instantiation and negation functions' link-to-keyring arguments. Currently this specifies a keyring in the target process to link the key into, creating the keyring if it doesn't exist. This, however, can be a problem for copy-on-write credentials as it means that the instantiating process can alter the credentials of the requesting process. This patch alters the behaviour such that: (1) If keyctl_instantiate_key() or keyctl_negate_key() are given a specific keyring by ID (ringid >= 0), then that keyring will be used. (2) If keyctl_instantiate_key() or keyctl_negate_key() are given one of the special constants that refer to the requesting process's keyrings (KEY_SPEC_*_KEYRING, all <= 0), then: (a) If sys_request_key() was given a keyring to use (destringid) then the key will be attached to that keyring. (b) If sys_request_key() was given a NULL keyring, then the key being instantiated will be attached to the default keyring as set by keyctl_set_reqkey_keyring(). (3) No extra link will be made. Decision point (1) follows current behaviour, and allows those instantiators who've searched for a specifically named keyring in the requestor's keyring so as to partition the keys by type to still have their named keyrings. Decision point (2) allows the requestor to make sure that the key or keys that get produced by request_key() go where they want, whilst allowing the instantiator to request that the key is retained. This is mainly useful for situations where the instantiator makes a secondary request, the key for which should be retained by the initial requestor: +-----------+ +--------------+ +--------------+ | | | | | | | Requestor |------->| Instantiator |------->| Instantiator | | | | | | | +-----------+ +--------------+ +--------------+ request_key() request_key() This might be useful, for example, in Kerberos, where the requestor requests a ticket, and then the ticket instantiator requests the TGT, which someone else then has to go and fetch. The TGT, however, should be retained in the keyrings of the requestor, not the first instantiator. To make this explict an extra special keyring constant is also added. Signed-off-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Disperse the bits of linux/key_ui.h as the reason they were put here (keyfs) didn't get in. Signed-off-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Wrap access to task credentials so that they can be separated more easily from the task_struct during the introduction of COW creds. Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id(). Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more sense to use RCU directly rather than a convenient wrapper; these will be addressed by later patches. Signed-off-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 Alan Stern 提交于
This patch (as1155) fixes a bug in usbcore. When interfaces are deleted, either because the device was disconnected or because of a configuration change, the extra attribute files and child endpoint devices may get left behind. This is because the core removes them before calling device_del(). But during device_del(), after the driver is unbound the core will reinstall altsetting 0 and recreate those extra attributes and children. The patch prevents this by adding a flag to record when the interface is in the midst of being unregistered. When the flag is set, the attribute files and child devices will not be created. Signed-off-by: NAlan Stern <stern@rowland.harvard.edu> Cc: stable <stable@kernel.org> [2.6.27, 2.6.26, 2.6.25] Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Peter Zijlstra 提交于
Explain this SLAB_DESTROY_BY_RCU thing... [hugh@veritas.com: add a pointer to comment in mm/slab.c] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NJens Axboe <jens.axboe@oracle.com> Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NChristoph Lameter <cl@linux-foundation.org> Signed-off-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NPekka Enberg <penberg@cs.helsinki.fi>
-