1. 20 3月, 2006 3 次提交
    • D
      [SPARC64]: Refine code sequences to get the cpu id. · 92704a1c
      David S. Miller 提交于
      On uniprocessor, it's always zero for optimize that.
      
      On SMP, the jmpl to the stub kills the return address stack in the cpu
      branch prediction logic, so expand the code sequence inline and use a
      code patching section to fix things up.  This also always better and
      explicit register selection, which will be taken advantage of in a
      future changeset.
      
      The hard_smp_processor_id() function is big, so do not inline it.
      
      Fix up tests for Jalapeno to also test for Serrano chips too.  These
      tests want "jbus Ultra-IIIi" cases to match, so that is what we should
      test for.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      92704a1c
    • D
      [SPARC64]: Correctable ECC errors cannot occur at trap level > 0. · 7bec08e3
      David S. Miller 提交于
      The are distrupting, which by the sparc v9 definition means they
      can only occur when interrupts are enabled in the %pstate register.
      This never occurs in any of the trap handling code running at
      trap levels > 0.
      
      So just mark it as an unexpected trap.
      
      This allows us to kill off the cee_stuff member of struct thread_info.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7bec08e3
    • D
      [SPARC64]: Elminate all usage of hard-coded trap globals. · 56fb4df6
      David S. Miller 提交于
      UltraSPARC has special sets of global registers which are switched to
      for certain trap types.  There is one set for MMU related traps, one
      set of Interrupt Vector processing, and another set (called the
      Alternate globals) for all other trap types.
      
      For what seems like forever we've hard coded the values in some of
      these trap registers.  Some examples include:
      
      1) Interrupt Vector global %g6 holds current processors interrupt
         work struct where received interrupts are managed for IRQ handler
         dispatch.
      
      2) MMU global %g7 holds the base of the page tables of the currently
         active address space.
      
      3) Alternate global %g6 held the current_thread_info() value.
      
      Such hardcoding has resulted in some serious issues in many areas.
      There are some code sequences where having another register available
      would help clean up the implementation.  Taking traps such as
      cross-calls from the OBP firmware requires some trick code sequences
      wherein we have to save away and restore all of the special sets of
      global registers when we enter/exit OBP.
      
      We were also using the IMMU TSB register on SMP to hold the per-cpu
      area base address, which doesn't work any longer now that we actually
      use the TSB facility of the cpu.
      
      The implementation is pretty straight forward.  One tricky bit is
      getting the current processor ID as that is different on different cpu
      variants.  We use a stub with a fancy calling convention which we
      patch at boot time.  The calling convention is that the stub is
      branched to and the (PC - 4) to return to is in register %g1.  The cpu
      number is left in %g6.  This stub can be invoked by using the
      __GET_CPUID macro.
      
      We use an array of per-cpu trap state to store the current thread and
      physical address of the current address space's page tables.  The
      TRAP_LOAD_THREAD_REG loads %g6 with the current thread from this
      table, it uses __GET_CPUID and also clobbers %g1.
      
      TRAP_LOAD_IRQ_WORK is used by the interrupt vector processing to load
      the current processor's IRQ software state into %g6.  It also uses
      __GET_CPUID and clobbers %g1.
      
      Finally, TRAP_LOAD_PGD_PHYS loads the physical address base of the
      current address space's page tables into %g7, it clobbers %g1 and uses
      __GET_CPUID.
      
      Many refinements are possible, as well as some tuning, with this stuff
      in place.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      56fb4df6
  2. 13 1月, 2006 1 次提交
  3. 30 9月, 2005 1 次提交
  4. 29 9月, 2005 3 次提交
  5. 26 9月, 2005 1 次提交
    • D
      [SPARC64]: Probe D/I/E-cache config and use. · 80dc0d6b
      David S. Miller 提交于
      At boot time, determine the D-cache, I-cache and E-cache size and
      line-size.  Use them in cache flushes when appropriate.
      
      This change was motivated by discovering that the D-cache on
      UltraSparc-IIIi and later are 64K not 32K, and the flushes done by the
      Cheetah error handlers were assuming a 32K size.
      
      There are still some pieces of code that are hard coding things and
      will need to be fixed up at some point.
      
      While we're here, fix the D-cache and I-cache parity error handlers
      to run with interrupts disabled, and when the trap occurs at trap
      level > 1 log the event via a counter displayed in /proc/cpuinfo.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      80dc0d6b
  6. 30 8月, 2005 2 次提交
    • D
      [SPARC64]: Revamp Spitfire error trap handling. · 6c52a96e
      David S. Miller 提交于
      Current uncorrectable error handling was poor enough
      that the processor could just loop taking the same
      trap over and over again.  Fix things up so that we
      at least get a log message and perhaps even some register
      state.
      
      In the process, much consolidation became possible,
      particularly with the correctable error handler.
      
      Prefix assembler and C function names with "spitfire"
      to indicate that these are for Ultra-I/II/IIi/IIe only.
      
      More work is needed to make these routines robust and
      featureful to the level of the Ultra-III error handlers.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6c52a96e
    • D
      [SPARC64]: Do not call winfix_dax blindly · bde4e4ee
      David S. Miller 提交于
      Verify we really are taking a data access exception trap, at TL1, from
      one of the window spill/fill handlers.
      
      Else call a new function, data_access_exception_tl1, to log the error.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bde4e4ee
  7. 20 8月, 2005 1 次提交
  8. 25 7月, 2005 1 次提交
  9. 24 5月, 2005 1 次提交
    • D
      [SPARC64]: Add boot option to force UltraSPARC-III P-Cache on. · 816242da
      David S. Miller 提交于
      Older UltraSPARC-III chips have a P-Cache bug that makes us disable it
      by default at boot time.
      
      However, this does hurt performance substantially, particularly with
      memcpy(), and the bug is _incredibly_ obscure.  I have never seen it
      triggered in practice, ever.
      
      So provide a "-P" boot option that forces the P-Cache on.  It taints
      the kernel, so if it does trigger and cause some data corruption or
      OOPS, we will find out in the logs that this option was on when it
      happened.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      816242da
  10. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4